Box and Jenkins (1970) (Autoregressive Moving Average model ARMA ) Box-Jenkins ARMA Hannan (1970) Anderson (1971) Fuller (

Size: px
Start display at page:

Download "Box and Jenkins (1970) (Autoregressive Moving Average model ARMA ) Box-Jenkins ARMA Hannan (1970) Anderson (1971) Fuller ("

Transcription

1 41, 1, From Time Series Analysis to Spatio-Temporal Statistical Analysis Yoshihiro Yajima We review developments of time series analysis and spatio-temporal statistical analysis and envisage a future of them. : 1. Gelfand et al. (2010) Finkenstät et al. (2007) ( ) ( yajima@e.u-tokyo.ac.jp)

2 Box and Jenkins (1970) (Autoregressive Moving Average model ARMA ) Box-Jenkins ARMA Hannan (1970) Anderson (1971) Fuller (1976) Priestley (1981) ARMA 2 (Brockwell and Davis (1991) Chapter 8) 1980 (Autoregressive Conditional Heteroskedasticity model) (Stochastic Volatility model) (Tong (1990) Taylor (1994) Guouriéroux (1997) Fan and Yao (2003) (2003))

3 221 (Banerjee et al. (1993) Beran (1994) Doukhan et al. (2002) Johansen (1996) (2003) Robinson (2003)) 3. 2 (strictly stationary process) (weakly stationary process) (Brockwell and Davis (1991)) t t R = (, ) Z = {0, ±1, ±2, } K 3.1 {X t t K} 2 (i){x t } t E(X t ) = µ µ = 0 (ii)cov(x t, X s ) t s {γ(h)} γ(h) = Cov(X t+h, X t ) γ(h) = exp(ihλ)df (λ) (i 2 = 1) (3.1) T K = R T = (, ) K = Z T = [ π, π] F (λ) F (λ) (3.1) f(λ) γ(h) = exp(ihλ)f(λ)dλ T

4 F (λ) f(λ) X t = T exp(itλ)dz(λ) (3.2) {Z(λ)} λ 1 λ 2 (λ 1, λ 2 T ) E Z(λ 2 ) Z(λ 1 ) 2 = λ2 λ 1 df (λ) dz(λ) λ λ E dz(λ) 2 df (λ) f(λ)dλ K = Z 2 γ(h) < (3.3) h=0 {X t } (short-memory) (short range dependent) (weakly dependent) γ(h) = (3.4) h=0 (long-memory) (long range dependent) (strongly dependent) ARMA {X t } X t φ 1 X t 1... φ p X t p = U t θ 1 U t 1... θ q U t q (3.5) {X t } (p, q) ARMA {U t } (white noise) V ar(u t ) = σ 2 Cov(U t, U s ) = 0(t s) {U t } f U (λ) = σ2 2π B BX t = X t 1 (3.5) (3.6) φ(b)x t = θ(b)u t φ(b) = 1 φ 1... φ p B p θ(b) = 1 θ 1... θ q B q

5 223 φ(z) = 0 ( z = 1) ARMA X t U s (s t) (causality) h 0 γ(h) Ka h (0 < a < 1) h (3.7) K (3.3) f(λ) = σ2 θ(e iλ ) 2 2π φ(e iλ ) 2 (3.8) 0 (3.7) (3.8) 2 ARMA ARFIMA (Granger and Joyeux (1980) Hosking (1981)) FI fractionally integrated d (fractional diffrence operator) d d = (1 B) d = j=0 ( ) d d(d 1)... (d j + 1) = = j j! ( ) d ( B) j (3.9) j Γ(d + 1) Γ(j + 1)Γ(d j + 1) Γ(x) d ( d j) = 0(j > d) (3.9) d (Yajima (1985)) d {X t } φ(b) d X(t) = θ(b)u t {X t } (p, d, q) ARFIMA d < 1/2 {X t } f(λ) = σ2 θ(e iλ ) 2 2π φ(e iλ )(1 e iλ ) d 2 (3.10) ARMA (3.8) (3.10) d (1 e iλ ) d 0 < d < 1/2 λ 0 f(λ)

6 (Fractional Gaussian Noise FGN ) (Manderbrot and van Ness (1968)) (Fractional Brownian Motion FBM ) {B H (t) 0 t < } 2 E(B H (t)) = 0 t E( B H (t) B H (s) 2 ) = σ 2 t s 2H (0 < H < 1) FBM H = 1/2 FBM {X t t = 1, 2,...} X t = B H (t) B H (t 1) {X t } FGN H = 1/2( ) FGN N(0, σ 2 ) H 1/2 1/2 < H ARFIMA λ 0 (Sinai (1976)) ARFIMA FGN f(λ) λ α 1 (λ 0) γ(h) h α (h ) α = 1 2d = 2 2H (3.11) 0 < α < 1(0 < d < 1/2, 1/2 < H < 1) f(λ) (λ 0) (3.4) 4. {X t } θ ARMA φ i (i = 1,..., p), θ j (j = 1,..., q) σ 2 = V ar(u t ) ARFIMA FGN

7 225 d H f(λ; θ) γ(h; θ) θ X N = (X 1,, X N ) log L N (θ; X N ) = 1 2 log det(γ N ) 1 2 (X N µ) Γ 1 N (X N µ) µ = (µ, µ,..., µ) Γ N X N (i, j) Cov(X i, X j ) = γ(i j; θ) Γ 1 N det(γ N) θ Whittle µ = 0 2(2π/N) log L N (θ; X N ) = (2π/N)[log detγ N + X N Γ 1 N X N] N N (2π/N) log τ j N + [ π,π] j=1 m n=1 [ π,π] N m n=1 X mx n e i(m n)λ (2π) 2 dλ (4.1) f(λ; θ) ( log f(λ; θ) + I ) N(λ) dλ (4.2) f(λ; θ) = L N(θ; X N ) (say). I N (λ) I N (λ) = P N t=1 Xt exp( itλ) 2 2πN τ i,n Γ N L N (θ; X N ) θ Whittle (4.1) Γ 1 N Γ N = (γmn ) γ mn e i(m n)λ = (2π) 2 f(λ; θ) dλ [ π,π] Γ N Γ 1 N (Shaman (1976)) (3.6) Γ 1 N = Γ N = I N /σ 2 I N N N f(λ) 0 G(x) lim (2π/N) N G(τ j N ) = N j=1 [ π,π] G(f(λ))dλ (4.3) (Grenander and Szegö (1984)) (4.3) G(x) = log x (4.2) Whittle

