Fuchs Fuchs Laplace Katz [Kz] middle convolution addition Gauss Airy Fuchs addition middle convolution Fuchs 5 Fuchs Riemann, rigidity

Size: px
Start display at page:

Download "Fuchs Fuchs Laplace Katz [Kz] middle convolution addition Gauss Airy Fuchs addition middle convolution Fuchs 5 Fuchs Riemann, rigidity"

Transcription

1

2 Fuchs Fuchs Laplace Katz [Kz] middle convolution addition Gauss Airy Fuchs addition middle convolution Fuchs 5 Fuchs Riemann, rigidity

3 0 Fuchs addition middle convolution Riemann Fuchs rigidity 2 rigid Fuchs Katz Fuchs 7 Riemann Fuchs Riemann Fuchs Kac-Moody rigidity Riemann Fuchs rigid non-rigid Weyl Fuchs rigid [O6] trivial rigid Jordan-Pochhammer even/odd 3 rigid 2010 Tsai [Hi2]

4 (Fractional operators Weyl versal addition versal operator Fuchs Riemann Fuchs Fuchs Riemann Katz Riemann

5 Fuchs Kac-Moody Weyl Deligne-Simpson-Katz Gauss Jordan-Pochhammer P n H n even/odd EO n

6 3 1 Gauss Bessel Whittaker Legendre *1 Gauss III [MUI] 3 2 Gauss *2 Gauss Euler F (α, β, γ; x = i=0 (α n (β n x n = 1 + αβ (γ n n! γ x +. Γ(α + n α, β, γ C *3 (α n := α(α + 1 (α + n 1 = Γ(α x < 1 Gauss x(1 xu + ( γ (α + β + 1x u αβu = 0. P = x(1 x 2 + ( γ (α + β + 1x αβ ( := d dx Gauss (GE: P u = 0 : x λ λx λ 1 *1 Whittaker-Watson [WW] Watson [Wa] *2 *3 γ

7 4 1 x: x λ x λ+1 ϑ := x : x λ λx λ x λ ϑ λ xp = x γx x(x (α + β + 1x + αβ = ϑ(ϑ 1 + γϑ x(ϑ(ϑ 1 + (α + β + 1ϑ + αβ = ϑ(ϑ + γ 1 x(ϑ + α(ϑ + β. P u = 0 ϑ(ϑ + γ 1u = x(ϑ + α(ϑ + βu. u u(x = n=0 c nx n x n c n n(n + γ 1 = c n 1 (n 1 + α(n 1 + β c n = c n 1 (α + n 1(β + n 1 (γ + n 1n = = c 0 (α n (β n (γ n n! ( c0 = u(0 Gauss P u = 0 x = 1 Gauss C α,β,γ := F (α, β, γ; 1 = Γ(γΓ(γ α β Γ(γ αγ(γ β Re α + Re β < Re γ *4 Gauss (Gauss summation formula Gauss 2 1 Gauss C α,β,γ+1 C α,β,γ = γ(γ α β (γ α(γ β lim n C α,β,γ+n = lim n C α,β,γ+n = 1 Gauss 2 *5 F (α, β, γ; x F (α, β, γ; x = Γ(γ Γ(βΓ(γ β 1 0 t β 1 (1 t γ β 1 (1 tx α dt x = 1 Re (γ β α > 0 ( = Γ(γ Γ(βΓ(γ α β Γ(βΓ(γ β Γ(γ α *4 Re α α Im α *5 0 < Re β < Re γ, 0 < arg(x 1 < 2π

8 5 (1 tx α = = = n=0 n=0 n=0 ( α ( t n x n n ( α( α 1 ( α n + 1 ( t n x n n! (α n t n x n n! x n Γ(γ (α n Γ(β + nγ(γ β = (α n(β n Γ(βΓ(γ β n! Γ(γ + n (γ n n! F (α, β, γ; x (GE *6 {0, 1, } U (C { }\{0, 1, } F(U = {u O(U P u = 0} U O(U U dim C F(U = 2. U U F(U U = F(U. F(U = Cφ 1 + Cφ 2 φ 1, φ 2 O(U 1. C R >0, N N φ j (x C x N (j = 1, 2, x U, arg x < 2π, x < 1 2 x = 0 *7 2. x = 0 ψ 1 (0 = ψ 2 (0 = 1 ψ 1 (x, ψ 2 (x F(U = Cx 0 ψ 1 (x + Cx 1 γ ψ 2 (x x = 0 (characteristic exponent 0 1 γ ψ 1 (x = F (α, β, γ; x x = 1 x = {0, γ α β} {α, β} x = α 1 γ γ α β β Riemann (Riemann scheme Riemann Gauss Gauss *8 *6 1 x 1 x *7 *8 rigid

9 6 1 (monodromy (C { }\{0, 1, } x 0 γ 0, γ 1, γ γ 0 x γ 1 (u 1, u 2 x 0 (GE γ j (j = 0, 1, x 0 γ j (u 1, u 2 M j GL(2, C γ j (u 1, u 2 = (u 1, u 2 M j γ M j (j = 0, 1, x = j ( u (GE x µ 1 (1 x µ 2 u Riemann x = 0 1 µ 1 µ 2 α µ 1 µ 2 µ γ µ 2 + γ α β β µ 1 µ 1 Riemann x = 0 1 λ 01 λ 11 λ 21 λ 02 λ 12 λ 22 λ kl (Fuchs λ kl = 1 Riemann u 02 x = 0 λ 02 u 12 x = 1 λ 12 u 01 u 22 a, b ( ( e(λ02 a e(λ11 0 M 0 =, M 0 e(λ 01 1 = b e(λ 12 *9 e(λ := e 2πiλ M = (M 1 M 0 1 Tr(M 1 M 0 = Tr(M 1 * 10 e(λ 02 e(λ 11 + e(λ 01 e(λ 12 + ab = e( λ 21 e( λ 22 *9 u 12 = u 01 + Cu 02 γ 0 u 12 = e(λ 01 u 01 + Ce(λ 02 u 02 = e(λ 01 u 12 + C ( e(λ 02 e(λ 01 u 02 M 1 λ kl *10 γ 0, γ 1, γ M M 1 M 0

10 7 ab 0 * 11 a = 1 b a, b Riemann rigid n P u = 0 P * 12 {c 0 =, c 1,..., c p } ( C { } x = c j ( nj m j,1,..., m j,nj ν=1 m j,ν = n n m j = (m j,1,..., m j,nj m = (m 0, m 1,..., m p n (p + 1 Riemann (generalized Riemann scheme x = c 0 c 1 c p [λ 0,0 ] (m0,0 [λ 1,0 ] (m1,0 [λ p,0 ] (mp,0... [λ 0,n0 ] (m0,n0 [λ 1,n1 ] (m1,n1 [λ p,np ] (mp,n p [λ] (k := λ λ + 1. λ + k 1 λ j,ν λ j,ν 0 j p, 1 ν < ν n j * 13 Riemann Riemann P m (λu = 0 Riemann Deligne-Simpson-Katz *11 *12 *13 λ j,ν

11 8 1 n Π = {α 0, α 0,1, α 0,2,..., α 1,1, α 1,2,..., α j,ν,...} α 0,1 α 0,2 Dynkin n m n j,ν = n j µ=ν+1 m j,µ α 0 α 1,1 α 1,2 α 2,1 α 2,2 α 3,1 α 3,2 m α m = nα 0 + j 0 n j,ν α j,ν ν 1 α m Deligne-Simpson-Katz rigidity * 14 Riemann α m rigid α m n F n 1 Jordan- Pochhammer rigid 4 2 Heun rigid α s α Weyl Riemann {P m (λ} Weyl {P m (λ} + = {α m } S α s α {P m (λ} + = {α m } S α µ j (x c j λ j * 15 Riemann Fuchs Appell Painlevé *14 0 {m j,ν } 1 *15

12 9 2 (Fractional operators 2.1 Weyl 0 Weyl Weyl C[x] = C[x 1, x 2,..., x n ] x 1, x 2,..., x n C(x x 1, x 2,..., x n i = (i = 1, 2,..., n Weyl x i W [x] x 1, x 2,..., x n 1, 2,..., n C Leibniz [a, b] = ab ba Weyl [x i, x j ] = [ i, j ] = 0, [ i, x j ] = δ ij (1 i, j n. x x = x x, i ( xj u(x = (x j i + δ ij u(x W [x] C[x] W (x Weyl W (x = C(x C[x] W [x] f, g C[x] [ i, g f g ] = x i f g f x i f 2 (2.1 Weyl ξ 1, ξ 2,..., ξ m C[ξ], C(ξ ξ 1, ξ 2,..., ξ m Weyl

13 10 2 (Fractional operators W [x][ξ], W [x; ξ] Weyl W (x; ξ W [x][ξ] = C[ξ] C W [x], W [x; ξ] = C(ξ C W [x], W (x; ξ = C(ξ C W (x. [x i, ξ ν ] = [ i, ξ ν ] = 0 (1 i n, 1 ν m, C C[x; ξ] = C(ξ C C[x], C(x; ξ = C(ξ C C(x C C[x, ξ] W [x][ξ] W [x; ξ] W (x; ξ P W (x; ξ P = α=(α 1,...,α n N n p α (x, ξ α 1+ α n x α 1 1 xα n n ( pα (x, ξ C(x; ξ Proof. (2.1 P p α (x, ξ 0 P 0 p α (x, ξ 0 α := α α n > α p α (x, ξ = 0 α P x α = α 1! α n! p α (x, ξ 0 P 0 P (order ord P = max{ α p α (x, ξ 0} P W [x; ξ] (degree deg P = max{deg x p α (x, ξ} deg x p α (x, ξ x i (reduced representative W (x; ξ W [x; ξ] R P W (x; ξ R P W [x; ξ] (C(x; ξ\{0}p W [x; ξ] deg R P ii Fourier-Laplace I {1,..., n} L I : W [x; ξ] W [x; ξ] i x i x i i j j x j x j ξ ν ξ ν (i I, j / I, ν = 1,... m

