平面波

Similar documents
反射係数

PowerPoint プレゼンテーション

Laplace2.rtf

基礎から学ぶ光物性 第2回 光が物質中を伝わるとき:

人間科学部研究年報平成 24 年 (1) (2) (3) (4) 式 (1) は, クーロン (Coulomb) の法則とも呼ばれる.ρは電荷密度を表し,ε 0 は真空の誘電率と呼ばれる定数である. 式 (2) は, 磁荷が存在しないことを表す式である. 式 (3) はファラデー (Faraday)

パソコンシミュレータの現状

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2

スライド 1

Microsoft PowerPoint - H22制御工学I-2回.ppt

PowerPoint Presentation

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし

Microsoft PowerPoint - H21生物計算化学2.ppt

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考

DVIOUT-SS_Ma

Microsoft PowerPoint - 第5回電磁気学I 

電磁気学 IV 第 7 回導体内の電磁界 表皮効果 ( 電磁気ノート19 章を参照 ) 工学部電気電子工学科松嶋徹 授業のスケジュール ( 順番変更 ) 6 月 12 日 ( 第 1 回 ) 電磁気学的な量 一般直交座標におけるベクトル演算 6 月 14 日 ( 第 2 回 )

DVIOUT

ベクトル公式.rtf

s ss s ss = ε = = s ss s (3) と表される s の要素における s s = κ = κ, =,, (4) jωε jω s は複素比誘電率に相当する物理量であり ここで PML 媒質定数を次のように定義する すなわち κξ をPML 媒質の等価比誘電率 ξ をPML 媒質の

vecrot

喨微勃挹稉弑

PowerPoint プレゼンテーション

Chap2.key

Microsoft Word - 付録1誘導機の2軸理論.doc

多次元レーザー分光で探る凝縮分子系の超高速動力学

2011年度 筑波大・理系数学

スライド 1

ベクトルの基礎.rtf

Microsoft PowerPoint - H22制御工学I-10回.ppt

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

線積分.indd

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数

座標系.rtf

Microsoft PowerPoint - 10.pptx

Microsoft Word - H26mse-bese-exp_no1.docx

2015-2017年度 2次数学セレクション(複素数)解答解説

スライド 1

DVIOUT

SPring-8ワークショップ_リガク伊藤

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx

2011年度 大阪大・理系数学

2018年度 東京大・理系数学

Microsoft Word - thesis.doc

Microsoft Word - 1B2011.doc

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ]

<4D F736F F D2094F795AA95FB92F68EAE82CC89F082AB95FB E646F63>

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図

代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1

物性基礎

Chap2

Microsoft Word - Chap17

第1章 単 位

s とは何か 2011 年 2 月 5 日目次へ戻る 1 正弦波の微分 y=v m sin ωt を時間 t で微分します V m は正弦波の最大値です 合成関数の微分法を用い y=v m sin u u=ωt と置きますと dy dt dy du du dt d du V m sin u d dt

スライド 1

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 =

ÿþŸb8bn0irt

微分方程式による現象記述と解きかた

領域シンポ発表

スライド 1

学習指導要領

重要例題113

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

<4D F736F F D F2095A F795AA B B A815B837D839382CC95FB92F68EAE2E646F63>

スライド 1

PowerPoint Presentation

スライド 1

発散.rtf

Microsoft PowerPoint - 応用数学8回目.pptx

Taro-F25理論 印刷原稿

Microsoft PowerPoint - ip02_01.ppt [互換モード]

Microsoft PowerPoint - 10.pptx

F コンデンサーの静電容量高校物理において コンデンサーは合同な 2 枚の金属板を平行に並べたものである 電池を接続すると 電圧の高い方 (+ 極 ) に接続された金属板には正の電気量 Q(C) が 低い方には負の電気量 -Q(C) が蓄積される 正負の電気量の絶対値は等しい 蓄積された電気量 Q

