10

Similar documents
28

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

Microsoft Word - 計量研修テキスト_第5版).doc

DVIOUT-ar

Microsoft Word - 計量研修テキスト_第5版).doc

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

σ t σ t σt nikkei HP nikkei4csv H R nikkei4<-readcsv("h:=y=ynikkei4csv",header=t) (1) nikkei header=t nikkei4csv 4 4 nikkei nikkei4<-dataframe(n

<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63>

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.

Microsoft Word - 計量研修テキスト_第5版).doc

seminar0220a.dvi

こんにちは由美子です

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.

第11回:線形回帰モデルのOLS推定

研究シリーズ第40号

: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99

4 OLS 4 OLS 4.1 nurseries dual c dual i = c + βnurseries i + ε i (1) 1. OLS Workfile Quick - Estimate Equation OK Equation specification dual c nurser

II (2011 ) ( ) α β û i R

最小2乗法

こんにちは由美子です

α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β *3 2.3 * *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P + 10) 15 (µ A = µ P +

201711grade2.pdf

Microsoft Word - 計量研修テキスト_第5版).doc

こんにちは由美子です

抄録/抄録1    (1)V

1 Tokyo Daily Rainfall (mm) Days (mm)

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G (

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

橡表紙参照.PDF

基礎数学I

tokei01.dvi

201711grade1ouyou.pdf

nsg02-13/ky045059301600033210

k2 ( :35 ) ( k2) (GLM) web web 1 :

01.ai

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model

% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr

Microsoft Word - 計量研修テキスト_第5版).doc

(pdf) (cdf) Matlab χ ( ) F t

Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F(

9 8 7 (x-1.0)*(x-1.0) *(x-1.0) (a) f(a) (b) f(a) Figure 1: f(a) a =1.0 (1) a 1.0 f(1.0)

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

.. est table TwoSLS1 TwoSLS2 GMM het,b(%9.5f) se Variable TwoSLS1 TwoSLS2 GMM_het hi_empunion totchr


鉄鋼協会プレゼン

Microsoft PowerPoint - TA報告(7)

TS002

Use R

Stata 11 Stata VAR VEC whitepaper mwp 4 mwp-084 var VAR 14 mwp-004 varbasic VAR 25 mwp-005 svar VAR 31 mwp-007 vec intro VEC 47 mwp-008 vec VEC 75 mwp

ohpmain.dvi

第90回日本感染症学会学術講演会抄録(I)

JMP V4 による生存時間分析

(lm) lm AIC 2 / 1

GLM PROC GLM y = Xβ + ε y X β ε ε σ 2 E[ε] = 0 var[ε] = σ 2 I σ 2 0 σ 2 =... 0 σ 2 σ 2 I ε σ 2 y E[y] =Xβ var[y] =σ 2 I PROC GLM

untitled

Ł\”ƒ-2005


国土技術政策総合研究所資料

Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理

陦ィ邏・2

Mantel-Haenszelの方法

2301/1     目次・広告

keisoku01.dvi

7 ( 7 ( Workfile Excel hatuden 1000kWh kion_average kion_max kion_min date holiday *1 obon 7.1 Workfile 1. Workfile File - New -

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó

オーストラリア研究紀要 36号(P)☆/3.橋本

yamadaiR(cEFA).pdf

untitled

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0

ECCS. ECCS,. ( 2. Mac Do-file Editor. Mac Do-file Editor Windows Do-file Editor Top Do-file e


1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

教育振興基本計画・プランについてのアンケート調査結果

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

untitled

プリント

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

Microsoft Word - 1.抗がん剤治療を受けられるかたへ(最新版).doc

Stata User Group Meeting in Kyoto / ( / ) Stata User Group Meeting in Kyoto / 21

本文27/A(CD-ROM

パーキンソン病治療ガイドライン2002

27巻3号/FUJSYU03‐107(プログラム)

第101回 日本美容外科学会誌/nbgkp‐01(大扉)

: , 2.0, 3.0, 2.0, (%) ( 2.

tnbp59-20_Web:P1/ky108679509610002943


McCain & McCleary (1979) The Statistical Analysis of the Simple Interrupted Time-Series Quasi-Experiment

