1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

Similar documents
18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

1

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0


数値計算:有限要素法

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

第5章 偏微分方程式の境界値問題

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(


A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

数学Ⅱ演習(足助・09夏)

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(


f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

meiji_resume_1.PDF

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

mugensho.dvi

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

i

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

all.dvi

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

: 1g99p038-8

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

A


A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

入試の軌跡

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

f(x) = e x2 25 d f(x) 0 x d2 dx f(x) 0 x dx2 f(x) (1 + ax 2 ) 2 lim x 0 x 4 a 3 2 a g(x) = 1 + ax 2 f(x) g(x) 1/2 f(x)dx n n A f(x) = Ax (x R

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

「産業上利用することができる発明」の審査の運用指針(案)

熊本県数学問題正解

all.dvi

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k


5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

untitled

function2.pdf


Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

微分方程式の解を見る

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

numb.dvi

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

2011de.dvi



Part () () Γ Part ,

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

keisoku01.dvi

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

Microsoft Word - 触ってみよう、Maximaに2.doc

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

85 4

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

chap1.dvi

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

I , : ~/math/functional-analysis/functional-analysis-1.tex

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

1 I

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

Chap10.dvi

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

lecture

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

Transcription:

7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2) Euler..................................... 12 (3) θ, -............................. 13 6 15 7 16 (1) (Landau) O( ), o( )................... 16 (2)................................. 17 (3)......................... 17 (4) 1 (46)......................... 19 (5)........................... 20 (6) (Gauss)...................... 24 (7) (35)...................................... 25 8 25 ( [1]) 7 ( ) 1

1 4 1 ( ) ( ) 1. 2. ( ) ( ) () 1 4 2

2 f x f (x) (1) f (x) = lim h 0 f(x + h) f(x) h h f (x) (2) f(x + h) f(x) h f (x) f Taylor f x (3) f(x + h) = f(x) + f (x)h + f (x) 2 h h (4) f(x h) = f(x) f (x)h + f (x) 2 (3) (5) f (x) = f(x + h) f(x) h h 2 + f (x) 3! h 2 f (x) 3! + O(h) (h 0) h 3 + f (4) (x) h 4 + 4! h 3 + f (4) (x) h 4 +. 4! O(h) O(h) Landau ( (1) (p. 16) ) (4) (6) f (x) = f(x) f(x h) h + O(h) (h 0) 1 f (x) O(h) (3) (4) (7) f (x) = f(x + h) f(x h) 2h + O(h 2 ) (h 0) 1 1 f (x) 1 O(h 2 ) (3) (4) : (8) f (x) = f(x + h) 2f(x) + f(x h) h 2 + O(h 2 ) (h 0). 1 2 Landau C 3

t O 1 x 1: [0, 1] [0, ) f x C 2 f(x + h) 2f(x) + f(x h) lim h 0 h 2 = f (x) 3 6 () (9) u t (x, t) = 2 u (x, t) x2 (t > 0, 0 < x < 1) (10) u(0, t) = u(1, t) = 0 (t > 0) (11) u(x, 0) = f(x) (0 x 1) u = u(x, t) [0, 1] [0, + ) 1 (x i, t n ) u (12) u n i := u(x i, t n ) Ui n x [0, 1] N x i (i = 0,, N) (stepsize) h = 1/N (13) x i = ih (i = 0, 1,, N). t τ (> 0) 1 (14) t n = nτ (n = 0, 1, 2, ) (x i, t n ) u u t 2 2 x2 (15) (16) u t (x i, t n ) = un+1 i u n i + O(τ) (τ +0), τ 2 u x (x i, t 2 n ) = un i+1 2u n i + u n i 1 + O(h 2 ) (h +0) h 2 4