14 2.1 Weyl 11 W [x, ξ] Fourier-Laplace L I I = {1,..., n} L = L {1,...,n} iii Fourier-Laplace W (x; ξ C(ξ C C[x] C C( C L: W (x; ξ C(ξ C C[x] C C( C(ξ C C[x] C C( P Q = L (L 1 P L 1 Q C W L (x; ξ i ii n = 1 ( 1 R x j 1 = x i x i ( R (x j ξ i = x i x i ( c m x = x( c m + m( c m 1 W [x; ξ] W L (x; ξ m x = x m m m 1 n = 1 P W (x P = m i=0 a i(x i ζ ζ P P (x, ζ = m a i (xζ i (Leibniz. P, Q W (x R = P Q W (x *1 R(x, ζ = ν=0 i=0 1 ν P (x, ζ ν Q(x, ζ ν! ζ ν x ν Proof. P = m i=0 a i(x i, Q = n i=0 b i(x i f R(x, ζ = P Qf = m = i=0 j=0 m i=0 j=0 m i=0 j=0 n a i (x n a i (x i (b j (x j f n a i (x i k=0 i ( i b k (k j (x i k+j f k=0 i(i 1 (i k + 1 k! b (k j (xζ i k+j *1 n > 1, ν ν = (ν 1,..., ν n ν! = ν 1 ν n, ν = ν 1 1 ν n n, ξ ν = ξ ν 1 1 ξν n n ν j

15 12 2 (Fractional operators = = m k=0 k=0 1 k! m a i (xi(i 1 (i k + 1ζ i k i=k 1 k P (x, ζ k Q(x, ζ k! ζ k x k n j=0 b (k j (xζ j ( (gauge transformation. h = (h 1,..., h n C(x, ξ n W (x; ξ Adei(h h j x i = h i x j (1 i, j n. Adei(h: W (x; ξ W (x; ξ i i h i x i x i ξ ν ξ ν [ i h i, j h j ] = h j x i + h i x j = 0 [ i h i, x j ] = δ ij g(x g x i = h i (i = 1,..., n f = e g Ad(f := Ade (g := Adei (h 1,..., h n = Adei (h n = 1 h = λ x g = λ log x, f = xλ Ad(x λ = λ x Leibniz Ad(x λ = x λ x λ (. φ = (φ 1,..., φ n C(x 1,..., x m, ξ n ( φj Φ = x i 1 i m 1 j n (m n n Φ Ψ = ( ψ i,j (x, ξ 1 i n ΨΦ n 1 j m m = n Ψ T φ : W (x 1,..., x n ; ξ W (x 1,..., x m ; ξ

16 2.1 Weyl 13 T φ(x i = φ i (x Tφ ( x i = m (1 i n, ψ i,j (x, ξ x j (1 i n x = y 2 x = 1 2y y, φ = x 2 [ 1 2x, x2 ] = 1 T φ f = e g, h i = g x i RAd (f = RAde (g = RAdei (h 1,..., h n := R Adei (h 1,..., h n, AdL (f = AdeL (g = AdeiL (h 1,..., h n := L Adei(h 1,..., h n L 1, RAdL (f = RAdeL (g = RAdeiL (h 1,..., h n := L RAdei (h 1,..., h n L 1, Ad( µ x i := L Ad(x µ i L 1, RAd ( µ x i := L RAd (x µ i L 1. µ C(ξ Ad( µ x i W L (x; ξ n = 1 Ad(f f f 1 = e g e g = e g (e g g dg e dx = h = Ad(f f P u(x = 0 ( Ad(fP (fu = 0 Ad(f u fu Ad(x µ = x µ x µ = x µ (x µ + µx µ 1 = + µx 1 RAd (x µ = x + µ Ad( µ Ad( µ x m = µ x m µ ( = = x m µ + ( µm x m 1 µ 1 + 1! ( µ( µ 1 ( µ m + 1m! + + m! m ( ( 1 ν m (µ ν x m ν ν ν ν=0 ( µ( µ 1m(m 1 x m 2 µ 2 2! µ m µ (2.2

17 14 2 (Fractional operators Leibniz Laplace Euler P 1 (C = C { } C u(x v(x = e xt u(t dt C v(x Laplace v(x = Lu(x *2 Lu(x = ( te xt u(t dt = L( xu(x. C Lu(x = 1 [ e xt u(t ] x + 1 C x C e xt u (t dt [ e xt u(t ] = 0 C C * 3 L( u(x = xlu(x W [x] Laplace x, x P u = 0 L (P (L u = 0 u(x I λ c (u(x = 1 Γ(λ x c u(t(x t λ 1 dt Euler (Riemann-Liouville *4 Re λ > 0 lim x c (x c 1 ɛ u(x = 0 ɛ *5 u(t c x c x c u(t(x tλ 1 dt λ λ = 0, 1, 2,... Γ(λ λ = 0, 1, 2,... 1 I λ c u(x λ = 0, 1, 2,... Ic λ I c µ u(x = Ic λ+µ u(x. Ic n u(x = dn dx n u(x *2 u(x C *3 C C *4 I λ c Pochhammer (x+,c+,x,c (Ĩµ c (u(x := u(z(x z µ 1 dz c *5 c = lim x c x 1+ɛ u(x = 0 x

18 p(x n ( Ic λ ( p(xu(x = p(xi λ λ c u(x + 1 Leibniz ( p (xic λ 1 λ u(x + + p (n (xi λ n n c u(x d ( u(t(x t λ 1 = u (t(x t λ 1 d ( u(t(x t λ 1 dt dx I λ c (u = I λ c ( u d ( u(t(x t λ = u (t(x t λ d ( u(t(x t λ 1 dt dx = xu (t(x t λ 1 tu (t(x t λ 1 λu(t(x t λ 1 [ u(t(x t λ ] t=x t=c = xiλ c ( u I λ c (ϑu λi λ c (u 0 I λ c (ϑu = (ϑ λi λ c (u RAd( λ Leibniz P W [x] P u = 0 ( RAd( λ P I λ c u = n = 1 h(x, ξ ξ x g(x, ξ, f(x, ξ g = h, f = e g λ C\{0} Adei (h = h = Ad(e g = e g e g, Ad(fx = x, AdL (f =, Ad(f = h(x, ξ, AdL (fx = x + h(, ξ, Ad ( (x c λ = Ade ( λ log(x c ( λ = Adei, x c Ad ( (x c λ x = x, Ad ( (x c λ = λ x c, RAdL ( (x c λ x = ( cx + λ = x cx λ, RAdL ( (x c λ =, RAdL ( (x c λ ϑ = x( c λ (ϑ := x, Ad ( µ ϑ = AdL ( x µ ϑ = ϑ µ, Ad ( ( e λ(x cm λ(x c m x = x, Ad e m m = λ(x c m 1,

19 16 2 (Fractional operators RAdL ( {x e λ(x cm + λ( c m 1 (m 1, m x = ( c 1 m x + λ (m 1, T (x c mx = (x cm, T (x c m = 1 m (x c1 m du dx = 0 RAd (x µ RAd ( ν (Gauss P λ1,λ 2, µ := RAd ( µ RAd ( x λ 1 (1 x λ 2 ( = RAd ( µ R λ 1 x + λ 2 1 x = RAd ( µ ( x(1 x λ 1 (1 x + λ 2 x = RAd ( µ ( (ϑ λ 1 x(ϑ λ 1 λ 2 = Ad( µ ( (ϑ + 1 λ 1 (ϑ + 1(ϑ λ 1 λ 2 = (ϑ + 1 λ 1 µ (ϑ + 1 µ(ϑ λ 1 λ 2 µ = (ϑ + γ (ϑ + β(ϑ + α = x(1 x 2 + ( γ (α + β + 1x αβ α = λ 1 λ 2 µ β = 1 µ γ = 1 λ 1 µ u(x = I µ ( 0 x λ 1 (1 x λ 2 = 1 x t λ 1 (1 t λ 2 (x t µ 1 dt Γ(µ = xλ 1+µ Γ(µ s λ 1 (1 s µ 1 (1 xs λ 2 ds = Γ(λ 1 + 1x λ 1+µ Γ(λ 1 + µ + 1 F ( λ 2, λ 1 + 1, λ 1 + µ + 1; x (t = xs Gauss Riemann { } x = 0 1 λ 1 λ 2 λ 1 λ 2 ; x x λ 1 (1 x λ 2 RAd ( µ Riemann x = 0 1 x = µ ; x = 0 0 β ; x λ 1 + µ λ 2 + µ λ 1 λ 2 µ 1 γ γ α β α

20 *6 Gauss *7 (Airy P m = L Ad ( e xm+1 m+1 = L ( x m = x ( m (m = 1, 2, 3,... d m u dx m ( 1m xu = 0 u(x = e zm+1 m+1 e zx dz = C C ( z m+1 exp m + 1 zx dz C π (2k+1π m+1 m+1 m = 2 k = 1, 2,..., m 0 0 C C (Jordan-Pochhammer c 1,..., c p C\{0} ( p P λ1,...,λ p,µ := RAd ( µ RAd (1 c j x λ j ( = RAd ( µ R + p = RAd ( µ ( p 0 (x + q(x c j λ j 1 c j x = µ+p 1( p 0 (x + q(x µ = p p k (x p k P λ1,...,λ p,µu = 0 Jordan-Pochhammer p 0 (x = p (1 c j x, q(x = p 0 (x ( µ + p 1 p k (x = k ( α := β Γ(α + 1 Γ(β + 1Γ(α β + 1 p k=0 c j λ j 1 c j x, p (k 0 (x + ( µ + p 1 k 1 (α, β C q (k 1 (x, * *7 λ 1 + µ } Ad (x λ1 µ Riemann } { x=0 1 λ 1 µ 0 λ λ 2 +µ λ 2 { x=0 1 Riemann 1 γ 0 β 0 γ α β α ( x β 1 (1 x α α = λ 2, β = λ 1 + 1, γ = λ 1 + µ + 1 x 1 γ I γ β 0