計量経済分析 2011 年度夏学期期末試験 担当 : 別所俊一郎 以下のすべてに答えなさい. 回答は日本語か英語でおこなうこと. 1. 次のそれぞれの記述が正しいかどうか判定し, 誤りである場合には理由, あるいはより適切な 記述はどのようなものかを述べなさい. (1) You have to wo

講義のーと : データ解析のための統計モデリング. 第3回

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

untitled

Visit Japan Campaign OD OD 18 UNWTO 19 OD JNTO ODUNWTO 1 1

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

ACLI-EBC-CLHIA Interim Proposal _J_ June Final.PDF

1 kawaguchi p.1/81

08 p Boltzmann I P ( ) principle of equal probability P ( ) g ( )g ( 0 ) (4 89) (4 88) eq II 0 g ( 0 ) 0 eq Taylor eq (4 90) g P ( ) g ( ) g ( 0

²¾ÁÛ¾õ¶·É¾²ÁË¡¤Î¤¿¤á¤Î¥Ñ¥Ã¥±¡¼¥¸DCchoice ¡Ê»ÃÄêÈÇ¡Ë

Transcription:

z c j = N 1 N t= j1 [ ( z t z ) ( )] z t j z

q 2 1 2 r j /N j=1 1/ N J Q = N(N 2) 1 N j j=1 r j 2 2 χ J B d z t = z t d (1 B) 2 z t = (z t z t 1 ) (z t 1 z t 2 ) (1 B s )z t = z t z t s

_ARIMA CONSUME / NLAG=8 NLAGP=8 PLOTAC PLOTPAC IDENTIFICATION SECTION - VARIABLE=CONSUME NUMBER OF AUTOCORRELATIONS = 8 NUMBER OF PARTIAL AUTOCORRELATIONS = 8 0 0 0 SERIES (1-B) (1-B ) CONSUME NET NUMBER OF OBSERVATIONS = 17 MEAN= 134.51 VARIANCE= 555.89 STANDARD DEV.= 23.577 LAGS AUTOCORRELATIONS STD ERR 1-8.72.53.42.21.16.04 -.18 -.29.24 MODIFIED BOX-PIERCE (LJUNG-BOX-PIERCE) STATISTICS (CHI-SQUARE) LAG Q DF P-VALUE 1 10.59 1.001 LAG Q DF P-VALUE 5 22.43 5.000 2 16.64 2.000 6 22.48 6.001 3 4 20.64 21.74 3.000 4.000 7 8 23.53 26.51 7.001 8.001 LAGS PARTIAL AUTOCORRELATIONS STD ERR 1-8.72.01.06 -.24.17 -.22 -.26 -.12.24 AUTOCORRELATION FUNCTION OF THE SERIES 0 0 0 (1-B) (1-B ) CONSUME 1.72. RRRRRRRRRRRRRRRRRRRRRRRRRR 2.53. 3.42. RRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRR 4.21. RRRRRRRR 5.16. 6.04. RRRRRR RR 7 -.18. 8 -.29. RRRRRRR RRRRRRRRRRR 0 0 0 PARTIAL AUTOCORRELATION FUNCTION OF THE SERIES (1-B) (1-B ) CONSUME 1.72. RRRRRRRRRRRRRRRRRRRRRRRRRR

2.01. R 3.06. RRR 4 -.24. RRRRRRRRR 5.17. RRRRRRR 6 -.22. RRRRRRRRR 7 -.26. RRRRRRRRRR 8 -.12. RRRRR. SAMPLE 1 462 ARIMA TBILL / NLAGP=6 PACF=PACREC DIM PACOLS 6 BETA 6 PACDOLS 6 DO #=1,6 *?OLS?OLS TBILL TBILL(1.#) / COEF=BETA GEN1 PACOLS:#=BETA:# ENDO * * ARIMA TBILL / NLAGP=6 PACF=PACDREC NDIFF=1 SAMPLE 2 462 GENR TBILLD=TBILL-LAG(TBILL) DO #=1,6?OLS TBILLD TBILLD(1.#) / COEF=BETA GEN1 PACDOLS:#=BETA:# ENDO * SAMPLE 1 6 PRINT PACOLS PACREC PACDOLS PACDREC