スライド 1

線形代数とは

s と Z(s) の関係 2019 年 3 月 22 日目次へ戻る s が虚軸を含む複素平面右半面の値の時 X(s) も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z(s) にしていま す リアクタンス回路の駆動点リアクタンス X(s)

複素数平面への誘い

Microsoft Word - MHD-wave.doc

ÿþŸb8bn0irt

スライド タイトルなし

Microsoft Word - 微分入門.doc

学習指導要領

Matrix and summation convention Kronecker delta δ ij 1 = 0 ( i = j) ( i j) permutation symbol e ijk = (even permutation) (odd permutation) (othe

Microsoft Word - 1.2全反射.doc

微分方程式補足.moc

DVIOUT

DVIOUT

<4D F736F F D FCD B90DB93AE96402E646F63>

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>

PowerPoint Presentation

数学の世界

Microsoft PowerPoint - 物情数学C(2012)(フーリエ前半)_up

7 渦度方程式 総観規模あるいは全球規模の大気の運動を考える このような大きな空間スケールでの大気の運動においては 鉛直方向の運動よりも水平方向の運動のほうがずっと大きい しかも 水平方向の運動の中でも 収束 発散成分は相対的に小さく 低気圧や高気圧などで見られるような渦 つまり回転成分のほうが卓越

物理演習問題

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と

Transcription:

平面波 図.に示すように, 波源 ( 送信アンテナあるいは散乱点 ) から遠い位置で, 観測点 Pにおける波の状態を考えてみる. 遠いとは, 波長 λ に比べて距離 が十分大きいことを意味しており, 観測点 Pの近くでは, 等位相面が平面とみなせる状態にある. 平面波とは波の等位相面が平面になっている波のことである. 通信や計測を行うとき, 遠方における波の振舞いは平面波で近似できる. したがって平面波の性質を理解することが最も重要である. 等位相面 wave font 波源 P 観測点 λ λ << 図. 観測点での電波の状態 ( 平面波近似 ). 時間領域におけるマックルウエル方程式とベクトル波動方程式 a x, a y, a z をそれぞれ x, y, z 方向の単位ベクトルとする. 位置ベクトルは = x a x + y a y + z a z と書くことが できる. 位置と時間の関数として電界 E (, t ) と磁界 H (, t ) は, 次のマックルウエル方程式を満たす. E (, t ) = t B (, t ) (.) H (, t ) = t D (, t ) + J (, t ) (.) D (, t ) = ρ (.3) B (, t ) = 0 (.4) ただし,D は電束密度,B は磁束密度,J は電流密度,ρ は電荷密度である. 式 (.) の発散をとると電荷保存 の法則が導かれる. J (, t ) + t ρ (, t ) = 0 (.5) 均質媒質中において, その媒質の巨視的な電気的性質は誘電率 ε, 透磁率 µ, 導電率 σ によって記すこと ができる. D = ε E (.6) B = µ H (.7) J = σ E (.8) 3