21 18 2 (Fractional operators u j (x = 1 x Γ(µ 1 c j p (1 c ν t λ ν (x t µ 1 dt (j = 0, 1, 2,..., p, c 0 = 0 ν=1 Riemann [0] (p 1 [0] (p 1 [1 µ] (p 1 ; x λ 1 + µ λ p + µ λ 1 λ p µ x = 1 c 1 1 c p 2.3 n Weyl n = 1 M: P u = 0 P W (x; ξ M P u P u = 0 W (x; ξ W (x; ξ W (x; ξ M P Q Qu M P = W (x; ξ/w (x; ξp M W (x; ξ M P W (x; ξ M P M O x0,ξ o (x, ξ (x 0, ξ 0 M O x0,ξ 0 Hom W (x;ξ (M, O x0,ξ 0 {v(x, ξ O x0,ξ 0 P v = 0} I I(u M W (x; ξ Hom W (x;ξ (M, O x0,ξ 0 W (x; ξ 1. W (x; ξ P Q = 0 P = 0 Q = 0 2. W (x; ξ Euclid P, Q W (x; ξ (P 0 R, S W (x; ξ (ord R < ord P Q = SP + R. (2.3 Proof. S, R W (x; ξ (ord R < ord P Q = S P + R 0 = (S S P + (R R S S ord ( (S S P + (R R ord P

22 P 0 S = S R = R P = a n n + + a 1 + a 0 (a n 0, Q = b m m + + b 1 + b 0 (b m 0 (2.4 ord Q < ord P S = 0, R = Q (2.3 ord Q ord P ord Q ord Q = 0 ord Q < ord Q Q W (x; ξ Q = Q b m a 1 n m n P ord Q < ord Q S R W (x; ξ (ord R < ord Q < ord Q Q = S P + R S = S + b m a 1 n m n Q = SP + R 3. W (x; ξ Proof. ord Euclid 4. (Euclid P, Q W (x; ξ\{0} P, Q U W (x; ξ P = AU, Q = BU P = A U, Q = B U U = CU (A, B, C, A, B, U W (x; ξ M, N W (x; ξ U = MP + NQ P, Q Euclid U, M, Q 5. W (x; ξ M P W (x; ξ M = W (x; ξ/w (x; ξp Proof. P, Q W (x; ξ R W (x; ξ W (x; ξ/w (x; ξp W (x; ξ/w (x; ξq = W (x; ξ/w (x; ξr. M u 1,..., u r I i = {P W (x; ξ P u i = 0} (i = 1,..., r I i P i W (x; ξ M W (x; ξu i = W (x; ξ/w (x; ξpi r W (x; ξ/w (x; ξp i M i=i

23 20 2 (Fractional operators R W (x; ξ r W (x; ξ/w (x; ξp i = W (x; ξ/w (x; ξr i=1 W (x; ξ/w (x; ξr M W (x; ξ W (x; ξ/w (x; ξr W (x; ξ M Q W (x; ξ W (x; ξ/w (x; ξq = M P, Q W (x; ξ (2.4 W (x; ξ/w (x; ξp, W (x; ξ/w (x; ξq u, v *8 u, u,... n 1 u C(x; ξ v, v,..., m 1 v P, Q x 0 w = u + (x x 0 n v x 0 w, w,..., m+n 1 w *9 dim C(x;ξ W (x; ξw m + n = dim C(x;ξ W (x; ξ/w (x; ξp + dim C(x;ξ W (x; ξ/w (x; ξq W (x; ξw W (x; ξ/w (x; ξp W (x; ξ/w (x; ξq P W (x; ξ, P 0 1. W (x; ξ/w (x; ξp W (x; ξ 2. W (x; ξp W (x; ξ 3. P = QR Q, R W (x; ξ ord Q ord R = 0 4. Q W (x; ξ Q / W (x; ξp M, N W (x; ξ MP + NQ = 1 5. S, T W (x; ξ ST W (x; ξp ord S < ord P S = 0 T W (x; ξp *8 W (x; ξ W (x; ξ/w (x; ξp 1 W (x; ξ u v *9 P u = 0 x 0 u(x, ( ν u(x 0 (ν = 0,..., n 1 Qv = 0 w = u + (x x 0 n v x 0 w(x ( ν w(x 0 (ν = 0,..., m + n 1

24 Addition RAd ( (1 cx µ u = 0 RAd : (1 cx + cµ ( (1 cx +cµ u = 0 (1 cx µ c, µ (c, µ (c, cµ = λ ((1 cx + λ c 0 ( + λ e λx Ade ( λx Ade ( λx = + λ (1 cx λ c (1 cx λ c = exp ( Ad ( (1 cx λ c = Adei ( λ 1 cx x 0 λ 1 cx dx λ, c (c, λ = (0, 0 Ad ( (1 cx λ c c=0 = Adei ( λ c=0 1 cx = Adei( λ = Ade ( λx = Ad (e λx 3.2 versal addition h(c, x c C c 1,..., c n C h n (c 1,..., c n ; x h n (c 1,..., c n ; x = 1 2π h(z, x n 1 z =R (z c j dz c 1..., c n {z C z < R} R h n (c 1,..., c n ; x c 1,..., c n {z C z < R} c i

25 h n (c 1,..., c n ; x h n (c 1,..., c n ; x = n k=1 h(c k, x (c k c i 1 i n i k Proof. c i c i 1 h n (c 1,..., c n ; x = 2π h(z, x n 1 z =R (z c j dz n h(c k, x = (c k c i. k=1 1 i n i k h(c, x = c 1 log(1 cx = x c 2 x2 c2 3 x3 h(c, x = x cx dx (1 cxh (c, x = 1 h n(c 1,..., c n ; x n 1 i n(1 c i x i k (1 c i x = i n n k=1 1 i n i k 1 i n i k (1 c i x k=1 (c k c i = xn 1 1 i n i k (c k c i Proof. f(c 1,..., c n, x f x n 1 c i f(cc 1,..., Cc n, C 1 x = C 1 n f(c 1,..., c n, x (C C \ {0} x i (c 1,..., c n (1 n + i i < n 1 0 f x n 1 c 1 = 0 1 h n (c 1,..., c n ; 0 = 0 x t n 1 h n (c 1,..., c n ; x = 0 1 i n (1 c it dt Ad ( e λ nh n (c 1,...,c n ;x ( ( (1 c i x = e λ nh n (c 1,...,c n ;x 1 i n e λ nh n (c 1,...,c n ;x = ( = 1 i n n k=1 1 i n (1 c i x + λ n x n 1, ( 1 c k x c k 1 i n i k (1 c i x e λ nh n (c 1,...,c n ;x λn (c k c i

26 3.3 versal operator (Versal addition. ( p ( AdV ( 1 c,..., 1 1 cp (λ 1,..., λ p := Ad 1 ck x p n=k = Adei k=1 ( p n=1 λ n x n 1 n i=1 (1 c, ix RAdV ( 1 c 1,..., 1 cp (λ 1,..., λ p = R AdV ( 1 c 1,..., 1 cp (λ 1,..., λ n RAdV ( 1 c,..., 1 1 cp (λ 1,..., λ p 1 c 1,..., 1 c p versal addition AdV 0 (a 1,...,a p (λ 1,..., λ p := Ad ( p k=1 λn c k 1 i n, i k (c k c i versal addition p n=k (x a k ( λ 1 λ 1 u = 0 x a 1 x a 2 a 1 = a 2 ( λ 1 + λ 2 u = 0 x a 1 λ 1 + λ 2 = µ 1 µ 2 + x a 1 x a 2 x a 1 (x a 1 (x a 2 a 1 = a 2 ( µ 1 µ 2 x a 1 (x a 1 2 u = 0 λn 1 i n,i k (a k a i x = a 1 versal addition 3.3 versal operator versal addition versal Jordan-Pochhammer P := RAd ( µ RAdV ( 1 c,..., 1 1 cp (λ 1,..., λ p ( p = RAd ( µ λ k x k 1 R + k k=1 ν=1 (1 c νx = µ+p 1( p 0 (x + q(x p µ = p k (x p k k=0