8 Idea: Whittle (1961) Univariate Short-Memory: Walker (1964) Hannan (1973) Multivariate Short-Memory: Dunsmuir (1979) Univariate Short-Memory (Irregularly Spaced): Dunsmuir and Robinson (1981) Multivariate Short-Memory (Misspecified): Hosoya and Taniguchi (1982) Long-Memory Gaussian: Yajima (1985) Fox and Taqqu (1986) Long-Memory Gaussian (Misspecified): Yajima (1992) Long-Memory Non Gaussian: Giraitis and Surgailis (1990) Hosoya (1997) f(λ) ( log f(λ; θ) + f(λ) ) dλ f(λ; θ) [ π,π] θ θ 0 f(λ) = f(λ; θ), λ θ θ N (i) ˆθ ˆθ θ 0 a.s. (ii) N(ˆθ N θ 0 ) N(0 4πW (θ 0 ) 1 ) W (θ) = h(λ; θ) = f 1 (λ; θ) [ π,π] [ ] [ ] h(λ; θ) h(λ; θ) f(λ) 2 dλ θ θ f(λ) f(λ; θ), θ f(λ; θ)

9 4.2 N 227 (i) ˆθ θ 0 a.s. (ii)(a) (3.11) 1/2 < α < 1 N(ˆθ N θ 0 ) N(0, 4πV (θ 0 ) 1 W (θ 0 )V (θ 0 ) 1 ) [ 2 ] h(λ; θ) V (θ) = θ θ f(λ)dλ [ π,π] (b) α = 1/2 N/ log N(ˆθ N θ 0 ) 1 (c) 0 < α < 1/2 (N α / log N)(ˆθ N θ 0 ) (ii)(a) f(λ) = f(λ; θ 0 ) V (θ 0 ) = W (θ 0 ) (Hosoya and Taniguchi (1982)) 4.2.(ii)(a) 4.1.(ii) 4.1.(ii) 4.2.(ii) Whittle X N 2 Q N = X NB N X N E(X NB N X N ) B N = (b mn ) N N (m, n) ˆb(λ)( π λ π) b mn = e i(m n)λˆb(λ)dλ [ π,π] f(λ)ˆb(λ) [ π, π] 2 NQN 0 [ π,π] (f(λ)ˆb(λ)) 2 dλ (Fox and Taqqu (1987) Giraitis and Surgailis (1990)) 2 1/ N (Noncentral limit theorem) (Fox and Taqqu (1985)) Whittle h(λ; θ)/ θ θ = θ 0 ˆb(λ) f(λ) ˆb(λ) f(λ)ˆb(λ) (ii) ˆb(0) = 0 f(λ) (λ 0) 4.2(ii)(a) f(λ) 2 ˆb(λ) f(λ)ˆb(λ) 2

10 (ii)(b) (c) ˆb(0) (ii) Fox and Taqqu (1987) 1/ N f(λ)ˆb(λ) 2 Lavancier and Philippe (2011) 5. One-parameter Stochastic Process {X t t R Z} ( ) Multi-parameter Stochastic Process {X t t R d Z d }(2 d) (half sapce) Z d (Guyon (1995)) t Z d ARMA (Guyon (1995)) ARMA R d Z = {0, ±1, ±2,...} d K d (site) s( K d ) Y (s) 1 1 d = 2 s

11 229 Y (s) d = 3 s Y (s) d = 4 t Y (s, t) D( K d ) s {Y (s) : s D} (random field) 5.2 {Y (s) : s K d } 2 (i){y (s)} s E(Y (s)) = µ µ = 0 (ii) t s C(t s) = E(Y (t)y (s)), t, s K d {C(h), h = t s K d } d = 1 (3.1) (3.2) Y (s) = exp(is λ)dm(λ) T d C(h) = exp(ih λ)df (λ) T d (Gikhman and Skorokhod (1974) Rosenblatt (1985) Yaglom (1987)) s = (s 1,..., s d ), h = (h 1,..., h d ), λ = (λ 1,..., λ d ) K = Z T = [ π, π] K = R T = (, ) M = {M(λ), λ T d } d F (λ) d E M( ) 2 = F ( )( T d ) E(M( 1 )M( 2 )) = 0( 1, 2 T d, 1 2 = φ) F (λ) F (λ) f(λ) 6. Ma (2008) 3 A Simple Stochastic Representation A Closed-Form Spectral Density Function A Closed-Form of the Covariance Function

12 Ma (2008)..., just as a stationary discrete-time ARMA time series. In general, however, only one or two tractable forms may be available for a spatial or spatio-temporal stationary random field,... (3.5) (3.7) (3.8) ARMA 3 (i)y (s) (ii) ( ) Cressie (1993) Guyon (1995) Gelfand et al. (2010) 2 2 (isotropic) (separable) C(h) h = d i=1 h2 i 1 (positive definite) C 0 (x)(x R) x h C(h) = C 0 ( h ) C 0 (x) d 2 C(h) (Christakos (1984) Cressie (1993 p. 84)) d C(h) C 0 (x) = 0 exp( x 2 u 2 )dg(x) G(x) g(x) = C 0 (x 1/2 ) g(x)(x 0) (completely monotone) g(x) x 0 n n ( 1) n d n g(x)/dx n 0(0 < x < ) (Schoenberg (1938) Feller (1971) Cressie (1993) Stein (1999)) g(x) = exp( αx γ )(0 < α, 0 < γ 1) C 0 (x) Matérn (Matérn class) (Matérn ( ) Handcock and Stein (1993) Stein (1999)) C 0 (x) = π 1/2 φ 2 ν 1 Γ(ν + 1/2)α 2ν (α x )ν K ν (α x ) (Stein (1999)) K ν 2 (Modified Bessel function of the second kind) α, ν, φ φ α ν ν 2 ν = 1/2 C 0 (x) = πφα 1 exp( α x )