u (9) h τ (17) U n i (18) u n+1 i U n+1 i u n i τ Ui n τ un i+1 2u n i + u n i 1 h 2 = U n i+1 2U n i + U n i 1 h 2 2 n 0 i U n i 1, U n i+1 i = 0, N (18) 1 i N 1 λ = τ/h 2 (19) U n+1 i U n i = λ(u n i+1 2U n i + U n i 1). (20) U n+1 i = (1 2λ)Ui n + λ ( ) Ui 1 n + Ui+1 n (10) (21) U n 0 = U n N = 0 (n = 1, 2, ), (11) (22) U 0 i = f(x i ) (0 i N) (1 i N 1; n = 0, 1, ) (9), (10), (11) {Ui n ; 0 i N, n 0} (23) (24) (25) U n+1 i = (1 2λ)Ui n + λ ( Ui 1 n + Ui+1 n U0 n = UN n = 0 (n = 1, 2, ) U 0 i = f(x i ) (0 i N) ) (1 i N 1; n = 0, 1, ) {U n i ; 0 i N, n 0} 1. n 0 {U n i ; 0 i N} (25) 2. n = 0, 1, {U n+1 i ; 0 i N} (a) 1 i N 1 U n+1 i (23) (b) i = 0, N (24) U n+1 0 = U n+1 N = 0. Euler U n+1 i ( ) 2 F n = F n 1 + F n 2 Fibonacci 5

N u(1/2, 0.1) (%) 10 0.36654433 1.653709 20 0.37118820 0.407728 40 0.37232923 0.101583 80 0.37261327 0.025374 160 0.37268420 0.006342 320 0.37270193 0.001585 640 0.37270636 0.000396 1: (x, t) = (1/2, 0.1) (λ = 1/2). 4 (1) ( ) (9)-(11) u f f(x) = f 0 (x) sin πx u (26) u(x, t) = e π2t sin πx 6 (27) u(x, t) = b k e k2 π 2t sin kπx, b k = 2 1 k=1 0 f(x) sin kπx dx (k = 1, 2, ) b k b 1 = 1, b k = 0 (k = 2, 3, ) (26) u (9), (10), (11) 1 (x, t) = (1/2, 0.1) u(1/2, 0.1) = exp( 0.1π 2 ) sin(π/2) = 0.372707838 N 2 ( (2) ) N N 2 (2) t t + u(, t) 6

10 1 0.1 Error 0.01 0.001 0.0001 10 100 1000 N 2: (x, t) = (1/2, 0.1) (λ = 1/2). (Dirichlet) (9)-(11) (28) u(x, t) = b k e k2 π 2t sin kπx, b k = 2 k=1 t u 0 : 1 (29) lim t u(x, t) = 0 (0 x 1). ( (29) (3) ) f x (30) f 1 (x) = 1 x 0 f(x) sin kπx dx (k = 1, 2, ) ( 0 x 1 ) 2 ( ) 1 2 x 1 ( 3) (9)-(11) N = 50, λ = 1/2 4 7 n {U n i ; 0 i N} t = nτ = 0.01, 0.02, 0.03, 0.04 x u(x, t) 8 t = 0 t = 0.3 0.01 0 (Neumann) (10) (31) u x (0, t) = u x (1, t) = 0 (t > 0) 6 (32) u(x, t) = 1 2 a 0 + a k e k2 π 2t cos kπx, a k = 2 1 k=1 0 7 f(x) cos kπx dx (k = 0, 1, )

theta=0, N=50, lambda=0.5 theta=0, N=50, lambda=0.5 t = 0.01 theta=0, N=50, lambda=0.5 t = 0.02 3: f = f 1 4: t = 0.01 5: t = 0.02 theta=0, N=50, lambda=0.5 t = 0.03 theta=0, N=50, lambda=0.5 t = 0.04 theta=0, N=50, lambda=0.5 Tmax = 0.3, interval = 0.01 6: t = 0.03 7: t = 0.04 8:, t = 0 0.3, t = 0.01 8

heat equation, Neumann B.C. theta=0, N=50, lambda=0.5 heat equation, Neumann B.C. theta=0, N=50, lambda=0.5 t = 0.01 heat equation, Neumann B.C. theta=0, N=50, lambda=0.5 t = 0.02 9: t = 0 10: t = 0.01 11: t = 0.02 heat equation, Neumann B.C. theta=0, N=50, lambda=0.5 t = 0.03 heat equation, Neumann B.C. theta=0, N=50, lambda=0.5 t = 0.04 heat equation, Neumann B.C. theta=0, N=50, lambda=0.5 Tmax = 0.2, interval = 0.01 12: t = 0.04 13: t = 0.05 14: t = 0 0.2 t u : (33) lim t u(x, t) = a 0 2 (0 x 1). 9 13 f 1 N = 50, λ = 1/2 u(, t) f = f 1 (34) a 0 2 = 1 0 f 1 (x) dx = 3 x = 1 4 2 1/4 = 0.25 ( ) (3) t 9