27 24 3 p 0 (x = p (1 c j x, q(x = p λ k x k 1 k=1 p j=k+1 (1 c j x, ( ( µ + p 1 p k (x = p (k µ + p 1 k 0 (x + q (k 1 (x k 1 c j c j, c i 0 Jordan-Pochhammer versal Jordan-Pochhammer p = 2 Gauss versal Gauss P c1,c 2 ;λ 1,λ 2,µ = RAd ( µ RAdV ( 1 c, 1 1 c 2 (λ 1, λ 2 ((1 c 1 x λ 1 = RAd ( µ RAd c 1 + λ 2 c 1 (c 1 c 2 (1 c 2 x λ 2 c 2 (c 2 c 1 ( = RAd ( µ RAdei λ 1 1 c 1 x λ 2 x (1 c 1 x(1 c 2 x ( = RAd ( µ R + λ 1 1 c 1 x + λ 2 x (1 c 1 x(1 c 2 x = Ad( µ ( (1 c 1 x(1 c 2 x + (λ 1 (1 c 2 x + λ 2 x = ( (1 c 1 x + c 1 (µ 1 ( (1 c 2 x + c 2 µ + λ 1 + (λ 2 λ 1 c 2 (x + 1 µ = (1 c 1 x(1 c 2 x 2 + ( (c 1 + c 2 (µ 1 + λ 1 + (2c 1 c 2 (1 µ + λ 2 λ 1 c 2 x + (µ 1(c 1 c 2 µ + λ 1 c 2 λ 2 = (1 c 1 x(1 c 2 x 2 + ( λ 1 + λ 2 x + µ ( λ2 c 1 c 2 ( µ + 1, λ 1 = λ 1 + (c 1 + c 2 (µ 1, λ 2 = λ 2 λ 1 c 2 + 2c 1 c 2 (1 µ, µ = 1 µ. c 1 c 2, c 1 c 2 0 Gauss Riemann λ 1 c 1 + x = 1 c 1 1 c µ ; x λ 2 c 1 (c 1 c 2 + µ λ 2 c 2 (c 2 c 1 + µ λ 1 c 1 + λ 2 c 1 c 2 µ K c1,c 2 ;λ 1,λ 2 (x I µ c K c1,c 2 ;λ 1,λ 2 (x = 1 Γ(µ x K c1,c 2 ;λ 1,λ 2 (x = ( 1 c 1 x λ 1 c c 1 + K c1,c 2 ;λ 1,λ 2 (t(x t µ 1 dt λ 2 c 1 (c 2 c 1 ( 1 c 2 x λ 2 c 2 (c 2 c 1

28 3.3 versal operator 25 c versal Gauss versal addition P c1,0;λ 1,λ 2,µ = (1 c 1 x 2 + ( c 1 (µ 1 + λ 1 + λ 2 x λ 2 (µ 1. Kummer *1 K c1,0;λ 1,λ 2 (x = ( 1 c 1 x λ 1 c 1 + λ 2 c 2 1 exp( λ2 x c 1 P 0,0;0, 1,µ = 2 x + (µ 1 Hermite Weber Weber Ad(e 1 4 x2 P 0,0;0,1,µ = ( 1 2 x2 + x( 1 2x (µ 1 ( 1 = µ x2 4 ( x K 0,0;0,±1 = exp 0 ±t dt = exp D µ (x := ( 1 µ e x2 4 I µ (e x2 e x = Γ(µ = e x 2 4 Γ(µ e (s+x2 0 x µ e x2 4 2F 0 (µ = k=0 x µ e x2 4 x 2 s µ 1 ds = e x 2 4 Γ(µ 2, µ , ; 2 x 2 ( µ 2 k( µ k k! ( 2x 2 k (± x2 2 e t2 2 (t x µ 1 dt 0 e xs s2 2 s µ 1 ds x + n = 2 versal Jordan-Pochhammer c 1 = = c p = 0 u(x = C e λ j t j 1 dt (x t µ 1 dt = C ( p exp λ j j tj (x t µ 1 dt *1 RAd ( µ RAdV 0 0,a (λ 1, λ 2 a = 0 Kummer

29 26 3 C x λ p 0 e λ p+ 2π 1k p (k = 0, 1,..., p 1 p λ p = 1, p = 3 λ p = 1, p = 4 x C 0 0 x C 2 V c = V c = p c j C 1 c j x, p C h j (x, h j (x = x j 1 j i=1 (1 c ix. c j 0 (j = 1,..., p, c i c j (i j V c = V c Ad ( p (x 1 c j µ j Ad ( p (1 c jx µ j + p AdV ( 1 c 1,..., 1 cp (µ 1,..., µ p + µ j c j 1 c j x, x x p µ jh j (x, x x Ad V c AdV V c c j Ad AdV c j c j, c i c j = 0 c j = c i V c V c c j ((h 1,..., h p. (c 1,..., c p h 1 (x,..., h p (x Ṽ c = p C h j c 1,..., c p p c j 0 (j = 1,..., p c i c j (i j V c = Ṽc h i = p g ij(ch j (1 i p c = (c 1,..., c p C p g ij (c det ( g ij (c 1 i p 1 j p

30 t α 1 (1 t β 1 dt = Γ(αΓ(β Γ(α + β. Re α > 0, Re β > 0 (1 t γ ( γ( γ 1 ( γ ν + 1 = ( t ν ν! ν=0 Γ(γ + ν = t ν (γ ν = t ν Γ(γν! ν! ν=0 Euler I µ c I µ c u(x = 1 Γ(γ = x c (x cµ Γ(µ I µ c I µ c = I µ+µ c, Ic n u(x = dn dx n u(x, I µ c (x c λ = 1 Γ(µ = = x c (x cµ Γ(µ (x t µ 1 u(t dt 1 0 ν=0 (1 s µ 1 u ( (x cs + c ds (t = (x cs + c, (t c λ (x t µ 1 dt 1 (x cλ+µ Γ(µ (1 s µ 1( (x cs λ ds (1 s µ 1 s λ ds Γ(λ + 1 = Γ(λ + µ + 1 (x cλ+µ, c n (x c λ+n Γ(λ + n + 1 = Γ(λ + µ + n + 1 c n(x c λ+µ+n. n=0 n=0

31 28 4 λ λ / { 1, 2,,...} c = I µ n=0 c n x λ n = e πiµ n=0 Γ(λ µ + n c n x λ µ n. Γ(λ + n O c n=0 c n(x c n (lim n c n 1 n < λ / { 1, 2,...} O c (λ, m = (x c λ m j=0 O c log j (x c I µ c : O c (λ, m O c (λ + µ, m well-defined φ j O c (j = 0,..., m I µ c ( m (x c λ φ j log j (x c I c µ ( (x c λ φ m log m (x c O c (λ + µ, m 1. j=0 λ + µ / { 1, 2,...} I µ c Proof. c = 0 φ O 0 Γ(λ+n m = 0 lim n Γ(λ+µ+n (λ + µn = 1 well-defined *1 I µ 0 I µ ( 0 I c µ x λ φ(x λ m > 0 I µ ( 0 x λ φ(x log m x = dm ( dλ m Iµ c x λ φ(x well-define P W [x], φ O c (λ, m P φ = 0 k P = ϑ ϑ µ Q = i 0, j 0 i 0, j 0 c ij i ϑ j (c ij C c ij i (ϑ µ j S, T W [x] Q = ST S x = c λ + µ / Z T (I µ c (φ = 0. *1 N N λ λ + N I µ 0 = dn dx N I µ+n 0

32 ( RAd ( µ P ( I µ c (φ = 0 ( RAd ( µ P u = 0 W (x ( RAd ( µ P = {T W (x T I µ c (u = 0}. (4.1 Proof. Ad( µ ϑ = ϑ µ P φ = 0 Q ( I µ c (φ = µ+k P µ I µ c (φ = µ+k P φ = 0 ST I µ c φ = 0 φ O c (λ, m I µ c (φ O c (λ + µ, m N 0 T I µ c (φ O c (λ + µ N, m λ + µ N / Z Sv = 0 x = c S ( T I µ c (φ = 0 T I µ c (φ = 0 (4.1 W (x Gauss x 1 γ I γ β ( 0 x β 1 (1 x α 2 *7 x 1 γ I γ β ( 0 x β 1 (1 x α = x 1 γ I γ β 0 = ν=0 ν=0 Γ(β + ν Γ(γ + ν (α ν x β 1+ν ν! (α ν x ν = Γ(β ν! Γ(γ ν=0 (α ν (β ν x ν. (γ ν ν! P W [x] m λ / Z, λ + µ / Z λ, µ O(λ, m φ P u = 0 P j, S j W [x] N P js j W [x]p l Z φ j = S j φ, Q j = l µ P j µ W [x], (j = 1,..., N (4.2 N ( Q j I µ c (φ j = 0 Proof. l Z j = 1,..., N l P j = P j (, ϑ = i 1,i 2 c i1,i 2 i 1 ϑ i 2 (c i1,i 2 C N l P j S j φ = 0 N ( Iµ c Pj (, ϑs j φ = N P j (, ϑ µi c µ (S j φ = 0

33 (Gauss. u λ1,λ 2,µ := I µ ( 0 x λ 1 (1 x λ 2 Gauss Gauss I µ c = I µ 1 c u λ1,λ 2,µ 1 = u λ1,λ 2,µ, u λ1 +1,λ 2,µ = (x + 1 µu λ1,λ 2,µ, u λ1,λ 2 +1,µ = ( (1 x + µ 1 u λ1,λ 2,µ φ = x λ 1 (1 x λ 2 x 1 φ 1 x φ = 0 S 1 = T 2 = 1 T 1 = S 2 = x 0 = 1 µ x µ I µ 0 (φ 1 µ 1 µ I µ 0 (xφ = (x + 1 µi µ ( 0 x λ 1 (1 x λ 2 I µ ( 0 x λ 1 +1 (1 x λ Q W (x MP λ1,λ 2,µ + NQ = 1 M, N W (x Q = R = x(1 x + 1 λ 1 µ + (λ 1 + λ 2 + 2µ 2x P λ1,λ 2,µ = R (λ 1 + λ 2 + µ(µ 1 M, N Ru λ1,λ 2,µ 1 = (λ 1 + λ 2 + µ(µ 1u λ1,λ 2,µ k 1, k 2, k 3 u λ1 +k 1,λ 2 +k 2,µ+k 3 = T (k 1, k 2, k 3 u λ1,λ 2,µ 1 T (k 1, k 2, k 3 W (x; λ 1, λ 2, µ 3 u(k 1, k 2, k 3 := u λ1 +k 1,λ 2 +k 2,µ+k 3 (k 1, k 2, k 3, (l 1, l 2, l 3 Z 3 3 a 0 u(0, 0, 0 + a 1 u(k 1, k 2, k 3 + a 2 u(l 1, l 2, l 3 = 0 a j C(x, λ 1, λ 2, µ a 0, a 1, a 2 0 u(k 1, k 2, k 3 = (b 1 + c 1 u(0, 0, 0, u(l 1, l 2, l 3 = (b 2 + c 2 u(0, 0, 0 b 1, c 1, b 2, c 2 C(x, λ 1, λ 2, µ