式 (.6)-(.8) は構成方程式と呼ばれている. もし, 不均質媒質であれば,ε,µ,σ は位置の関数となる. ま た, 電離層などファラデー (Faaday) 回転を引き起こす非等方性媒質ではテンソル量となる. 電流密度 Jは導電電流 J c = σ E と, 波源となるsouce 電流 J s の和で表わされる. J = J c + J s = σ E + J s (.9) これを式 (.) に代入し, ベクトル公式 ( A ) = ( A ) A を利用して, 式 (.),(.) から E と H に関するベクトル波動方程式を得ることができる. E µ σ E t H µ σ H t ε µ E t = µ J s t + ρ ε (.0) ε µ H t = J s (.) 式 (.0),(.) は厳密で汎用性のある一般式である. これを解けば, 時間と位置に関する電界 磁界が得られる. しかし, 境界条件などを含め厳密に解くことは非常に難しい. また, 式 (.0),(.) を満たす時間関数としての偏波状態の表現を見出れば望ましいが, 今までにそのような表現方法は得られていない. そこで, ここでは波源の無い (souce-fee) 空間での平面波の数式表現を扱う. そして, 単一周波数で偏波状態が一意に決まる場合を考察する.( 最も単純な場合を対象とする ). フェーザ表現を用いたベクトル波動方程式とその解 電磁界が角周波数 ω で調和振動している場合を考える. この場合, 時間変化は e j ω t で表わされるので, フェーザ (phaso) 表現を用いてマックルウエル方程式を簡単化することができる. フェーザとは以下に示すように時間因子 e j ωt を除いた複素量を表している. 角周波数の調和振動している場で, 瞬時ベクトルを A (, t ) とすれば, A (, t ) = A ( x, y, z, t ) = a x A x ( x, y, z, t ) + a y A y ( x, y, z, t ) + a z A z ( x, y, z, t ) (.) と展開できる. 一方, 観測される量は実数であり, この観測量は一般的に次のように書くことができる. a x A mx cos ( ω t + θ mx ) + a y A my cos ( ω t + θ my ) + a z A mz cos ( ω t + θ mz ) (.3) θ mx, θ my, θ mz は, それぞれ x, y, z 成分の位相である. また, 下添字の m は measued の頭文字である.x 成分 のみを取り出して変形すると次のようになる. A mx cos ( ω t + θ mx ) = Re A mx e j ( ω t + θ mx ) = Re A mx e j θ mx e j ω t = Re ( A mx cos θ mx + j A mx sin θ mx ) e j ω t = Re ( A x + j A ix ) e j ω t = Re A x e j ω t Re は実数部をとることを意味している. このように, x 成分は時間因子 e j ω t と複素量 A x の積で表すこ とができる.y 成分, z 成分についても同様である. したがって, ベクトル全体としては 4

A (, t ) = Re A ( ) e j ω t (.4) ただし, A ( ) = a x A x + a y A y + a z A z (.5) A x = A x + j A ix, A y = A y + j A iy, A z = A z + j A iz : 複素スカラー量 (.6) と表現でき, このA ( ) をフェーザ表現という. つまり, 場のベクトルは A ( ) e j ω t という複素表現で表すことができる. フェーザは複素量であり, 時間因子の項を取り除いたものである. これを使うと, 微分方程式において時間微分が j ω に置き換わり, 計算が簡単になる. 実数表現に比べて扱いやすい. 観測量を求めるには, フェーザを使って代数解析した後にe j ω t を掛けて実部をとれば得られる. さて,ρ = 0, J s = 0 の場所では,(.0), (.) はフェーザ表現により E ( ) + ( ω ε µ j ω µ σ ) E ( ) = 0 (.7) H ( ) + ( ω ε µ j ω µ σ ) H ( ) = 0 (.8) となる. 波数 k を式 (.) のようにおくことによって, 次のヘルムホルツ (Helmholtz) 方程式を得ることがで きる. ベクトル波動方程式ともいう. E ( ) + k E ( ) = 0 (.9) H ( ) + k H ( ) = 0 (.0) k = ω ε µ j ω µ σ (.) 5