t \ x 0 0.1 0.2 0.3 0.4 0.5 0.00 0.000000 0.100000 0.200000 0.300000 0.400000 0.500000 0.05 0.221849 0.227225 0.241301 0.258699 0.272775 0.278151 0.10 0.246121 0.246862 0.248801 0.251199 0.253138 0.253879 0.15 0.249466 0.249568 0.249835 0.250165 0.250432 0.250534 0.20 0.249926 0.249940 0.249977 0.250023 0.250060 0.250074 0.25 0.249990 0.249992 0.249997 0.250003 0.250008 0.250010 0.30 0.249999 0.249999 0.250000 0.250000 0.250001 0.250001 0.35 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000 0.40 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000 2: (, θ = 0, N = 40, λ = 0.5) 6 f a 0 2 + (a k cos kπx + b k sin kπx), k=1 f ( ) f a k, b k a k, b k k : (35) f C l (l ) = a k, b k = o(k l ) (k + ). f f (= ) (36) k l ( a k + b k ) < = f C l. k=1 f 15 f 2 f k + a k, b k 3 f = f 2 (9)-(11) (27) k exp ( k 2 π 2 t) t > 0 k f = f 2 u () f = f 2 15 20 t = 0.001 () 3 a k, b k = o(1) (k ) k ( a k + b k ) = k=1 10

k sin kπx k exp ( k 2 π 2 t) t (27) t k = 2, 3, k = 1 b 1 exp( π 2 t) sin πx t (37) u(x, t) b 1 e π2t sin πx. 20 theta=0, N=100, lambda=0.25 theta=0, N=100, lambda=0.25 t = 0.001 theta=0, N=100, lambda=0.25 t = 0.002 15: t = 0 theta=0, N=100, lambda=0.25 t = 0.003 16: t = 0.001 theta=0, N=100, lambda=0.25 t = 0.004 17: t = 0.002 theta=0, N=100, lambda=0.25 Tmax = 0.2, interval = 0.01 18: t = 0.003 19: t = 0.004 20: t = 0 0.2, t = 0.01 5 (1) λ = τ/h 2 1/2 λ = 1/4 λ = 0.51 f = f 1 (9)-(11) 21 24 11

4 7 (N ) 3 λ 0 < λ 1/2 0 < λ 1/2 (38) Ui n max f(x) (0 i N; n = 0, 1, ) x [0,1] ( (5) 3 ) 0 < λ 1/2 T (39) lim max u(x i, t n ) Ui n = 0 N 0 i N 0 n T /τ ( (5) 2 ) 0 i N, 0 n T/τ (x i, t n ) [0, 1] [0, T ] theta=0, N=50, lambda=0.51 t = 0.009996 theta=0, N=50, lambda=0.51 t = 0.019992 theta=0, N=50, lambda=0.51 t = 0.029988 21: t = 0.009996 22: t = 0.019992 theta=0, N=50, lambda=0.51 t = 0.039984 23: t = 0.029988 24: t = 0.039984 (2) Euler 3 0 < λ 1/2 (= ) 12