34 31 5 Fuchs Riemann 5.1 Fuchs P = a n (x dn dx n + a n 1(x dn 1 dx n a 0(x ( ai (x O 0 ( x = c C P j (1 j n a n j(x a n (x x = c x = c b j (x := (x c n j a j(x a n (x O c (j = 0, 1,..., n a j(x a n (x x = c n j P x = 0 x n a n (x P = xn n + b n 1 (xx n 1 n b 0 (x x k k = ϑ(ϑ 1 (ϑ k + 1 x ϑ x n a n (x P = P 0(ϑ xr(x, ϑ R(x, ϑ = r n 1 (xϑ n r 1 (xϑ + r 0 (x ( rj (x O 0, P 0 (ϑ = x n n + b n 1 (0x n 1 n b 0 (0

35 32 5 Fuchs Riemann, P 0 (ϑ ϑ P 0 (ϑ P 0 (s := s(s 1 (s n b n 1 (0s(s 1 (s n b 0 ( P 0 (s = 0 λ 1,..., λ n P x = 0 r B r = {x C x < r} Ô0 = C[[x]] Ô0 O(B r. φ = a j x j, ψ = b j x j Ô0 ψ φ a j b j j φ ψ i φ ψ ψ O(B r φ O(B r ii φ O(B r Cr > 1 C > 0 A C > 0 φ A C 1 Cx = j=0 A C (Cx j Ô x = 0 P P = P 0 (ϑ xr(x, ϑ deg P 0 (s = n > ord R j r j (x O(B r r > 0 P 0 (k 0 (k = 0, 1, 2,... P : O(B r O(B r Proof. f = f j x j Ô0 P u = f u = u j x j j=0 j=0 P 0 (ϑ u j x j = j=0 = P 0 (ju j x j = j=0 f j x j + xr(x, ϑ u j x j j=0 j=0 = f j x j + x R(x, ju j x j j=0 j=0 x j u j

36 f O(B r u O(B r O(B r O(B r P 0 (k 0 ɛ > 0 n j P 0 (k ɛ (k + 1 ν j=0 ν= Cr > 1 C > 0 A, B > 0 j=0 b j (x A 1 Cx f B 1 Cx (j = 0,..., n 1 n 1 ( xr(x, ϑ = bj (0 b j (x x j j, b j (0 b j (x A 1 Cx A = ACx 1 Cx û = j=0 ûjx j ( n ɛ x j j û j=0 n 1 j=0 ACx 1 Cx xj j û + B 1 Cx (5.2 û u n 1 û j ACx 1 Cx xj j û + B 1 Cx xj. j=0 û 0 u 0 l j û j u j l û j x j j=0 l u j x j j=0 n 1 B 1 Cx + ACx 1 Cx xj j j=0 l û k x k f + xr(x, ϑ k=0 l u k x k k=0 φ φ, ψ ψ φ + ψ φ + ψ, φ ψ φψ, ϑ φ ϑφ û l+1 u l+1 û u (5.2 û N, L ɛ n x j j=0 û := L (1 Cx N C j n 1 (N j L (1 Cx j+n ACx C j (N j L 1 Cx xj û (5.2 (1 Cx j+n = n L ɛ (1 Cx N B 1 Cx x j ɛcj (N j L AC j (N j 1 L (1 Cx j+n 0,

37 34 5 Fuchs Riemann m O Br (λ, m = m j=0 O(B r x λ log j x P = P 0 (ϑ xr(x, ϑ P 0 (λ + k 0 (k = 0, 1, 2,... P : O Br (λ, m O Br (λ, m Proof. P λ = Ad(x λ P P u = x λ P λ x λ u, P λ = P 0 (ϑ + λ + xr(x, ϑ + λ λ = 0 ( φ(x O(B r P λ log m x φ(x ( P λ φ(x log m x mod O Br (0, m m (Cauchy-Kowalevskaja *1. n 1 Q = n + q j (x j ( qj (x O(B r j=0 Q: O(B r O(B r C n u ( Qu, u(0, u (0,..., u (n 1 (0 Proof. P = Qx n P = Qx n = n q j (x j x n = j=0 n q j (x(ϑ + 1 (ϑ + jx n j j=0 P 1, 2,..., n P : O(B r O(B r (f, v 0, v 1,..., v n 1 O(B r C n w O(B r Qx n w = f Q (v 0 + x 1! v xn 1 (n 1! v n 1 u = x n w + v 0 + x 1! v xn 1 (n 1! v n 1 ( Qu, u(0,..., u (n 1 (0 = ( f, v 0,..., v n 1 u O(Br u (j (0 = 0 (j = 0,..., n 1 u = x n w w O(B r Qu = 0 P w = Qx n w = Qu = 0 w = 0 u = 0 *1 Cauchy-Kowalevskaja [O7] [O1]

38 P C { } U U U x 0 P u = 0 u(x x 0 U γ Proof. γ [0, 1] U, t γ(t γ 0 t < t 0 t = t 0 0 < t 0 < 1 x t 0 < r x U r > 0, t 1 t t 0 γ(t γ(t 0 < r 3 0 < t 1 < t 0 t 1 u t = t 1 u 1 P v = 0 v (j( γ(t 1 = u (j ( 1 γ(t1 (j = 0,..., n 1 γ(t 1 2r 3 γ(t 1 u 1 u(t γ γ(t 0 n P u = 0 x = 0 λ 1,..., λ n i 1 i < j n i, j λ i λ j / Z x λ j φ j (φ j O 0, φ j (0 0, j = 1, 2,..., n ii = 0 (1 j k, λ j λ 1 Z >0 (k < j m, / Z 0 (m < j n *2 u ν (x (ν = 0, 1,..., k 1 u ν x λ 1 log ν x O Br (λ 1 + 1, m 1. { λ 1,..., λ q } λ i m i n = m m N ū i,ν x λ i log ν x O Br ( λ i + 1, n 1 (0 ν < m i, i = 1,..., q (5.3 ũ i,ν (0 ν < m i, i = 1,..., q x = 0 Proof. P = P 0 (ϑ xr(x, ϑ i P = x λj 1 P x λj+1 P = P 0 (ϑ + λ j + 1 xr(x, ϑ + λ j + 1 x = 0 λ ν λ j 1 (ν = 1,..., n P 0 (ϑ ϑ + 1 = x xr(x, ϑ+λ j +1 = R(x, ϑ+λ j x O(B r Q P = Qx P P w = Q1 w O(B r P ( x λ j (1 xw = x λj+1 Qx x λ j 1 ( x λ j (1 xw = x λj+1 Q(1 xw = x λj+1 (Q1 P w = 0 *2 Z >0 := {1, 2, 3,...}, Z 0 := {0, 1, 2, 3,...}

39 36 5 Fuchs Riemann ii x λ 1 P x λ 1 λ 1 = 0 P 0 (ϑ = ϑ k (ϑ λ k+1 (ϑ λ n 0 j < k j P 0 (ϑ log j x = 0 P log j x = P 0 (ϑ log j x xr(x, ϑ log j x O Br (1, j P u = 0 u O Br (0, m P 0 (ϑ ( m log j x + u i,ν x i log ν x = xr(x, ϑ ( m log j x + u i,ν x i log ν x i=1 ν=0 i=1 ν=0 u i,j C, i Q = q(ϑ(ϑ λ l q(s q(λ 0 Q: n+l n Cx λ log j x Cx λ log j x, j=0 j=0 f Qf N 1 i N u i,ν C N m P u N O Br (N + 1, m, u N := log j x + u i,ν x i log ν x i=1 ν=0 N = max{0, λ k+1,..., λ m } P u N O Br (N + 1, m u = u N v P u = 0 = P v v 5.2 Fuchs P u = 0 x = x 1 x P W (x C := C { } P P u = 0 Fuchs C P {c 0, c 1,..., c p } C C := C\{c 0, c 1,..., c p } P F : C U( F(U O(U, F(U := {u(x O(U P u(x = 0} {c 0, c 1,..., c p } { {c j + re 1θ 0 < r < ɛ, R < θ < R + 2π} (c j, U j,ɛ,r = {re 1θ r > ɛ 1, R < θ < R + 2π} (c j = F 1. F(U O(U dim F(U = ord P. 2. V U F(V = F(U V = {f V O(V f F(U} 3. c j ɛ > 0 φ F(U j,ɛ,r C m φ(x < { C x c j m (c j, x U j,ɛ,r, C x m (c j =, x U j,ɛ,r

40 5.2 Fuchs 37 R R F W (x B + r := {x B r Im x > 0} ψ O(B + r m Proof. 0 < x < r 2 ψ(x = ψ(x C x m (x B + r ψ (x 2 m +1 Cx (m+1 (0 < x < r 2 1 2π 1 t x = x 2 ψ(tdt t x ψ 1 (x = 2π t x = x 2 ψ(tdt (t x 2 max ψ(t 2 t x = x 2 x 2 m +1 Cx (m Fuchs {W (xp W (x : Fuchs } { 1 3 F } P = n + n 1 i=0 a i(x i {U {u O(U P u = 0}} F(U = n ν=1 Cφ ν(x Φ i = φ (0 1 φ (i 1 φ (i+1 (x φ(0 n... 1 (x φ (i 1 n (x 1 (x φ (i+1 n (x... φ (n 1 (x φ(n n (x a i (x = ( 1 n i det Φ i det Φ n (5.4. φ ν (x (ν = 1,..., n F(U u(x F(U u φ 1 φ n u (1 φ (1 1 φ (1 n det.... = 0 u (n φ (n 1 φ (n n