ベクトル波動方程式の変数分離解法 電界 磁界ベクトルの成分毎に式 (.9),(.0) が成立しなければならない.E x 成分を例にとって直角座 標系で展開すると次のようになる. E x ( ) + k E x ( ) = E x x + E x y + E x + k E z x = 0 (.) この偏微分方程式を解いてみよう.E x は x, y, z の関数になることが予想されるが, どのような解になるか分からない. そこで, まず独立な関数 X(x), Y(y), Z(z) の積からできていると仮定し, 変数分離を行ってみる. E x = X(x) Y(y) Z(z) と置き, 式 (.) に代入し, その後に全体を E x で割れば次式が導かれる. X(x) X(x) x + Y(y) Y(y) y + Z(z) Z(z) z + k = 0 各項は変数毎に独立であり, 定数でなければ成立しない. それぞれ k x, k y, k z ( 定数 ) とおくと, X(x) X(x) x = k x, Y(y) Y(y) y = k y, Z(z) Z(z) z = k z (.3) ただし, k = k x + k y + k z (.4) d X が得られる. これより,X(x) に対しては dx = k x X X(x) = A 0 e j k x x + A e j k x x (.5) となる. これらを合計して E x は次のようになる. E x ( ) = A 0 e j k x x + A e j k x x B 0 e j k y y + B e j k y y C 0 e j k z z + C e j k z z (.6) A 0,, C : 振幅係数 E y 成分や E z 成分に対しても式 (.6) と同様の形式が得られる. したがって, ベクトル波動方程式 (.9), (.0) の一般解は, 各成分の和として次のようにまとめて書くことができる. E ( ) = E 0 exp j k + E exp + j k (.7a) H ( ) = H 0 exp j k + H exp + j k (.7b) ただし, k = k x a x + k y a y + k z a z (.8) = x a x + y a y + z a z (.9) k = k x x + k y y + k z z E 0, E, H 0, H は振幅ベクトル 最終的に時間を含めた観測量としての瞬時電界ベクトル ( 波動方程式の解 ) は, フェーザ表現に e j ω t を掛 けて実部をとれば得られる. E (, t ) = Re E ( ) e j ω t = E + (, t ) + E (, t ) (.30a) E + (, t ) = Re E 0 exp j ( ω t k (.30b) E (, t ) = Re E exp j ( ω t + k (.30c) 6

さて, この数式的な解が物理的に何を表しているのかを調べるために, 数式の内容を検討してみる. まず,exp j ( ω t - k の ω t - k は, 位相を表している. 簡単のために E 0 =,k と が同じ方向とすれ ば, 式 (.30b) は cos ) ω t - k となる. この cos ω t - k が時間の経過と共にどのように変化していくか描いたものが図.である. 図.の 点 ( 印 ) に着目し, その位相を θ = ω t k として時間的に変化しない相対位置を調べると t = 3 4 T t = 4 T 0 t = 4 T - t = 0 d θ dt = 0 = ω k d dt d dt = v = ω k [m/s] 図. 一定位相点の時間的変化 が得られる. d dt は速度の単位をもっているので, 図の矢印のように正の 方向に速度 v で移動していること になる. したがって exp exp j ( ω t k j ( ω t + k ) ) は時間と共に正の 方向に進む波 (+ 方向 ) は時間と共に負の 方向に進む波 (- 方向 ) を表わしていることが分かる. 特に, この k の前についている符号は, 偏波変換など偏波解析を展開していく場合に重要な係数であるから注意を要する. 物理学 光学の分野では, exp i k が最初に用いられて きたため,exp i ( k ω t ), exp i ( k がそれぞれ +, - 方向に進む波を表わしている []. + t ) 工学とは逆の関係にあり,i = j と考えるとよい. 式 (.7) において,k = k x x + k y y + k z z = constant であれば, 電界の位相は一定である.k となる は平面を表す式なので, その平面上で電界の位相は一定である = const. 図.3を参照. それゆえ, 式 (.30) は平面波を表す表現である. 図.3に示すように,k を波の伝搬方向とすると, が 0 方向 (k と同じ方向 ) で位相変化が最も大きく, 0 は平面と垂直になる. この位相一定面のことを横断面 (Tansvese plane) という. k = constant plane 原点 k // 0 図.3 一定位相面 k 0 = k = k 損失の無い等方性媒質では, 波数ベクトル k は実数ベクトルとなり, その大きさは次のようになる. k = ω ε µ = ω v = π λ (.3) v は媒質中の電磁波の速度,λ は波長である. π λ は π の区間に何波長あるかを示しているもので, 波の数を 表していると考えてもよい. 波数という言葉の由来である. もし, 比誘電率が ε の媒質であれば, 自由空間 での値 ( 下添字 0 を付けて表す ) と比較して次のようになる. 7