3 u t (40) U n i U n 1 i τ = U n i+1 2U n i + U n i 1 h 2 (1 i N 1, n 1) n (41) U n+1 i Ui n τ = U n+1 i+1 2U n+1 i + U n+1 i 1 h 2 (1 i N 1, n 0) n n + 1 (42) (1 + 2λ)U n+1 i λ ( U n+1 i 1 + U ) n+1 i+1 = U n i (1 i N 1, n 0) Euler (42) 3 (23) n + 1 (23) U n+1 i (i = 1, 2,, N 1) (42) i (1 i N 1) 1 (23) ( ) (42) ( ) λ = 0.51 25 28 (42) λ (> 0) 29 32 λ = 5 (3) θ, - (41) (18) (41) 1 θ : θ (43) U n+1 i Ui n τ = (1 θ) U i+1 n 2Ui n + Ui 1 n + θ U n+1 i+1 h 2 2U n+1 i + U n+1 i 1 h 2 θ 0 θ 1 θ = 0 (18) θ = 1 (41) n + 1 (44) (1 + 2θλ)U n+1 i θλ ( U n+1 i 1 + U ) n+1 i+1 = {1 2(1 θ)λ} U n i + (1 θ)λ ( Ui 1 n + Ui+1) n (1 i N 1, n 0) ({Ui n ; 0 i N} ) N +1 {U n+1 i ; 0 i N} N 1 (45) U n+1 0 = U n+1 N = 0 13

theta=1, N=50, lambda=0.51 t = 0.009996 theta=1, N=50, lambda=0.51 t = 0.019992 theta=1, N=50, lambda=0.51 t = 0.029988 25: t = 0.009996 26: t = 0.019992 theta=1, N=50, lambda=0.51 t = 0.039984 27: t = 0.029988 28: t = 0.039984 theta=1, N=50, lambda=5 t = 0.01 theta=1, N=50, lambda=5 t = 0.02 theta=1, N=50, lambda=5 t = 0.03 29: t = 0.01 30: t = 0.02 theta=1, N=50, lambda=5 t = 0.04 31: t = 0.03 32: t = 0.04 14

2 U0 n+1, U n+1 N N 1 {U n+1 i ; 1 i N 1} N 1 1 (46) 1 + 2θλ θλ 0 U 1 n+1 θλ 1 + 2θλ θλ U......... 2. n+1 θλ 1 + 2θλ θλ U......... i. n+1 θλ 1 + 2θλ θλ U n+1 N 2 0 θλ 1 + 2θλ U n+1 N 1 {1 2(1 θ)λ}u1 n + (1 θ)λ(u0 n + U2 n ) {1 2(1 θ)λ}u2 n + (1 θ)λ(u1 n + U3 n ) = {1 2(1 θ)λ}ui n + (1 θ)λ(ui 1 n + Ui+1) n {1 2(1 θ)λ}un 2 n + (1 θ)λ(un 3 n + U N 1 n ) {1 2(1 θ)λ}un 1 n + (1 θ)λ(un 2 n + U N n ) θ θ = 1/2 Crank-Nicolson (- ) ( Crank-Nicolson [2]). 6 6 (47) u t (x, t) = 2 u (x, t) + ku(x, t)(1 u(x, t)) x2 (t > 0, 0 < x < 1) u x (t, 0) = 1, u(t, 1) = 0 (t > 0) u(0, x) = f(x) (0 x 1) (48) U n+1 i Ui n τ = (1 θ) U n i+1 2U n i + U n i 1 + θ U n+1 i+1 h 2 2U n+1 i + U n+1 i 1 h 2 + ku n i (1 U n i ) 15

7 (1) (Landau) O( ), o( ) O(h) (h 0) o(n k ) (n ) O( ) C α x (49) f(x) C g(x) 4 (50) f(x) = O(g(x)) (x α) 5 α f g o( ) (51) lim x α f(x) g(x) = 0 (52) f(x) = o(g(x)) (x α) f a A (53) A = lim h 0 f(a + h) f(a) h (54) f(a + h) f(a) Ah = o(h) (h 0) f C k (55) f(a + h) = f(a) + f (a)h + f (a) h 2 + + f (k 1) (a) 2! (k 1)! hk 1 + f (k) (a + θh) k! θ (0 < θ < 1) (56) f(a + h) = f(a) + f (a)h + f (a) h 2 + + f (k 1) (a) 2! (k 1)! hk 1 + O(h k ) (h 0) 4 D f C > 0, ε > 0, x B(α; ε) D f(x) C g(x). 5 : f(x) O(g(x)) O(g(x)) 1 h k 16