41 38 5 Fuchs Riemann 1 u(x Fuchs c j γ j Φ i γ j γ j Φ i γ j φ 1,..., γ j φ n F(U φ 1,..., φ n F(U M j GL(n, C γ j Φ i = Φ i M j M j Φ i (i = 1,..., n γ j det Φ i = det M j det Φ i det M j = e 2πiλ λ C γ j ( (x cj λ det Φ i = (x cj λ det Φ i. (x c j λ det Φ i x = c j det Φ i ψ j O cj k i Z 0 det Φ i = (x c j λ+k i ψ i det Φ i det Φ n (x c j λ a i (x x = c j x = c j 3 cf c 0,..., c p C n Fuchs P u = 0 x 0 C V 0 V 0 φ 1,..., φ n x 0 c j γ j φ i γ j φ i V 0 V 0 φ 1,..., φ n V 0 V 0 v γ j v (γ j φ 1,..., γ j φ n = (φ 1,..., φ n M j M j GL(n, C M j M = (M 0,..., M n P u = 0 *3 Fuchs Wronskian det Φ n (x {k 1,..., k n } k j 0 k 1 < k 2 < < k n k n = n * n Fuchs P u = 0 1. P *3 M GL(n, C *4 Airy

42 5.2 Fuchs M = (M 0,..., M p M j V V (j = 0,..., p C n V {0} C n 3. F F {0} F (U F(U c j = 0 i n M, exp L := ν=0 Lν ν! = M L ii F u = (u 1,..., u n c j = 0 M i L v = ux L, x L := exp( L log x v c j c j iii c j = 0 F (5.3 iv x n i a i (x a n (x x = 0 x = 0 Fuchs W (x * P, Q W (x Fuchs W (x/w (xp W (x/w (xq W (x P u = 0 Qv = P = n + n 1 i=0 a i(x i W (x P y = y y Y =., A P (x = y (n a 0 (x a 1 (x a 2 (x a n 1 (x d dx Y = A P (xy P W (x W (x/w (xp W (x P u = 0 u W (x/w (xp W (x/w (xp C(x u, u,..., n 1 u W (x/w (xp C(x v W (x/w (xp v = t A p (xv W (x/w (xp P *6 *5 (x 2F (α, β, γ; x x = 2 *6 M P = W (x/w (xp M P MP f M P f(m = f( m (m M P W (x MP {u, u,..., n 1 u}

43 40 5 Fuchs Riemann. W (x/w (xp W (x/w (xq C(x dim C(x W (x/w (xp = dim C(x W (x/w (xq = n. P y = 0 C(x Y = A(xY, (5.5 Qz = 0 Z = B(xZ (5.6 W (x/w (xp W (x/w (xq W (x C(x G(x GL ( n, C(x Z = G(xY Y = A(xY Z = G(xY Z = B(xZ U C (5.5 y 1,..., y n ( O(U n (5.6 z1,..., z n ( O(U n Y = (y 1 y n GL ( n, O(U Z = (z 1 z n GL ( n, O(U ZY 1 GL ( n, C(x c j γ j γ j Y = YM j, γ j Z = ZN j M j, N j GL(n, C ZY 1 GL(n, C(x γ j ZY 1 = ZY 1 (j = 0,..., p ZN j M 1 j Y 1 = ZY 1 (j = 0,..., p M j = N j (j = 0,..., p 5.3 x = 0 3 P ε u = 0, P ε = ϑ(ϑ 1 2 (ϑ 1 εx x2 (ε = 0, 1 0, 1 2, x 1 2 (1 + a1 x + a 2 x 2 +, x(1 + b 1 x + b 2 x + A P (x W (x F P u = 0 F Hom W (x (M P, F Hom W (x (M P, F Hom C(x (M P, F = M P C(x F Hom W (x (M P, F = {u f M P F u f = u f} A P (x

44 5.3 41, 0 { 1 + c 2 x 2 + c 3 x 3 + (ε = 0, 1 + 2x log x + (c 2 + c 2 log xx 2 + (c 3 + c 2 log xx 2 + (ε = 1 ɛ = πi 1, * O 0 P = a n (x n + a n 1 (x n a 0 (x (5.7 x = 0 a n (x x = 0 n k 0 k n a n (0 = = a (n 1 n (0 = 0, a (n n (0 0. ( O 0 R P = x k R. 2. P x ν = o(x k 1 ν = 0, 1,..., k 1 3. P u = 0 ν = 0, 1,..., k 1 u(x = x ν + o(x k 1 4. P P = j 0 x j p j (ϑ x ϑ p j (ϑ p j (ν = 0 0 ν < k j, j = 0,..., k ν = 0, 1,..., k 1 p 0 (ν = 0 0, 1,..., k 1 3 log Proof P x ν = j 0 xj p j (ϑx ν = j 0 xj+ν p j (ν. j + ν < k p j (ν = 0 P x ν = o(x k P 1 = o(x k 1, P x = o(x k 1,..., P x k 1 = o(x k 1 *7 ε C \ {0}

45 42 5 Fuchs Riemann j = 0,..., k 1 b j (x O 0 a j (x = x k b j (x x = 0 j = k, k + 1,..., n b j (x O o a j (x = x k b j (x O 0 n P = n i=0 a i(x i x = 0 P x = 0 [λ] (k x n k Ad(x λ ( a n (x 1 P W [x] P x = 0 [λ] (k q l (x x n a n (x 1 P = l 0 x l q l (ϑ 0 i<k l (ϑ λ i n x = 0 [0] (n x = 0 [0] (n (. O 0 n P n = m m q m i λ 1,..., λ q P x = 0 {[λ 1 ] (m1,..., [λ q ] (mq } x n a n (x 1 P = l 0 x l q l (ϑ q ν=1 0 i<m ν l (ϑ λ ν i *8 {m 1,..., m q } P x = 0 x = c x = c P x = 0 [λ] (m m = 1 m λ, λ + 1,..., λ + m 1 x λ+m 1 log ( Riemann. Fuchs P W [x] c 0 =, c 1,..., c p x = c j P {[λ j,1 ] (mj,1,..., [λ j,nj ] (mj,nj } x = c 0 c 1 c p [λ 0,1 ] (m0,1 [λ 1,1 ] (m1,1 [λ p,1 ] (mp,1 {λ m } :=.... [λ 0,n0 ] (m0,n0 [λ 1,n1 ] (m1,n1 [λ p,np ] (mp,n p Riemann (generalized Riemann scheme (5.9 *8 P (5.8 P = l 0 xl q l (ϑ q ν=1 0 i<m ν l (ϑ λ ν i

46 (. P W [x] Riemann n (p + 1 m := (m 01,..., m 0,n0 ; m 1,1,..., m 1,n1 ;... P P λ j,ν λ j,ν / Z (ν ν (semi-simple (Fuchs. n p j m j,ν 1 j=0 ν=1 i=0 Proof. n 1 P (λ j,ν + i = (p 1n(n 1 2 (5.10 P = n p a j x c j n 1 + a j C x = n 1 x = 0 c j c j c j = 0 x n P x n n a j x n 1 n 1 = ϑ(ϑ 1 (ϑ n + 1 a j ϑ(ϑ 1 (ϑ n + 2 ( (n 1n = ϑ n + a j ϑ n c j n j ν=1 m j,ν 1 i=0 (λ j,ν + i = a j + (n 1n 2 (1 j p c 0 = y = x 1 ϑ ϑ y x n n p a j x n 1 n 1 = ϑ(ϑ 1 (ϑ n + 1 ( (n 1n = ( 1 (ϑ n n y c 0 = n 0 ν=1 m 0,ν 1 i=0 (λ 0,ν + i = p a j Fuchs p a j ϑ(ϑ 1 (ϑ n + 2 p a j ϑ n 1 y + (n 1n 2

47 44 5 Fuchs Riemann Gauss (1, 1; 1, 1; 1, 1 11; 11; 11 11, 11, ; 1 2 ; ( n F n 1 Jordan-Pochhammer (n 11; 1 n ; 1 n (n+1 {}}{ (n 11; (n 11; n n n m = ( m j,ν j=0,1,... m j,ν m ν=1,2,... m j,ν = n (j = 0, 1,..., ν=1 m j,1 = n (j > p m n (p + 1 n j ν n j m j,ν = 0 m = (m j,ν j=0,...,p ν=1,...,n j n (p + 1 m j,ν m j,ν+1 j = 0, 1,... ν = 1, 2,... ( m j,ν j=0,1,... ν=1,2,... gcd m m gcd m = 1 n (p + 1 P (n p+1 P p+1 = n=0 P (n p+1, P(n = p=0 m P (n m ord m = n P (n p+1, P = p=0 P p+1