_PRINT PACOLS PACREC PACDOLS PACDREC PACOLS PACREC PACDOLS PACDREC.9853103.9849570.3211617.3210678 -.3292023 -.2853001 -.2370160 -.2369215.2268389.1769929 -.1310004E-02 -.1195282E-02 -.6588286E-02.1690130E-01 -.2410940E-01 -.2402594E-01.1629671E-01.5984359E-02.2512564E-01.2511990E-01 -.3295992E-01 -.2934608E-01 -.2968466 -.2964889 z t φ 1 z t 1 = u t θ 1 u t 1 δ φ θ δ φ (B) = 1 φ 1 B... φ p B p θ(b) = 1 θ 1 B... θ q B q φ(b)(1 B) d z t = θ(b) u t δ Γ(B s ) = 1 Γ 1 B s... Γ P B sp (B s ) = 1 1 B s... Q B sq

Γ(B s ) φ (B)(1 B) d (1 B s ) D z t = (B s ) θ (B) u t δ β = [ φ θ Γ δ] N S(β) = u t (β) 2 t=1 ˆ (i β ) ut ( ˆ ( i) ) [ u ( ˆ ( i) i h e ) u ( ˆ ( ) β β β )]/ h k = 1,..., K β k t k k t k h k = hβ ˆ (i) k ˆ ( i) ˆ ( i 1) ˆ ( i) β β / β <. 0001 k k k S( β ˆ (i) ) S( β ˆ (i 1) )/ S( β ˆ (i 1) )<.000001

SIGMA**2 σ ˆ 2 1 u = N K N u t (ˆ β ) 2 t=1 σ ˆ 2 u X β ˆ Xˆ 1 β x kt = u t β k (ˆ β ) 2 χ J K1 2 χ J K AIC(K) = log σ ˆ 2 () u 2 K/N SC(K) = log σ ˆ 2 u ( ) Klog(N )/N y t = (1 B)d (1 B s ) D z t u ˆ t j c (y ˆ u )j = 1 N N (y t t= j1 y ) ( ˆ u t j u )

N 1 y= N t= 1 y t 1 u = N N t= 1 uˆ t r (yˆ u )j = c (yˆ u )j / c (yy)0 c ( u ˆ u ˆ )0

ARIMA IINV / NAR=5 START RESTRICT BEG=1950.1 END=1985.4.5 0 0.1.1 5

ARIMA CONSUME / NAR=1 NMA=1 START 0.5-0.2 100 DIM ALPHA 3 GEN1 ALPHA:1= 0.5 GEN1 ALPHA:2= -.2 GEN1 ALPHA:3= 100 ARIMA CONSUME / NAR=1 NMA=1 START=ALPHA _ARIMA CONSUME / NAR=1 NMA=1 START=ALPHA ESTIMATION PROCEDURE STARTING VALUES OF PARAMETERS ARE:.50000 -.20000 100.00 MEAN OF SERIES = 134.5

VARIANCE OF SERIES = 555.9 STANDARD DEVIATION OF SERIES = 23.58 INITIAL SUM OF SQUARES = 17958.972 ITERATION STOPS - RELATIVE CHANGE IN EACH PARAMETER LESS THAN.1E-03 NET NUMBER OF OBS IS 17 DIFFERENCING: 0 CONSECUTIVE, 0 SEASONAL WITH SPAN 0 CONVERGENCE AFTER 30 ITERATIONS INITIAL SUM OF SQS= 17958.972 FINAL SUM OF SQS= 2527.1076 R-SQUARE =.7159 R-SQUARE ADJUSTED =.6753 VARIANCE OF THE ESTIMATE-SIGMA**2 = 166.02 STANDARD ERROR OF THE ESTIMATE-SIGMA = 12.885 AKAIKE INFORMATION CRITERIA -AIC(K) = 5.4650 SCHWARZ CRITERIA- SC(K) = 5.6121 PARAMETER ESTIMATES AR( 1).59682 STD ERROR.2130 T-STAT 2.802 MA( 1) -.94992.9190E-01-10.34 CONSTANT 55.041 28.77 1.913 RESIDUALS LAGS AUTOCORRELATIONS STD ERR 1-12 -.37.04.23 -.12.12 -.04.00 -.16.16 -.06 -.06 -.06.24 13-16 -.05.00 -.08 -.03.30 MODIFIED BOX-PIERCE (LJUNG-BOX-PIERCE) STATISTICS (CHI-SQUARE) LAG Q DF P-VALUE LAG Q DF P-VALUE 3 3.96 1.047 10 6.93 8.545 4 4.34 2.114 11 7.12 9.624 5 4.73 3.193 12 7.37 10.690 6 4.77 4.311 13 7.60 11.748 7 4.77 5.444 14 7.61 12.815 8 5.69 6.458 15 8.72 13.793 9 6.75 7.456 16 9.09 14.825 CROSS-CORRELATIONS BETWEEN RESIDUALS AND (DIFFERENCED) SERIES CROSS-CORRELATION AT ZERO LAG =.41 LAGS 1-12 CROSS CORRELATIONS Y(T),E(T-K).49.06.24.12 -.06.13 -.04 -.09 -.12 -.08 -.14 -.12 13-16 LEADS -.11 -.13 -.08 -.07 CROSS CORRELATIONS Y(T),E(TK) 1-12.04.26.10.08.06 -.07 -.11 -.04.01 -.15 -.03 -.21 13-16 -.11 -.04 -.15 -.05 zt.59682 z t 1 = ˆ u t.94992 ˆ u t 1 55.041