13 231 ν = 3/2 C 0 (x) = 1 2 πφα 3 exp( α x )(1 + α x ) ω = λ f(ω) = φ π (d 1)/2 (α 2 + ω 2 ) ν+d/2 Guttorp and Gneiting (2006) Matérn Matérn Matérn 1947 (Matérn (1947)) ( Harald Cramér) 1960 (Matérn (1960)) (Matérn (1986)) von Kármán (1948a b) ν = 1/3 Whittle (1954) ν = 1 1 σ 2 α ν = 0.5, 1.0, 1.5 ( )Matérn ν ν (Separable Model) 2 h C(h) = C 1 ( h 1 )C 2 ( h 2 ) h 1 = (h 1,..., h m ), h2 = (h m+1,..., h d ) C i ( h i )(i = 1, 2, ) C i ( h i )(i = 1, 2, ) f i ( λ i )(i = 1, 2) f(λ) = f 1 ( λ 1 )f 2 ( λ 2 ) λ = (λ 1,..., λ d ) λ 1 = (λ 1,..., λ m ) λ 2 = (λ m+1,..., λ d ) d = 2 f(λ) λ 1 d 1 λ 2 d 2 (0 < d 1, d 2 < 1) f(λ) (λ λ 2 2) d (0 < d < 2) (Ludeña and Lavielle (1999))

14 Simulation of Matérn class (2010) Sherman (2011) 7. 4 Whittle Spatial Short-Memory (Regularly Spaced): Dahlhaus and Künsch (1987) Spatial Long-Memory (Regularly Spaced): Ludeña and Lavielle (1999) Spatial Short-Memory Gaussian (Irregularly Spaced): Matsuda and Yajima (2009) Spatial Long-Memory (Non)Gaussin (Irregularlry Spaced): Who? When? Whittle

15 233 Regularly Spaced Increasing Domain Asymptotics P n = d i=1 [1, 2,..., n i] n = d i=1 n i n i (i = 1, 2,..., d) Whittle d = 1 I n (λ) = s P n exp( is λ)y (s) 2 (2π) d n d 2 (edge effect) Ĉ(h) = s s+h P n Y (s)y (s + h)/n d E(Ĉ(h)) C(h) = O(n 1/d ) (7.1) (Guyon (1995)) n(ĉ(h) C(h)) d 2 (7.1) d = 1( ) d = 2 d = 3 d tapered Y (s) = 0(s / P n ) taper h(u) : [0, 1] [0, 1] lim u 0,1 h(u) = 0 h(u) Y (s) h(s)y (s) h(s) = d i=1 h(s i/n i ) s P n 0 tapered I T n (λ) = s P n exp( is λ)h(s)y (s) 2 (2π) d H n H n = s P n h 2 (s) h(u) 1 I n (λ) Y n θ L n(θ; Y n ) = ( π,π] d ( log f(λ; θ) + IT n (λ) f(λ; θ) ) dλ d 2 Whittle d d 3 (Dahlhaus and Künsch (1987)) d 4

16 Irregularly Spaced s i s i = (A 1 u i,1,..., A d u i,d ) i = 1,..., n u i = (u i,1,..., u i,d ) (i = 1,..., n) d i.i.d. g(x) [0, 1] d compact support A j (j = 1, 2,..., d) n Infill Asymptotics k k (n = n k ) (A j (k) (j = 1,..., d)) Mixed Domain Asymptotics (discrete Fourier transform) J k (λ) = (2π) d 2 G 1/2 S k 1 2 n 1 k I k (λ) = J k (λ) 2 n k p=1 Y (s p ) exp( is pλ) G = g(s) 2 ds S [0,1] d k S k = [0, A 1 ]... [0, A d ] S k S k = A 1... A d J k (λ) (2π) d 2 S k 1 2 S k Y (s) exp( is λ)ds G Ĝ = m d m i 1 m i d =1 ĝ(x 1,, x d ) = 1 n k δ d ( i1 ĝ m,, i d m n k j=1 ) 2 ( uj,1 x 1 K,, u j,d x d δ δ K R d δ L k (θ) = D [ ] I k (λ) log{f(λ; θ) + c k (θ)} + dλ f(λ; θ) + c k (θ) θ(ˆθ 0 ) Whittle D (λ D λ D) c k (θ) L k (θ) k d ˆθ θ 0 ( ) d 3 S k 1/2 (ˆθ k θ 0 ) L N(0, 2bW (θ 0 ) 1 ) )

17 (Matsuda and Yajima (2009)) 235 g(s) 4 ds [0,1] b = d ( g(s) [0,1] 2 ds) 2 d ( ) ( ) log f(λ; θ) log f(λ; θ) W (θ) = (2π) d dλ θ θ D b 1 g(x) 1 8. (1) 6 4 (Ma (2008)) 3 (a) d = 1 ( ) d dt + α Y (t) = ɛ(t) (8.1) ɛ(t) 0 σ 2 dy (t) = αy (t)dt + σdw (t)

18 {W (t)} 3 (B 1/2 (t), σ = 1) Ornstein-Uhlenbeck Y (t) = Y (0) exp( αt) + σ t 0 exp( α(t s))dw (s) (Karatzas and Shreve (1991)) Y (0) N(0, σ 2 /2α) {Y (t)} C(h) = (σ 2 /2α)e α h f(λ) = σ 2 /(λ 2 +α 2 ) {Y (t)}(t = 0, 1, 2,...) φ = e α AR(1) Whittle (1954) d = 2 ( ) 2 s s 2 φ 2 Y (s 1, s 2 ) = ɛ(s 1, s 2 ) (8.2) 2 6 C(h 1, h 2 ) = φ h K 1 (φ h ) σ 2 f(λ 1, λ) = (λ λ2 2 + φ2 ) 2 (8.2) (8.1) ɛ(s 1, s 2 ) 0 σ 2 Jones and Zhang (1997) d [( d ) p ] 2 φ 2 c Y (s, t) = ɛ(s, t) (8.3) t s 2 i=1 i C(h, t) = h d/2+1 σ 2 2(2π) d/2 c f(λ, τ) = σ 2 ( λ 2 +φ 2 ) 2p + c 2 τ 2 u d/2 e (u2 +φ 2 ) p t/c 0 (u 2 + φ 2 ) p J d/2 1 (u h )du J ν Bessel (8.2) (8.3) Ruiz-Medina et al. (2004) Kelbert et al. (2005) (8.2) (8.3)