48 m, m P p+1 idx (m, m := p j=0 ν=1 m j,ν m j,ν (p 1ord m ord m m = m idx m = idx (m, m m rigidity Pidx m = 1 idx m 2 Fuchs P p+1 m = ( m j,ν 0 j p ( λ j,ν 0 j p 1 ν n j 1 ν n j {λ m } := n p j j=0 ν=1 m j,ν λ j,ν ord m + idx m 2 (5.11 {λ m } Fuchs (5.10 {λ m } = 0 (5.12 n p j j=0 ν=1 m j,ν 1 i=0 i = 1 2 = 1 2 n p j m j,ν (m j,ν 1 = 1 2 j=0 ν=1 ( idx m + (p 1n 2 1 (p + 1n 2 = 1 (p 1n(n 1 idx m n n p j m 2 j,ν 1 (p + 1n 2 j=0 ν=1 5.5 m = (m 1,..., m N P (n 1 λ = (λ 1,..., λ N C N n n L(m; λ m m 1 m n A i,j M(m i, m j, C λ i I mi (i = j, A i,j = I mi,m j = ( ( I mj δ µν 1 µ m i = (i = j 1, 1 ν m j 0 0 (i j, j 1

49 46 5 Fuchs Riemann L(m; λ = ( A i,j 1 i N 1 j N L(2, 1, 1; λ 1, λ 2, λ 3 = λ λ λ λ 3 m *9 A M(n, C A L(m; λ j rank (A λ ν = n (m m j j = 0, 1,..., N (5.13 ν=1 L(m; λ Jordan A L(m; λ Jordan A M(n, C Z(A := {X M(n, C; AX = XA} dim Z ( L(m; λ = m m 2 N m m = (m 1,..., m r m ν = #{j m j ν} ( : (7, 6, 3, 1 (4, 3, 3, 2, 2, 2, 1 m µ 1 µ 1 J(k, µ := M(k, C 1 µ Jordan L(m; λ Jordan m µ = (µ,..., µ C N m 1 L(m; µ J(m j, µ ( *9 L(1, 2, 1; λ 1, λ 2, λ 3 = L(2, 1, 1; λ 2, λ 1, λ 3

50 J(k, µ l k dim{u C k J(k, µ l 1 u 0, J(k, µ l u = 0} = 1 J = m 1 J(m j, µ dim{u C n J l 1 u 0, J l u = 0} = #{ν m ν l} = m l. J ( n P u = 0 x = 0 {[λ 1 ] (m1,... [λ q ] (mq } n = m m q i k q λ 1 = λ 2 = = λ k, m 1 m 2 m k, λ j λ 1 / {0, 1, 2,...} (j = k + 1,..., q m = {m 1,..., m r } m = {m 1,..., m k } r = m 1 i = 0, 1,..., r 1 j = 0,..., m i+1 1 j u i,j (x = x λ1+i log ν x φ i,j,ν (x u i,j φ i,j,ν (x O 0 φ i,j,ν (0 = δ j,ν ii λ i λ j / Z \ {0} (i j * 10 x = 0 L ( m; e(λ 1,..., e(λ q ν=0 λ i λ j / Z (i j Proof. ii i 1 λ 1 = 0 P P = x l r l (ϑ l=0 k ν=1 0 i m ν l (ϑ i r l (s r 0 (s = 0 P = l=0 xl p l (ϑ 0 i m 1 1 i p l (x = 0 *10 [O6, Proposition 11.9] λ i λ j / Z (λ i λ j (λ i + m i λ j m j (, 0]

51 48 5 Fuchs Riemann m i+l+1 (ν m 1 m ν = 0 p 0 (s = 0 i m i+1 i, j x l p l (ϑx i log j x = x i+l j m i+l+1 ν=0 c i,j,l,ν log ν x (c i,j,l,ν C p 0 (ϑx i log j x = 0 (j < m i+1 p 0 (ϑ : Cx i log ν x ν j ν j m i+1 Cx i log ν x (5.14 p 0 (ϑφ i,j = 1 l<m 1 i x l p l (ϑx i log j x, φ i,j φ i,j x i log j x φ i,j V := Cx i log j x 0 i<m 1 0 j<m 1 i<k<m 1 0 ν j Cx k log ν x Q u V T u = m 1 1 ν=0 Q ν u m 1 1 P T u p 0 (ϑt u + x l p l (ϑt u mod O 0 (m 1, j l=1 p 0 (ϑ(1 QT u mod O 0 (m 1, j p 0 (ϑ(1 Q(1 + Q + + Q m 1 1 u mod O 0 (m 1, j = p 0 (ϑu j < m i+1 P T xi log j x 0 mod O 0 (m 1, j v i,j = T x i log j x P v i,j O 0 (m 1, j w i,j O 0 (m 1, j P v i,j = P w i,j u i,j = v i,j w i,j 5.6 n n (. m = (m 0,..., m p n (p + 1 m j = (m j,1,..., m j,nj j = 0,..., p m j,ν m j,1 + + m j,nj = n c 1,..., c p c 0 = m Fuchs P Fuchs λ j,ν Riemann (5.9 P m

52 m, m P (n p+1 m + m c 1,..., c p C c 0 = x = c j (j = 0,..., p Fuchs a i (x ( p P = (x c j n n + a n 1 (x n a 1 (x + a 0 (x (5.15 deg a i (x (p 1n + i, ( ν a i (c j = 0 (0 ν i 1, 1 j p (5.16 ( P Riemann (5.9 P P c 0,..., c p Riemann c 0 = c j (j = 1,..., p [λ 0,1 + m 0,1 (p 1 ord m] (m 0,1 [λ j,1 + m j,1 ] (m j,1.. [λ 0,n0 + m 0,n0 (p 1ordm] (m 0,n0 [λ j,nj + m j,n ] (m j,nj (5.17 P P n m P P m + m Riemann c 0 c 1 c p [λ 0,1 ] (m0,1 +m 0,1 [λ 1,1 ] (m1,1 +m 1,1 [λ p,1 ] (mp,1 +m p,1.... [λ 0,n0 ] (m0,n0 +m 0,n [λ 1,n1 ] (m1,n1 +m 0 1,n [λ p,np ] (mp,n 1 p +m p,np (5.18 (5.9 Fuchs (5.17 Fuchs (5.18 Fuchs { } λ m + { } [λ j,ν + m j,ν δ j,0 (p 1 ord m] (m j,ν 0 j p = { } λ m+m. 1 ν n j Proof. Q = Q = x l r l (ϑ l=0 x l r l(ϑ l=0 q ν=1 0 k<m ν l q ν=1 (ϑ λ ν k, 0 k<m ν l (ϑ λ ν m ν k, r l (s, r l (s (ϑ λ ν m ν k x i (ϑ λ ν k = x i (ϑ λ ν m ν k 0 k<m ν j 0 k<m ν i 0 k<m ν +m ν i j

53 50 5 Fuchs Riemann Q Q = x l( l q r l i(ϑ + ir i (ϑ l=0 i=0 ν=1 0 k<m ν +m ν l (ϑ λ ν k x = c 1,..., c p P P Riemann y = x c j x = c 0 = Q = x (p 1 ord m P, Q = x (p 1 ord m P Q Q = x 2(p 1 ord m Ad (x (p 1 ord m (P P y = 1 x (5.17 Fuchs n p j j=0 ν=1 m ( j,ν λj,ν + m j,ν δ j,0 (p 1 ord m = ord m idx m 2 (5.19 n p j m j,ν( mj,ν δ j,0 (p 1 ord m = idx (m, m j=0 ν=1 (5.19 n p j m j,νλ j,ν = ord m j=0 ν=1 idx m 2 idx (m, m idx (m + m = idx m + idx m + 2idx (m, m (5.9 Fuchs n p j (m j,ν + m j,νλ j,ν = ord(m + m idx (m + m 2 j=0 ν=1 (5.18 Fuchs

54 51 6 Fuchs 2 RAd ( (x c λ RAd ( µ Fuchs Riemann 6.1 Riemann i P u = 0 Fuchs c P ( cw [x] c = 0 ii φ(x C(x λ, µ C P W [x] P C[x]RAdei ( φ(x RAdei ( φ(x P, P C[ ]RAd ( µ RAd ( µ P P ord P > 1 RAd ( µ RAd ( µ P = cp c C Proof. i P = ( cq Qu(x = e cx u(x P u(x = 0 P x = N > 0 C > 0 x 1 0 arg x 2π u(x < C x N c = 0 ii Adei ( φ(x Adei ( φ(x = id, Adei ( φ(x f(xp = f(xadei ( φ(x P L 1 R LP = cp (c C L 1 R LP = P R LP = L P f(x C(x LP = f(xl P LP W [x] f(x C[x]

55 52 6 Fuchs P = f( P P P C[x] f(x C f( 1 ord P > 1 Ad ( (x c τ RAd ( µ Riemann P u = 0 Riemann (5.9 Fuchs P (5.15 i (addition Ad ( (x c j τ P Riemann c 0 = c 1 c j c p [λ 0,1 τ] (m0,1 [λ 1,1 ] (m1,1 [λ j,1 + τ] (mj,1 [λ p,1 ] (mp, [λ 0,n0 τ] (m0,n0 [λ 1,n1 ] (m1,n1 [λ j,nj + τ] (mj,nj [λ p,np ] (mp,n p ii (middle convolution m j,1 = 0 λ j,1 = 0 (j = 1,..., p { µ = λ 0,1 1, d = d(m := p j=0 m j,1 (p 1n m j,1 d (j = 0,..., p, (6.1 { ν 1 m0,ν m 0,1 d + 2 m 1,1 m p,1 0 (6.2 λ 0,ν / {0, 1,..., m 0,1 m 0,ν d + 2}, { j 1, ν 2 mj,1 0 m j,ν m j,1 d + 2 (6.3 λ 0,1 + λ j,ν / {0, 1,..., m j,1 m j,ν d + 2}. p S = d Ad ( µ (x c j m j,1 P W [x] Riemann c 0 = c 1 c p [1 µ] (m0,1 d [0] (m1,1 d [0] (mp,1 d [λ 0,2 µ] (m0,2 [λ 1,2 + µ] (m1,2 [λ p,2 + µ] (mp,2.... [λ 0,n0 µ] (m0,n0 [λ 1,n1 + µ] (m1,n1 [λ p,np + µ] (mp,n p. (6.4 (6.5 S = RAd ( µ RP x = c j (j = 0,..., p λ j,1 + m j,1 P (6.4