α ± x 2 + x + 1 x = O(x) (x ). (2) 4 (1) x, y y = ax + b (a, b ) 1 a y = bx a (a, b, b > 0) y = bx a (57) log y = log bx a = a log x + log b. Y = log y, B = log b, X = log x Y = ax + B. X, Y 1 x, y X, Y a N E E = C/N 2 (C ) log N, log E 2 (3) u (58) lim t u(x, t) = 0, u (59) lim t u(x, t) = a 0 2 1 0 f(x) dx (58) (0 ) (60) u(x, t) = b n e n2 π 2t sin nπx lim t e n2 π 2t = 0 (61) lim t n=1 b n e n2 π 2t sin nπx = n=1 17 lim b ne n2 π 2t sin nπx t n=1

n=1 lim t 0 1 t 0 > 0 (62) u(x, t) Ce π2 t (t t 0, 0 x 1) C f(t) C, τ (63) f(t) Ce t/τ ( t) Ce t/τ f(t) t u(x, t) 0 f M := max x [0,1] f(x) b n (64) b n = 2 (65) b n 2 1 0 1 f(x) sin nπx dx 2 0 f(x) sin nπx dx 1 0 M 1 dx = 2M 1 0 dx = 2M. b n n 2M (66) u(x, t) = (67) u(x, t) = b n e n2 π 2t sin nπx n=1 b n e n2 π 2t sin nπx n=1 ( t t 0 2M n=1 e (n2 1)π 2 t (68) u(x, t) (69) ( ) 2M n=1 n=1 e π2t. ( ) 2M e n2 π 2t 1 = 2M ) e (n2 1)π 2 t 0 e π2t. n=1 e (n2 1)π 2 t 0 18 n=1 e n2 π 2 t

(70) e (n2 1)π 2 t 0 e (n 1)π2 t 0 = r n 1, r = e π2 t 0 < 1 r n 1, 0 < r < 1 n=1 (4) 1 (46) 5 (3) 1 (46) {U n+1 i } (, ) N 1 N 1 1 n A = (a ij ) (71) a ii > a ij (i = 1, 2,, n) 1 j n,j i A 5.3 1 1 + 2θλ 0 θλ, θλ (72) 1 + 2θλ θλ θλ = 1 + 2θλ 2(θλ) = 1 > 0 1 1 A = (a ij ) Ax = 0 x ( 0) 6 (73) x = x k Ax = 0 k x 1. x n (74) n a kj x j = 0. j=1 6 n A A f : R n x Ax R n (i) A (A 1 ), (ii) f, (iii) f, (iv) f, (v) ker f = {0}, (vi) rank f = n, (vii) det A 0. n dim ker f = rank f ( ) 19

k (75) a kk x k = j k a kj x j. (76) a kk x k = a kj x j ( ) a kj x j a kj x k. j k j k j k x k (> 0) (77) a kk a jk. j k A (5) (9)-(11) 2 ( ) T (9)-(11) 0 x 1, 0 t T u θ λ 2 (i) 0 θ < 1, 0 < λ (ii) θ = 1, λ > 0. 1 2(1 θ). θ {U n i } 0 i N,n 0 : (78) max Ui n u n i = O(τ + h 2 ) (N ). 0 i N 0 n J u n i = u(x i, t n ) J T/τ N (79) max Ui n u n i 0. 0 i N 0 n J (79) 7 7 20

3 ( ) {U n i ; 0 i N, 0 n J} (80) (1 + 2θλ)U n+1 i θλ(u n+1 i 1 + U n+1 i+1 ) = [1 2(1 θ)λ]ui n + (1 θ)λ(ui 1 n + Ui+1) n (1 i N 1, 0 n J 1) θ, λ 2 (i) 0 θ < 1, 0 < λ (ii) θ = 1, λ > 0. 1 2(1 θ). : { = max (81) max Ui n 0 i N 0 n J max Uk 0, max U0, l max UN l 0 k N 0 l J 0 l J }. 2 (82) 2 u n+1 i u n i τ = u t (x i, t n ) + O(τ), (83) (84) u n i 1 2u n i + u n i+1 h 2 = u xx (x i, t n ) + O(h 2 ). u n+1 i u n i un i 1 2u n i + u n i+1 τ h 2 = u t (x i, t j ) u xx (x i, t j ) + O(τ + h 2 ) = O(τ + h 2 ). u u t = u xx (85) u n+1 i u n i τ un+1 i 1 2un+1 i + u n+1 i+1 = O(τ + h 2 ). h 2 {u n i } : (86) (1 + 2θλ)u n+1 i θλ(u n+1 i 1 + un+1 i+1 ) = [1 2(1 θ)λ]u n i + (1 θ)λ(u n i 1 + u n i+1) + O(τ 2 + τh 2 ). ( 1 i N 1, 0 n J 1 (i, n) ) Ui n ( ) (87) (1 + 2θλ)U n+1 i θλ(u n+1 i 1 + U n+1 i+1 ) = [1 2(1 θ)λ]u n i + (1 θ)λ(u n i 1 + U n i+1) 21