19 237 (b) 2 Stein (2005) f(λ τ) = {c 1 (a 2 1+ λ 2 ) α 1 + c 2 (a τ 2 ) α 2 } β (λ τ) R d R c 1 = σ 2, c 2 = c 2 σ 2, a 2 = 0, α 1 = 2p, α 2 = 1, β = 1 Jones and Zhang (1997) Fuentes et al. (2008) f(λ, τ) = γ(α 2 β 2 + β 2 λ 2 +α 2 τ 2 + ɛ λ 2 τ 2 ) ν, (λ, τ) R d R ɛ ɛ = 1 f(λ, τ) = γ(α 2 + λ 2 ) ν (β 2 + τ 2 ) ν ɛ = 0 f(λ, τ) = γ(α 2 β 2 + β 2 λ 2 +α 2 τ 2 ) ν Matérn (c) Gneiting (2002) σ 2 ( ) h 2 C(h, t) = ψ(t 2 ) φ d/2 ψ(t 2, (h, u) R d R ) φ(t)(t 0) ψ(t)(t 0) Stein (2005) a laundry list of potential models (2) 2

20 (a) (intrinsic stationary random field) h 2 {Y (s)} E(Y (s + h) Y (s)) = 0 E[Y (s + h) Y (s)] 2 = 2γ(h) 2γ(h) (variogram) γ(h) (semivariogram) 3 FBM (multidimensional)fbm exp(is λ) 1 Y (s) = S(λ/ λ )dw (λ) R d λ d/2+h W (λ) 5 M(λ) de W (λ) 2 = dλ S (Istas (2007)) 2γ(h) = R d exp(ih λ) 1 2 λ d+2h S 2 (λ/ λ )dλ S(λ/ λ ) 1 2γ(h) = C h 2H C 1 FBM (Samorodnitsky and Taqqu (1994)) exp(is λ) 1 Y (s) = dw (λ) R d λ d/2+h(λ) H(λ) 0 c( 0) H(cλ) = H(λ) (Bonami and Estrade (2003)) exp(ih λ) 1 2 2γ(h) = dλ λ d+2h(λ) R d H λ 2 S(λ/ λ ) H(λ)

21 239 (b) Priestley (1965) (evolutionary) Y (s, t) = R d R exp(is λ + iτt)φs,t(λ, τ)dm(λ, τ) E dm(λ, τ) 2 = dλdτ φs t(λ τ) (Fuentes et al. (2008)) Cov(Y (s 1, t 1 ), Y (s 2, t 2 )) C(s 1, t 1 ; s 2, t 2 ) = R d R exp(i(s 1 s 2 ) λ + i(t 1 t 2 )τ) φs 1,t 1 (λ τ)φs 2,t 2 (λ τ)dλ dτ φs,t(λ τ) φs,t(λ, τ) = φ (1) s (λ)φ(2) t (τ) Cov(Y (s 1, t 1 ), Y (s 2, t 2 )) = C (1) (s 1, s 2 )C (2) (t 1, t 2 ) K s j (j = 1,..., K) φs j (λ, τ) s s j K(s s j ) φs,t(λ, τ) = k K(s s j )φs j (λ, τ) j=1 s j φs,t(λ, τ) (3) n s i (i = 1,..., n) Y (s i ) C = (c ij ) n n, c ij = Cov(Y (s i ), Y (s j )) (Best Linear Unbiased Predictor (BLUP) (Kriging) ( (2010)) C 1 n 3

22 Covariance Taper with theta=0.8 Product distance 2 Overview of Covariance Tapering n = 1, covariance tapering C(h) C θ (h)( C θ (0) = 1) C tap (h) = C(h)C θ (h) θ C θ (h) = 0, h > θ 2(θ = 0.8) n n Σ tap = (σ ij,tap )(n n) σ ij,tap = C tap (s i s j ) σ ij,tap = 0, s i s j > θ Σ tap 0 sparse C

23 241 Matérn (Du et al. (2009) Furrer et al. (2006) Kaufman et al. (2008) Wang and Loh (2011)) covariance tapering MA AR covariance tapering (4) Arbia (2006) Arbia and Baltagi (2009) Cressie (1993) Gelfand et al. (2010) LeSage and Pace (2009) (A)No Anderson, T. W. (1971). The Statistical Analysis of Time Series, Wiley. Arbia, G. (2006). Spatial Econometrics: Statistical Foundations and Applications to Regional Convergence, Springer. Arbia, G. and Baltagi, B. H. (2009). Spatial Econometrics: Methods and Applications, Springer. Banerjee, A., Dolad, J., Galbraith, J. W. and Hendry, D. F. (1993). Co-integration, Error Correction, and the Econometric Analysis of Non-Stationary Data, Oxford Univeristy Press. Beran, J. (1992). Statistics for Long-Memory Processes, Chapman and Hall. Bonami, A. and Estrade, A. (2003). Anisotropic analysis of some Gaussian models, J. Fourier Anal. Appl., 9, Box, G. E. P. and Jenkins, G. M. (1970). Time Series Analysis: Forecasting and Control (1st. ed.), Holden Day.