位相速度 波数 k = k 0 ε (.3a) k 0 = ω ε 0 µ 0 = π λ 0 (.3b) d dt = v = ω k = c 0 ε = 3 08 ε [m/s] (.33) 波長 λ = λ 0 / ε (.34) 誘電体中では,ε が よりも大きいので, / る. ε 倍だけ波長が短くなり, 位相速度も遅くなることが分か.3 単一周波数の TEM 波 (Tansvese Electo-Magnetic Wave) ここでは, 自由空間における電界と磁界の関係を求めておこう. 自由空間では,ε = ε 0,µ = µ 0,σ = 0 が 成り立つ. 式 (.) のマックスウエル方程式にフェーザ表現を使えば, E ( ) = j ω µ 0 H ( ) (.35) + 方向に向かう電界 (.30b) を代入すると, 次の置き換えができる. E 0 ( ) = a x a y a z = a x y z x + - j k z E x + j k x E z a y + - j k x E y + j k y E x a z E x E y E z = a x a y a z - j k x - j k y - j k z E x E y E z = - j k E 0 ( ) = j ω µ 0 H 0 ( ) したがって, 式 (.) は k E 0 = ω µ 0 H 0 (.36) と変形できる, もし, k = k k と置けば, 自由空間では k 0 = ω ε 0 µ 0 = π λ 0 = k x a x + k y a y + k z a z k x + k y + k z : 単位ベクトル なので, 式 (.36) は k E 0 = ω µ 0 ω ε 0 µ 0 H 0 = η 0 H 0 (.37) となる. ここで,η 0 は自由空間での固有インピーダンスである. η 0 = µ 0 ε 0 = 0 π 同様に, 式 (.) より k H 0 = ω ε 0 E 0 (.38) η 0 H 0 k = E 0 (.39) E 0 = η 0 H 0 (.40) 8

また, B = 0, D = 0 の関係から次の関係が得られる. k H 0 = 0 (.4) k E 0 = 0 (.4) 式 (.38) - (.4) の関係を図示すると図.4 のようになる.E 0 と η 0 H 0 は大きさが等しく, 互いに直交する. そして伝搬方向 k にも垂直である.E 0 と H 0 は伝搬方向と垂直な面内 ( 横断面 :Tansvese 面 ) に存在して いるので,TEM 波 (Tansvese Electo-Magnetic Wave) とも呼ばれている. ( k ) 方向に向かう電界 (.30c) についても次式が成り立つ. k E = η 0 H, k η 0 H = E, k E = 0, k H = 0 (.43) この場合も,E とη 0 H は大きさが等しく, 互いに直交し, 伝搬方向 k にも垂直である. 図.4の右図のようになり,+ 方向に向かう波と似た配置関係が得られる. 式の表示からは空間的な把握は難しいが, 図表示の方がわかりやすいと思われる. 図.4のように, どちらの方向に進む波でも E H の向きが波の進行方向になっている. したがって, 平面波の基本的な性質として E とH は直交し,E H が波の進行方向である と理解しておくだけでよい. Tansvese plane E 0 k! E 0 = " 0 H 0 " 0 H 0! k = E 0 k # E 0 = k # H 0 = 0 k E " 0 H E 0 = " 0 H 0 " 0 H 0 k! E = " 0 H k! " 0 H = E k # E = k # H = 0 E = " 0 H Tansvese plane k + k 方向に向かう波 k 方向に向かう波図.4 平面波の電界, 磁界と伝搬方向 k の関係 ( 数式表現と図的表現 ) 波の進む方向 k は任意に指定できるが,z 軸方向を進行方向と仮定した場合, k = k a z となる. そのと き, 電界 E, 磁界 H は図.5 に示すように x-y 面内に横たわり,x-y 面が横断面になる. 9