e n i := U n i u n i e n i (88) (1 + 2θλ)e n+1 i θλ(e n+1 i 1 + en+1 i+1 ) = [1 2(1 θ)λ]e n i + (1 θ)λ(e n i 1 + e n i+1) + O(τ 2 + τh 2 ) θ, λ 1 + 2θλ, θλ, 1 2(1 θ)λ, (1 θ)λ 0 (89) (1 + 2θλ) e n+1 i θλ( e n+1 i 1 + en+1 i+1 ) [1 2(1 θ)λ] e n i + (1 θ)λ( e n i 1 + e n i+1 ) + C(τ 2 + τh 2 ). C E n := max e n i 0 i N (1 + 2θλ) e n+1 i 2θλE n+1 (1 + 2θλ) e n+1 i θλ( e n+1 i 1 + en+1 i+1 ) (90) [1 2(1 θ)λ] e n i + (1 θ)λ( e n i 1 + e n i+1 ) + C(τ 2 + τh 2 ) [1 2(1 θ)λ]e n + 2(1 θ)λe n + C(τ 2 + τh 2 ) = E n + C(τ 2 + τh 2 ). e n+1 0 = e n+1 N = 0 i 1 i N 1 (91) (1 + 2θλ)E n+1 2θλE n+1 E n + C(τ 2 + τh 2 ). (92) E n+1 E n + C(τ 2 + τh 2 ). (93) E n E n 1 + C(τ 2 + τh 2 ) E n 2 + 2C(τ 2 + τh 2 ) E 0 + nc(τ 2 + τh 2 ) = nc(τ 2 + τh 2 ). i e 0 i = U 0 i u 0 i = f(x i ) f(x i ) = 0 E 0 = 0 nτ Jτ T (94) E n CT (τ + h 2 ). (95) max Ui n u n i CT (τ + h 2 ). 0 i N 0 n J 22

3 (81) U n i 0 n J 1 n (96) max U n+1 i max 0 i N { } max Uk n, U0 n+1, U n+1 N. 0 k N (97) max U n+1 i max Uk n 1 i N 1 0 k N i = i 0 (80) i = i 0 : max U n+1 i = U n+1 i 1 i N 1 0 (98) (1 + 2θλ)U n+1 i 0 θλ(u n+1 i 0 1 + U n+1 i 0 +1 ) = (1 2(1 θ)λ)u n i 0 + (1 θ)λ(u n i 0 1 + U n i 0 +1). θ, λ 1 + 2θλ, θλ, 1 2(1 θ)λ, (1 θ)λ 0 (99) (98) {1 2(1 θλ)} max Uk n + (1 θ)λ( max Uk n + max Uk n ) 0 k N 0 k N 0 k N = {[1 2(1 θλ)] + 2(1 θ)λ} max Uk n 0 k N = max Uk n. 0 k N (100) (98) (1 + 2θλ)U n+1 i 0 θλ{u n+1 i 0 + U n+1 i 0 } = U n+1 i 0. (99), (100) U n+1 i 0 max Uk n. (97) : 0 k N (101) max U n+1 i max Uk n. 1 i N 1 0 k N (96) (96) n = 0 { } (102) max Ui 1 max max Uk 0, U0 1, UN 1. 0 i N 0 k N (96) n = 1 { max (103) max Ui 2 0 i N (102), (103) { max (104) max Ui 2 0 i N max Uk 0, U0 1, U0 2, UN, 1 UN 2 0 k N max Uk 1, U0 2, UN 2 0 k N n = 1, 2,, J { } (105) max Ui n max max Uk 0, max U0, l max UN l 0 i N 0 k N 1 l n 1 l n (81) 23 } }. { } = max max Uk 0, max U0, l max UN l 0 k N 1 l 2 1 l 2