24 Brockwell, P. J. and Davis, R. A. (1991). Time Series : Theory and Methods (2nd ed.), Springer. Christakos, G. (1984). On the problem of permissible covariance and variogram models, Water Resour. Res., 20, Cressie, N. (1993). Statistics for Spatial Data (rev. ed.), Wiley. Dahlhaus, R. and Künsch, H. R. (1987). Edge effects and efficient parameter estimation on staitonary random fields, Biometrika, 74, Doukhan, P., Oppenheim, G. and Taqqu, M. (2002). Theory and Applications of Long-Range Dependence, Birkhäuser. Du, J., Zhang, H. and Mandrekar, V. (2009). Fixd-domain asymptotic properties of tapered maximum likelihood estimators, Ann. Statist., 37, Dunsmuir, W. (1979). A central limit theorem for parameter estimation in stationary vector time series and its application to model for a signal observed with noise, Ann. Statist., 7, Dunsmuir, W. and Robinson, P. M. (1981). Parametric estimators for stationary time series with missing observations, Adv. Appl. Probab., 13, Fan, J. and Yao, Q. (2003). Nonlinear Time Series: Nonparametric and Parametric Methods, Springer. Feller, W. (1971). An Introduction to Probability Theory and Its Applications, vol. II (2nd ed.), Wiley. Finkenstät, B., Held, L. and Isham, V. (2007). Statistical Methods for Spatio-Temporal Systems, Chapman& Hall/CRC. Fox, R. and Taqqu, M. S. (1985). Noncentral limit theorems for quadratic forms in random variables having long-range dependence, Ann. Probab., 13, Fox, R. and Taqqu, M. S. (1986). Large-sample proeprties of parameter estimation for strongly dependent stationary Gaussian time series, Ann. Statist., 14, Fox, R. and Taqqu, M. S. (1987). Central limit theorems for quadratic forms in random variables having long-range dependence, Probab. Th. Rel. Fields, 74, Fuentes, M., Chen, L. and Davis, J. M. (2008). A class of nonseparable and nonstationary spatial temporal covariance functions, Environmetrics, 19, Fuller, W. A. (1976). Introduction to Statistical Time Series (1st ed.), Wiley. Furrer, R., Genton, M. G. and Nychka, D. (2006). Covariance tapering for interpolation of large spatial datasets, J. Comp. Graph. Statist., 15, Gelfand, A. E., Diggle, P. J., Fuentes, M. and Guttorp, P. (2010). Handbook of Spatial Statistics, Chapman & Hall/CRC. Gikhman, I. I and Skorokhod, A. V. (1974). The Theory of Stochastic Processes I, Springer. Giraitis, L. and Surgailis, D. (1990). A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotic normality of Whittle s estimate, Prob. Th. Rel. Fields, 86, Gneiting, T, (2002). Nonseparable stationary covariance functions for space-time data, J. Amer. Statist. Assoc., 97, Granger, C. W. J. and Joyeux, R. (1980). An introduction to long-range time series models and fractional differencing, J. Time Ser. Anal., 1, Grenander, U. and Szegö, G. (1984). Toeplitz Froms and their Applications (2nd ed.), Chelsea. Guoriéroux, C. (1997). ARCH Models and Finance Applications, Springer. Guttorp, P. and Gneiting, T. (2006). Studies in the history of probability and statistics XLIX. On the Matérn correlation family, Biometrika, 93, Guyon, X. (1995). Random Fields on a Network, Modeling, Statistics, and Applications, Springer Handcock, M. S. and Stein, M. L. (1993). A Baysesian analysis kriging, Technometrics, 35, Hannan, E. J. (1970). Multiple Time Series, Wiley. Hannan, E. J. (1973). The asymptotic theory of linear time series models, J. Appl. Probab., 10, Hosking, J. R. M. (1981), Fractional differencing, Biometrika, 68, Hosoya, Y. (1997). A limit theory for long-range dependence and statistical inference on related models, Ann. Statist., 25,

25 243 Hosoya, Y. and Taniguchi, M. (1982). A central limit theorem for stationary processes and the parameter estimation of linear processes, Ann. Statist., 10, , Correction: (1993). 21, Istas, J. (2007). Identifying the anisotropical function of a d-dimensional Gaussian self-similar prcess with stationary increments, Statist. Inf. Stoch. Proc., 10, Johansen, S. (1996). Likelihood-Based Inference in Cointegrated Vector Autoregressive Models (2nd ed.), Oxford University Press. Jones, R. H. and Zhang, Y. (1997). Models for continuous stationary space-time prcosses, Modelling Longitudinal and Spatially Correlated Data (eds. T. G. Gregoire et al.), Lecture Notes in Statistics 122, Springer, Karatzas, I, and Shreve, S. E. (1991). Brownian Motion and Stochastic Clculus (2nd ed.), Springer. (2003)., 8,. Kaufman, C., Schervish, M. and Nychka, D. (2008). Covariance tapering for likelihood-base estimation in large sptial data sets, J. Amer. Statist. Assoc., 103, Kelbert, M., Leonenko, N. and Ruiz-Medina, M. D. (2005). Fractional random fields associated with stochastic fractional heat equations, Add. Appl. Probab., 37, Lavancier, F. and Philippe, A. (2011). Some convegence results on quadratic forms for random fields and application to empirical covariances, Prob. Th. Rel. Fields, 149, LeSage, J. and Pace, R. K. (2009). Introductionto Spatial Econometrics, Chapman& Hall/CRC. Ludeña, C. and Lavielle, M. (1999). The Whittle estimator for strongly dependent stationary Gaussian fields, Scand. J. Statist., 26, Ma, C. (2008). Recent developments on the construction of spatio-temporal covariance models, Envir. Res. and Risk Asses., 22, S39 S47. Manderbrot, B. B. and van Ness, J. W. (1968). Fractional Brownian motions, fractional noise and applications, SIAM Rev., 10, (2010). R GeoR,. Matérn, B. (1947). Metoder art Uppskatta Noggranhetten vid Linje- och Provytetaxering, Stockholm: Medd Staten Skogsforskningsinstitut, 36, no. 1 (in Swedish with substantial English summary). Matérn, B. (1960). Spatial Variation-Stochastic Models and Their Application to some Problems in Forest Surveys and other Sampling Investigations, Stockholm: Medd. Statens Skogsforskningsinstitut, 49, no. 5. Matérn, B. (1986). Spatial Variation (2nd ed.), Springer. Matsuda, Y. and Yajima, Y.(2009). Fourier analysis of irregularly spaced data on R d, J. Roy. Statist. Soc., B71, Priestley, M. B. (1965). Evolutionary spectral and non-stationary processes, J. Roy. Statist. Soc., B27, Priestley, M. B. (1981). Spetrum Analysis and Time Series, Vols. 1 and 2, Academic Press. Robinson, P. M. (2003), Time Series with Long Memory, Oxford University Press. Rosenblatt, M. (1985). Stationary Sequences and Random Fields, Birkhäuser Ruiz-Medina, M. D., Anguko, J. M. and Anh, V. V. (2004). Fractional random fields on domain with fractal boundary conditions, Inf. Dim. Anal. Quantum Probab. Rel. Top., 7, Samorodnitsky, G. and Taqqu, M. (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Chapman & Hall/CRC. Schoenberg, I. J. (1938). Metric spaces and completely monotone functions, Ann. Math., 39, Shaman, P. (1976). Approximations for stationary covariance matrices and their inverses with application to ARMA models, Ann. Statist., 4, Sherman, M. (2011). Spatial Statistics and Spatio-Temporal Data: Covariance Functions and Directional Properties, Wiley. Sinai, Ya. G. (1976). Self-similar probability distribution, Th. Probab. Appl., 21, Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging, Springer. Stein, M. L. (2005). Space-time covariance functions, J. Amer. Statist. Assoc., 100,