(1 Γ 1 B 4 )(1 φ 1 B) z t = u t δ z t Γ 1 z t 4 φ 1 z t 1 Γ 1 φ 1 z t 5 = u t δ ARIMA ZQ / NSPAN=4 NSA=1 NAR=1 z Tl l (l 1) ˆ z Tl ztl z Tl = φ 1 z Tl-1 u Tl θ 1 u Tl-1 δ z Tl = µ u Tl Ψ 1 u Tl-1 Ψ 2 u Tl-2... µ Ψ 1, Ψ 2,... z ˆ Tl = µ Ψ l u T Ψ l1 u T 1... e Tl = [ z Tl z ˆ Tl ]= u Tl Ψ 1 u Tl-1... Ψ l 1 u T1 2 [ ] = σ u 1 2 Ψ1 2...Ψl 1 Ve Tl ( )

β ˆ σ ˆ 2 u SIGMA**2 z ˆ T1 = φ ˆ 1 z T θ ˆ 1ˆ u T δ ˆ z ˆ T2 = φ ˆ 1ˆ z T1 δ ˆ z ˆ T3 = φ ˆ 1ˆ z T2 δ ˆ Ψ i PSI WT V ˆ [e T l ] z ˆ Tl 1.96 V ˆ e Tl [ ] 1/2

y ˆ Tl z ˆ Tl µ,σ2 µσ z Tl = exp(y Tl ) ˆ z Tl = exp y ˆ Tl 1 σ ˆ 2 2 u z ˆ Tl

GEN1 S=SQRT($SIG2) ARIMA CONSUME / NAR=1 NMA=1 COEF=BETA START=ALPHA GEN1 S=SQRT($SIG2) ARIMA CONSUME / NAR=1 NMA=1 COEF=BETA FBEG=14 FEND=19 SIGMA=S GNU SIGMA**2 _ARIMA CONSUME / NAR=1 NMA=1 COEF=BETA FBEG=14 FEND=19 SIGMA=S GNU ARIMA FORECAST PARAMETER VALUES ARE: AR( 1)=.59682 MA( 1)= -.94992 CONSTANT = 55.041 FROM ORIGIN DATE 14, FORECASTS ARE CALCULATED UP TO 5 STEPS AHEAD FUTURE DATE LOWER FORECAST UPPER ACTUAL ERROR 15 16 141.881 108.277 167.136 154.791 192.390 201.306 154.300 149.000-12.8356-5.79115 17 95.3940 147.424 199.453 165.500 18.0763 18 89.1687 143.027 196.885 19 85.9081 140.402 194.897 STEPS AHEAD STD ERROR PSI WT 1 12.88 1.0000 2 3 23.73 26.55 1.5467.9231 4 5 27.48 27.80.5509.3288 VARIANCE OF ONE-STEP-AHEAD ERRORS-SIGMA**2 = 166.0 STD.DEV. OF ONE-STEP-AHEAD ERRORS-SIGMA = 12.88