(6) (Gauss) 1 (Cramer) ( Jordan ) 8 2x 1 + 3x 2 x 3 = 5 (106) 4x 1 + 4x 2 3x 3 = 3 2x 1 + 3x 2 x 3 = 1. 1. 0 2. 2 3. 3 2 3 1 5 1 1 5 3 1 1 5 2 2 2 2 2 2 4 4 3 3 4 4 3 3 0 2 1 7 2 3 1 1 2 3 1 1 0 6 2 6 1 3 1 5 2 2 2 1 7 0 1 2 2 0 6 2 6 1 0 0 1 0 1 0 2 0 0 1 3 1 0 5 11 4 4 1 7 0 1 2 2 0 0 5 15 2 2, x 1 x 2 x 3 = 1 0 5 11 4 4 1 7 0 1 2 2 0 0 1 3 1 2 3. 0 2 3 1 5 2 3 1 5 2 3 1 5 4 4 3 3 0 2 1 7 0 2 1 7. 2 3 1 1 0 6 2 6 0 0 5 15 2x 1 + 3x 2 x 3 = 5, 2x 2 x 3 = 7, 5x 3 = 15 x 3 = 15 5 = 3, x 2 = 7 + x 3 2 = 2, x 1 = 5 3x 2 + x 3 2 = 5 3 2 + 3 2 = 1 8 () ( ) 24

0 (forward elimination) (backward substitution) 3 n + 1 () n ( n ) 5 5 n 5, 6 θλ = 1 (7) (35) ( ) 2π f a k (f) = 1 π π π f(x) cos kx dx, b k (f) = 1 π f C l { a k (f) = ± 1 a k (f (l) ) (l ) k l b k (f (l) ) (l ), π π b k (f) = ± 1 k l { f (l) Riemann-Lebesgue lim a k(f (l) ) = lim b k (f (l) ) = 0 k k f(x) sin kx dx b k (f (l) ) a k (f (l) ) (l ) (l ) lim k kl a k (f) = lim k l b k (f) = 0. k 8 1. Neumann I [3] 25

2., von Neumann [4], I [3] 3. LU Gauss [4], 1 1 [5] 4. [6] 5., [7] 6., [8] 7. (?) Richtmyer-Morton [9], [10], Smith [11], [12] [1], (2000), 7 http://nalab.mind.meiji.ac.jp/~mk/labo/text/heat-fdm-0.pdf [2] Crank, J. and Nicolson, P.: A Practical Method for Numerical Evaluation of Solutions of Partial Differential Equations of the Heat-Conduction Type, Proc. Camb. Phil. Soc., Vol. 43, pp. 50 67 (1947), http://www.springerlink.com/content/ g43649440307j807/ reprint. [3] I, http://nalab.mind. meiji.ac.jp/~mk/labo/text/heat-fdm-1.pdf (1998 ). [4], http://nalab.mind.meiji.ac.jp/~mk/labo/text/ heat-fdm-0-add.pdf (1997 ). [5] 1 I, http://nalab.mind.meiji.ac.jp/~mk/labo/text/ linear-eq-1.pdf (2002 ). [6], http://nalab.mind.meiji.ac.jp/~mk/labo/ text/wave.pdf (1999? ). [7],, (1991). [8], http://infsup.jp/ (2006). [9] Richtmyer, R. D. and Morton, K. W.: Difference Methods for Initial-Value Problems, Krieger Pub Co, 2nd edition (1994). 26

[10], ( ), ( ), (1968), Finite-Difference Methods for Partial Differential Equations (1960) ( ). [11] Smith, G. D.: Numerical solution of partial differential equations third edition, Clarendon Press Oxford (1986), G. D.,,, (1996). [12],, (1969), 2009 27