26 Taylor, S. J. (1994). Modelling stochastic volatility;a review and comparative studies, Mathematical Finance, 4, Tong, H. (1990). Non-Linear Time Series: A Dynamic System Approach, Oxford University Press. von Kármán, T. (1948a). Progress in the statistical theory of turbulence, J. Marine Res., 7, von Kármán, T. (1948b). Progress in the statistical theory of turbulence, Proc. Nat. Acad. Sci., 34, Walker, A. M. (1964). Asymptotic properties of least-square estimates of parameters of the spectrum of a stationary nondeterministic time series, J. Austral. Math. Soc., 4, Wang, D. and Loh, W.-L. (2011). On fixed-domain asymptotics and covariance tapering in Gaussian random fields, Electronic J. Statistics, 5, Whittle, P. (1954). On stationary processes in the plane, Biometrika, 41, Whittle, P. (1961). Gaussian estimation in stationary time seris, Bull. Internat. Statist. Inst., 39, Yaglom, A. M. (1987). Correlation Theory of Stationary and Related Random Functions, vol. I, Springer. Yajima, Y, (1985). On estimation of long-memory time series models, Austral. J. Statist., 27, Yajima, Y. (1992). Asymptotic properties of estimates in incorrect ARMA models for long-memory time series, New Directions in Time Sereis Analysis, Vol. II (eds. D. Brillinger et al.),

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: ged0104@srv.cc.hit-u.ac.jp 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

Recent Developments and Perspectives of Statistical Time Series Analysis /ta) : t"i,,t Q) w (^ - p) dp *+*ffi t 1 ] Abraham, B. and Ledolter, J. (1986). Forecast functions implied by autoregressive

More information

(i) EX(t)=m (ii) ć(t-s)=coĘ(x(t),x(s)) (1) (2) (3)

(i) EX(t)=m (ii) ć(t-s)=coĘ(x(t),x(s)) (1) (2) (3) (i) EX(t)=m (ii) ć(t-s)=coĘ(x(t),x(s)) (1) (2) (3) (7) (8) (9) 5 Adelmean, I. (1965) : Long cycles-fact or Artifact. Amer. Econ. Rev. 60,444-463. Agiaklogolou, C., Newbold, P. and Wohar,

More information

ウェーブレット分数を用いた金融時系列の長期記憶性の分析

ウェーブレット分数を用いた金融時系列の長期記憶性の分析 TOPIX E-mail: masakazu.inada@boj.or.jp wavelet TOPIX Baillie Gourieroux and Jasiak Elliott and Hoek TOPIX I (0) I (1) I (0) I (1) TOPIX ADFAugmented Dickey-Fuller testppphillips-perron test I (1) I (0)

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

ARMA ARFIMA (fractional ARIMA) ARIMA ARFIMA Ding et al. (1993) 2 2 (realized volatility) (2007) Beran (1994), Robinson (2003), Doukhan e

ARMA ARFIMA (fractional ARIMA) ARIMA ARFIMA Ding et al. (1993) 2 2 (realized volatility) (2007) Beran (1994), Robinson (2003), Doukhan e 40, 2, 2011 3 147 175 Tests on Long Memory Time Series Haruhisa Nishino This paper surveys and explains testing problems on long memory time series. The first testing is a test where a null hypothesis

More information

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S. L. S. Abstract. Date: last revised on 9 Feb 01. translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, 1953. L. Onsager and S. Machlup, Fluctuations and Irreversibel Processes, Physical

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

橡表紙参照.PDF

橡表紙参照.PDF CIRJE-J-58 X-12-ARIMA 2000 : 2001 6 How to use X-12-ARIMA2000 when you must: A Case Study of Hojinkigyo-Tokei Naoto Kunitomo Faculty of Economics, The University of Tokyo Abstract: We illustrate how to

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

p.2/38

p.2/38 . 2017 (yajima@e.u-tokyo.ac.jp). 2017 p.1/38 . 2017 p.2/38 Definition "Models and theoretical instruments of spatial statistics and spatial data analysis to analyse various economic effects such as externalities,

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

土木学会論文集 D3( 土木計画学 ), Vol. 71, No. 2, 31-43,

土木学会論文集 D3( 土木計画学 ), Vol. 71, No. 2, 31-43, 1 2 1 305 8506 16 2 E-mail: murakami.daisuke@nies.go.jp 2 305 8573 1 1 1 E-mail: tsutsumi@sk.tsukuba.ac.jp Key Words: sampling design, geostatistics, officially assessed land price, prefectural land price

More information

Talk 2. Local asymptotic power of self-weighted GEL method and choice of weighting function Kouchi International Seminar on Recent Developments of Qua

Talk 2. Local asymptotic power of self-weighted GEL method and choice of weighting function Kouchi International Seminar on Recent Developments of Qua TALKS Invited Talks 2018 Oct. 3 Robust statistical inference for nonstandard time series models and related topics Quantitative Finance Seminar, Tokyo Metropolitan University Sep. 4-5 Robust statistical

More information

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, H28. (TMU) 206 8 29 / 34 2 3 4 5 6 Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, http://link.springer.com/article/0.007/s409-06-0008-x

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: koiti@ism.ac.jp., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

( ) p.2/70

( ) p.2/70 p.1/70 ( ) p.2/70 ( p.3/70 (1)20 1970 cf.box and Jenkins(1970) (2)1980 p.4/70 Kolmogorov(1940),(1941) Granger(1966) Hurst(1951) Hurst p.5/70 Beveridge Wheat Prices Index p.6/70 Nile River Water Level p.7/70

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim TS001 Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls

More information

ohpmain.dvi

ohpmain.dvi fujisawa@ism.ac.jp 1 Contents 1. 2. 3. 4. γ- 2 1. 3 10 5.6, 5.7, 5.4, 5.5, 5.8, 5.5, 5.3, 5.6, 5.4, 5.2. 5.5 5.6 +5.7 +5.4 +5.5 +5.8 +5.5 +5.3 +5.6 +5.4 +5.2 =5.5. 10 outlier 5 5.6, 5.7, 5.4, 5.5, 5.8,