η 0 H 0 ( z, t ) = a z E 0 ( z, t ) = a z Re E 0 exp j ω t k z ) (.44a) η 0 H ( z, t ) = a z E ( z, t ) = a z Re E exp j ω t + k z ) (.44b) y y E 0 x E H x az az z H 0 図.5 電界 磁界ベクトルの方向 なお, 偏波は電界ベクトルに対して定義されており, 磁界に対しては定義されていない. これは図.5 のように Eが決まれば, 必然的に H が決まるためである..4 TEM 波の電力 次に平面波の電力について考察しておく. ポインティング (Poynting) の定理によれば, ポインティングベクトル Sは瞬時電界ベクトルE および瞬時磁界ベクトルH と次の関係式で結ばれている. S = E (, t ) H (, t ) (.45) これに式 (.30),(.44) を代入すれば次式が得られる. E 0 E S ( z, t ) = a z cos ω t k z a η z cos ω t + k z (.46) 0 η 0 Tを 周期の時間とすると,z= 一定の面を通過する時間平均した電力密度の流れは S ( z, t ) = T 0 T E 0 E S ( z, t ) dt = a z a z (.47) η 0 η 0 によって与えられる. この式から E 0, H 0 と E, H の組毎に独立に電力が運ばれることが分かる. さて, フェーザ表現を使って電力流を求めるのに都合の良い複素ポインティングベクトル P と瞬時ポインティングベクトル S の関係を調べてみよう. まず, フェーザ表現を使ったマックルウエルの方程式から次の関係式が得られる. E H * = j ω E * B D H J * は複素共役である. 複素ポインティングベクトル Pは次のように定義されている. * E * (.48) 0

P = E( ) H * ( ) (.49) フェーザを実部と虚部に分解し, 各成分を実数ベクトルで表すと E( ) = E + j E i, H( ) = H + j H i (.50) それゆえ, 複素ポインティングベクトル P は次の複素数となる. P = E H * = E H + E i H i + j E i H - E H i (.5) 一方, 瞬時観測量としてのベクトルは E(, t ) = Re E( ) e j ω t = E cos ω t E i sin ω t H(, t ) = Re H( ) e j ω t = H cos ω t H i sin ω t (.5) なので, 瞬時ポインティングベクトル S は S (, t ) = E H cos ω t + E i H i sin ω t E i H + E H i sin ω t (.53) である.P と S の表現は異なるが,S の時間平均をとると次の関係式が得られる. S (, t ) = T 0 T S (, t ) dt = E R H R + E I H I = Re E H * = Re P (.54) この式は, 瞬時ポインティングベクトルの時間平均が複素ポインティングベクトルの実部の半分に等しいことを示している. したがって, 積分計算をしなくとも, 複素ポインティングベクトルによって時間平均した電力の流れが簡単に求められることになる. z 方向に伝搬する平面波に対して時間平均したエネルギの流れは Re P = E a η z (.55) 0 で与えられ, 電界の大きさの 乗 E に比例する.Tansvese 面内で電界の方向は必ずしも x 方向だけを 向いているとは限らないので,x, y 成分に分解すると E = a x E x + a y E y = a x E x + j E xi + a y E y + j E yi (.56) と書くことができる. これを代入すれば E = a x E x + a y E y + j a x E xi + a y E yi = a x E x + a y E y + a x E xi + a y E yi E = E x + E y (.57) となり, 結果的にz 方向に伝搬する平面波の電力は, 座標成分の二乗和で表されることになる. これは, 一見当然のことであるが, 以後に述べるように偏波の観点からは E は偏波基底によらない不変量である. もし, 円偏波基底で展開しても, 右回り成分と左回り成分のの二乗和で表される. 上記は直角座標系で展開した表現であって, 他の座標系でも展開できる. 重要な点は座標系に関わらずベクトルの大きさは一定になっていることである.