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

わが国企業による資金調達方法の選択問題

わが国企業による資金調達方法の選択問題 * takeshi.shimatani@boj.or.jp ** kawai@ml.me.titech.ac.jp *** naohiko.baba@boj.or.jp No.05-J-3 2005 3 103-8660 30 No.05-J-3 2005 3 1990 * E-mailtakeshi.shimatani@boj.or.jp ** E-mailkawai@ml.me.titech.ac.jp

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, pow

Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, pow Power Transformation and Its Modifications Toshimitsu HAMASAKI, Tatsuya ISOMURA, Megu OHTAKI and Masashi GOTO Key words : identity transformation, power-normal distribution, structured data, unstructured

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

Mantel-Haenszelの方法

Mantel-Haenszelの方法 Mantel-Haenszel 2008 6 12 ) 2008 6 12 1 / 39 Mantel & Haenzel 1959) Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Nat. Cancer Inst. 1959; 224):

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

082_rev2_utf8.pdf

082_rev2_utf8.pdf 3 1. 2. 3. 4. 5. 1 3 3 3 2008 3 2008 2008 3 2008 2008, 1 5 Lo and MacKinlay (1990a) de Jong and Nijman (1997) Cohen et al. (1983) Lo and MacKinlay (1990a b) Cohen et al. (1983) de Jong and Nijman (1997)

More information

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A ( ) (, ) arxiv: 1510.02269 hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a 1 + + N 0 a n Z A (β; p) = Au=β,u N n 0 A-. u! = n i=1 u i!, p u = n i=1 pu i i. Z = Z A Au

More information

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1 Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) µ = lim xk( k = autocorrelation function R( t, t + τ) = lim ( ) ( + τ) xk t xk t k = V p o o R p o, o V S M R realization

More information

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ, A spectral theory of linear operators on Gelfand triplets MI (Institute of Mathematics for Industry, Kyushu University) (Hayato CHIBA) chiba@imi.kyushu-u.ac.jp Dec 2, 20 du dt = Tu. (.) u X T X X T 0 X

More information

21世紀の統計科学 <Vol. III>

21世紀の統計科学 <Vol. III> 21 III HP, 2011 10 4 1 ( ), 1 tatsuya@e.u-tokyo.ac.jp 63 1 (Linear Mixed Model, LMM) (Best Linear Unbiased Predictor, BLUP) C.R. Henderson 50 LMM (Generalized Linear Mixed Model, GLMM) LMM LMM (Empirical

More information

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

ADM-Hamiltonian Cheeger-Gromov 3. Penrose ADM-Hamiltonian 1. 2. Cheeger-Gromov 3. Penrose 0. ADM-Hamiltonian (M 4, h) Einstein-Hilbert M 4 R h hdx L h = R h h δl h = 0 (Ric h ) αβ 1 2 R hg αβ = 0 (Σ 3, g ij ) (M 4, h ij ) g ij, k ij Σ π ij = g(k

More information

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α, [II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail sugaya@iim.ics.tut.ac.jp

More information

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I (missing data analysis) - - 1/16/2011 (missing data, missing value) (list-wise deletion) (pair-wise deletion) (full information maximum likelihood method, FIML) (multiple imputation method) 1 missing completely

More information

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ  Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation ( ) ( ) 2016 12 17 1. Schrödinger focusing NLS iu t + u xx +2 u 2 u = 0 u(x, t) =2ηe 2iξx 4i(ξ2 η 2 )t+i(ψ 0 +π/2) sech(2ηx

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’« 2016/3/11 Realized Volatility RV 1 RV 1 Implied Volatility IV Volatility Risk Premium VRP 1 (Fama and French(1988) Campbell and Shiller(1988)) (Hodrick(1992)) (Lettau and Ludvigson (2001)) VRP (Bollerslev

More information

mf.dvi

mf.dvi 21 9 29 1 2 3....................................... 3 :......................... 3....................................... 4................................ 4..................................... 5................................

More information

kato-kuriki-2012-jjas-41-1.pdf

kato-kuriki-2012-jjas-41-1.pdf Vol. 41, No. 1 (2012), 1 14 2 / JST CREST T 2 T 2 2 K K K K 2,,,,,. 1. t i y i 2 2 y i = f (t i ; c) + ε i, f (t; c) = c h t h = c ψ(t), i = 1,...,N (1) h=0 c = (c 0, c 1, c 2 ), ψ(t) = (1, t, t 2 ) 3

More information

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x 80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = n λ x i e λ x i! = λ n x i e nλ n x i! n n log l(λ) = log(λ) x i nλ log( x i!) log l(λ) λ = 1 λ n x i n =

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003) 3 1 1 1 2 1 2 1,2,3 1 0 50 3000, 2 ( ) 1 3 1 0 4 3 (1) (2) (3) (4) 1 1 1 2 3 Cameron and Trivedi(1998) 4 1974, (1987) (1982) Agresti(2003) 3 (1)-(4) AAA, AA+,A (1) (2) (3) (4) (5) (1)-(5) 1 2 5 3 5 (DI)

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

スケーリング理論とはなにか? - --尺度を変えて見えること--

スケーリング理論とはなにか?  - --尺度を変えて見えること-- ? URL: http://maildbs.c.u-tokyo.ac.jp/ fukushima mailto:hukusima@phys.c.u-tokyo.ac.jp DEX-SMI @ 2006 12 17 ( ) What is scaling theory? DEX-SMI 1 / 40 Outline Outline 1 2 3 4 ( ) What is scaling theory?

More information

Anderson ( ) Anderson / 14

Anderson ( ) Anderson / 14 Anderson 2008 12 ( ) Anderson 2008 12 1 / 14 Anderson ( ) Anderson 2008 12 2 / 14 Anderson P.W.Anderson 1958 ( ) Anderson 2008 12 3 / 14 Anderson tight binding Anderson tight binding Z d u (x) = V i u

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI

Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI 平均に対する平滑化ブートストラップ法におけるバンド幅の選択に関する一考察 (A Study about

More information

研究シリーズ第40号

研究シリーズ第40号 165 PEN WPI CPI WAGE IIP Feige and Pearce 166 167 168 169 Vector Autoregression n (z) z z p p p zt = φ1zt 1 + φ2zt 2 + + φ pzt p + t Cov( 0 ε t, ε t j )= Σ for for j 0 j = 0 Cov( ε t, zt j ) = 0 j = >

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

01.Œk’ì/“²fi¡*

01.Œk’ì/“²fi¡* AIC AIC y n r n = logy n = logy n logy n ARCHEngle r n = σ n w n logσ n 2 = α + β w n 2 () r n = σ n w n logσ n 2 = α + β logσ n 2 + v n (2) w n r n logr n 2 = logσ n 2 + logw n 2 logσ n 2 = α +β logσ

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

(pdf) (cdf) Matlab χ ( ) F t

(pdf) (cdf) Matlab χ ( ) F t (, ) (univariate) (bivariate) (multi-variate) Matlab Octave Matlab Matlab/Octave --...............3. (pdf) (cdf)...3.4....4.5....4.6....7.7. Matlab...8.7.....9.7.. χ ( )...0.7.3.....7.4. F....7.5. t-...3.8....4.8.....4.8.....5.8.3....6.8.4....8.8.5....8.8.6....8.9....9.9.....9.9.....0.9.3....0.9.4.....9.5.....0....3

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

sakigake1.dvi

sakigake1.dvi (Zin ARAI) arai@cris.hokudai.ac.jp http://www.cris.hokudai.ac.jp/arai/ 1 dynamical systems ( mechanics ) dynamical systems 3 G X Ψ:G X X, (g, x) Ψ(g, x) =:Ψ g (x) Ψ id (x) =x, Ψ gh (x) =Ψ h (Ψ g (x)) (

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

43, 2, Forecasting Based Upon Cointegration Analysis and Its Applications Taku Yamamoto 80 The cointegration analysis has been a major

43, 2, Forecasting Based Upon Cointegration Analysis and Its Applications Taku Yamamoto 80 The cointegration analysis has been a major 43, 2, 2014 3 315 334 Forecasting Based Upon Cointegration Analysis and Its Applications Taku Yamamoto 80 The cointegration analysis has been a major topic in time series analysis in the field of economics

More information

鉄鋼協会プレゼン

鉄鋼協会プレゼン NN :~:, 8 Nov., Adaptive H Control for Linear Slider with Friction Compensation positioning mechanism moving table stand manipulator Point to Point Control [G] Continuous Path Control ground Fig. Positoining

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable), .... Deeping and Expansion of Large-Scale Random Fields and Probabilistic Image Processing Kazuyuki Tanaka The mathematical frameworks of probabilistic image processing are formulated by means of Markov

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

4 41 01, ARMAP, Q) CARMAP, Q) DARMAp, q) CARMAP, Q) CARMAP, Q) DARMAp, q) DARMAp, q), CARMAP, Q) CARMAP, Q) Chan and Tong 1987), He and Wang 1989), Br

4 41 01, ARMAP, Q) CARMAP, Q) DARMAp, q) CARMAP, Q) CARMAP, Q) DARMAp, q) DARMAp, q), CARMAP, Q) CARMAP, Q) Chan and Tong 1987), He and Wang 1989), Br 41,, 01 3 41 444 ARMA Can We Have Correspondence between Discrete-Time ARM A Process and Continuous-Time ARM A Process? Mituaki Huzii ARMA Huzii 006) Huzii 006) ARMA3, ) We assume that a time series is

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

(m/s)

(m/s) ( ) r-taka@maritime.kobe-u.ac.jp IBIS2009 15 20 25 30 1900 1920 1940 1960 1980 2000 (m/s) 1900 1999 -2-1 0 1 715900 716000 716100 716200 Daily returns of the S&P 500 index. 1960 Gilli & Këllezi (2006).

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W 003 7 14 Black-Scholes [1] Nelson [] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-Wu Nelson e-mail: takatoshi-tasaki@nifty.com kabutaro@mocha.freemail.ne.jp

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology, 65 6 6.1 No.4 1982 1 1981 J. C. Kaimal 1993 1994 Turbulence and Diffusion in the Atmosphere : Lectures in Environmental Sciences, by A. K. Blackadar, Springer, 1998 An Introduction to Boundary Layer Meteorology,

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

kanatani0709wp.dvi

kanatani0709wp.dvi Recent Studies on Estimation of Volatility in the Presence of Market Microstructure Noise 2009 9 RV MMN 21730174 522-8522 1-1-1 HP: http://www.biwako.shiga-u.ac.jp/sensei/t-kanatani/ Email: t-kanatani@biwako.shiga-u.ac.jp

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1 vertex edge 1(a) 1(b) 1(c) 1(d) 2 (a) (b) (c) (d) 1: (a) (b) (c) (d) 1 2 6 1 2 6 1 2 6 3 5 3 5 3 5 4 4 (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1: Zachary [11] [12] [13] World-Wide

More information

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) )

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) ) 1 -- 5 6 2009 3 R.E. Kalman ( ) H 6-1 6-2 6-3 H Rudolf Emil Kalman IBM IEEE Medal of Honor(1974) (1985) c 2011 1/(23) 1 -- 5 -- 6 6--1 2009 3 Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t

More information

(1970) 17) V. Kucera: A Contribution to Matrix Ouadratic Equations, IEEE Trans. on Automatic Control, AC- 17-3, 344/347 (1972) 18) V. Kucera: On Nonnegative Definite Solutions to Matrix Ouadratic Equations,

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

untitled

untitled c 645 2 1. GM 1959 Lindsey [1] 1960 Howard [2] Howard 1 25 (Markov Decision Process) 3 3 2 3 +1=25 9 Bellman [3] 1 Bellman 1 k 980 8576 27 1 015 0055 84 4 1977 D Esopo and Lefkowitz [4] 1 (SI) Cover and

More information

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x Shunsuke Kobayashi [6] [] [7] u t = D 2 u x 2 + fu, v + s L ut, xdx, L x 0.L, t > 0, Neumann 0 v t = D 2 v 2 + gu, v, x 0, L, t > 0. x2 u u v t, 0 = t, L = 0, x x. v t, 0 = t, L = 0.2 x x ut, x R vt, x

More information

( 30 ) 30 4 5 1 4 1.1............................................... 4 1.............................................. 4 1..1.................................. 4 1.......................................

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : atsu1005@kc.chuo-u.ac.jp E-mail : kawa@civil.chuo-u.ac.jp SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information