56 6.1 Riemann 53 m 0,1 = d λ 0,1 / { d, d 1,..., 1 m 0,1 }. (6.5 iii ord P > 1 P ii (6.1 (6.2 (6.3 *1 Proof. i ii, iii ( p P = (x c j m j,1 P P W [x] (6.4 RP = P Q = (p 1n p m j,1 P (6.1 (p 1n p m j,1 0 1 j p j x = c j j = 1 c j = 0 P = n j=0 a j(x j deg a j (x (p 1n + j p m j,1 x m 1,1 P = N x N l r l (ϑ l=0 1 ν n 0 0 i<m 0,ν l (ϑ + λ 0,ν + i p N = (p 1n m j,1 = m 0,1 + m 1,1 d, j=2 r l (s r 0 0 N m 1,1 + 1 l N 1 ν n 0 0 i<m 0,ν l (ϑ + λ 0,ν + i / xw [x] (ϑ + λ 0,ν + i = ϑ (6.2 m 1,1 = 0 l m 0,1 d + 1 m 0,ν m 0,1 d + 1 λ 0,ν / {0, 1,..., m 0,1 m 0,ν d + 2} (1 ν n 0 P W [x] x = c 1 = 0 [0] (m1,1 N m 1,1 + 1 l N s l r l (ϑ = x l N+m 1,1 l N+m 1,1 s l (ϑ *1 Riemann (5.9 P ord P > 1 λ 0,ν0 + + λ p,νp Z m 0,ν0 + + m p,νp (p 1 ord m cf. [O6, Lemma 7.3] (6.5

57 54 6 Fuchs r l s l N m 1,1 P = x N m1,1 l s l (ϑ + l=0 N l=n m 1, ν n 0 0 i<m 0,ν l l N+m 1,1 s l (ϑ (ϑ + λ 0,ν + i 1 ν n 0 0 i<m 0,ν l (ϑ + λ 0,ν + i (6.6 Q = Ad ( µ Q = N l s l (ϑ l=0 N l s l (ϑ µ l=0 1 i m 0,1 l N m 1,1 = m 0,1 d m 0,1 Ad ( µ Q = m 0,1 1 + l=0 N 1 i N m 1,1 l (ϑ + i 1 i N m 1,1 l (ϑ + i x m 0,1 l s l (ϑ µ l=m 0,1 l m0,1 s l (ϑ µ 2 ν n 0 0 i<m 0,ν l 1 i m 0,1 d l 1 i m 0,1 d l 1 ν n 0 0 i<m 0,ν l (ϑ µ + i (ϑ µ + λ 0,ν + i (ϑ µ + i (ϑ µ + i (ϑ + λ 0,ν + i, 2 ν n 0 0 i<m 0,ν l 2 ν n 0 0 i<m 0,ν l x = { [1 µ](m0,1 d, [λ 0,2 µ] (m0,2,..., [λ 0,n0 µ] (m0,n0 } (ϑ µ + λ 0,ν + i (ϑ µ + λ 0,ν + i l = 0 λ 0,ν + i λ 0,1 + m 0,1 µ + λ 0,ν + i m 0,1 + 1 λ 0,1 + m 0,1 P x = 1 i m 0,1 d µ + i m 0,1 + 1 λ 0,1 / { d, d 1,..., 1 m 0,1 } x m 0,1 s 0 (ϑ µ + i (ϑ µ + λ 0,ν + i / W [x] 1 i m 0,1 d 2 ν n 0 0 i<m 0,ν m 0,1 1 Ad ( µ Q / W [x] m 0,1 m Ad ( µ Q W [x] m ii x = c 1 = 0 P P = m 1,1 l=0 m 1,1 l q l (ϑ 2 ν n 1 0 i<m 1,ν l (ϑ λ 1,ν i+ N l=m 1,1 +1 x l m 1,1 q l (ϑ 2 ν n 1 0 i<m 1,ν l (ϑ λ 1,ν i

58 6.1 Riemann 55 Q = Ad ( µ Q = m 1,1 l=0 + N l q l (ϑ N l=m 1,1 +1 N N l q l (ϑ µ l=0 2 ν n 1 0 i<m 1,ν l (ϑ λ 1,ν i l m 1,1 N l q l (ϑ (ϑ + i i=1 2 ν n 1 0 i<m 1,ν l 1 i l m 1,1 (ϑ µ + i (ϑ λ 1,ν i, 2 ν n 1 0 i<m 1,ν l N m 0,1 = m 1,1 d (ϑ µ λ 1,ν i / W [x] 2 ν n 1 0 i<m 1,ν l N l < m 0,1 x = c 1 m 0,1 Ad ( µ Q { [0](m1,1 d, [λ 1,2 + µ] (m1,2,..., [λ 1,n1 + µ] (m1,n1 } (ϑ µ λ 1,ν i 0 i m 1,ν m 1,1 + d 2 ϑ µ λ 1,ν i = ϑ + 1 (6.3 ii iii (6.1 P, N ii x m 1,1 P = N x N l r l (ϑ l=0 1 ν n 0 0 i<m 0,ν l (ϑ + λ 0,ν + i m 0,1 > N x m 1,1 P ϑ + λ 0,1 P m 0,1 N m 1,1 d = m 1,1 + N m 0,1 m 1,1 = N m 0,1 0. m 1,1 > N x m 1,1 P ϑ m 1,1 N m 0,1 d 0 m j,1 d 0 (6.2 P p l (x (l = 0, 1,..., N x m 1,1 P = N x N l p l (ϑ l=0 x = 0 [0] (m1,1 p l (ϑ (N m 1,1 + 1 l N 0 i<l N+m 1,1 (ϑ i = x l N+m 1,1 l N+m 1,1 x = [λ 0,ν ] (m0,ν p l (ϑ (0 l N m 1,1 0 i<m 0,ν l (ϑ + λ 0,ν + i P = N m 1,1 l=0 x N m 1,1 l r l (ϑ 0 i<m 0,ν l (ϑ + λ 0,ν + i + N l=n m 1,1 +1 l N+m 1,1 r l (ϑ (6.7

59 56 6 Fuchs r l (s m 0,ν m 0,1 d + 2 λ 0,ν {0, 1,..., m 0,1 m 0,ν d + 2} 0 l N m 1,1 = m 0,1 d m 0,ν > l λ 0,ν + (m 0,ν l 1 m 0,1 m 0,ν d m 0,ν l 1 (6.7 1 = m 0,1 d l + 1 > 0. x m 0,1 d l (ϑ + 1(ϑ + 2 (ϑ + λ 0,ν + m 0,ν l 1 m 0,1 d l = L λ 0,ν + m 0,ν l 1 = M M > L 0 x L (ϑ + 1(ϑ + 2 (ϑ + M = (ϑ + 1 L(ϑ + 2 L (ϑ + M Lx L W [x] (6.7 2 P (6.3 P = Ad ( (x c j λ j,ν P (6.2 P d d d = m 0,1 + + m j 1,1 + m j,ν + m j+1,1 + + m p,1 (p 1n = d m j,1 + m j,ν. (6.2 P m 0,1 m 0,1 d + 2 d (6.3 λ j,ν + λ 0,1 / {0, 1,..., m 0,1 m 0,1 d + 2}. Riemann Fuchs m = ( m j,ν j=0,...,p ν=1,...,n j P (n p+1 d λ j,ν m j,1 d (j = 1,..., p m P (n d p+1 λ j,ν m j,ν = m j,ν δ ν,1 d (j = 0,..., p, ν = 1,..., n j, 2 λ 0,1 (j = 0, ν = 1 λ λ j,ν λ 0,1 + 1 (j = 0, ν > 1 j,ν =. 0 (j > 0, ν = 1 λ j,ν + λ 0,1 1 (j > 0, ν > 1 idx m = idx m, {λ m } = {λ m }

60 Proof. idx m idx m = n p j m j,ν λ j,ν j=0 ν=1 j=0 ν=1 p m 2 j,1 (p 1n 2 j=0 = 2d ( = d 2 p (m j,1 d 2 + (p 1(n d 2 j=0 p m j,1 (p + 1d 2 2(p 1nd + (p 1d 2 j=0 p j=0 m j,1 2d 2(p 1n = 0. n p j ( m j,νλ j,ν = m 0,1 (µ + 1 (m 0,1 d(1 µ + µ n m 0,1 j=0 p (n m j,1 ( p = m j,1 d (p 1n µ m 0,1 d (m 0,1 d = d. 6.2 Fuchs P Fuchs (5.10 (5.9 Riemann {λ m } n Fuchs 0 < n < n n n m = ( m j,ν 0 j p 1 ν n j P m j,ν 0 m j,ν m j,ν (0 j p, 1 ν n j, m p j,ν 1 ( λj,ν + i (p 1n(n 1 / {0, 1, 2,... }. 2 j=0 i=0 Proof. P u = 0 n F n F Fuchs P v = 0 P Fuchs c 0,..., c p c 1,..., c q P c j {λ j,ν i = 0,..., m j,ν 1, ν = 1,..., n j } ii P c j n m j,1,..., m j,n j {λ j,ν + k j,ν,i 1 i m j,1, ν = 1,..., n j } k j,ν,i 0 k j,ν,1 < k j,ν,2 < < k j,ν,m j,ν < m j,ν c j 0 k j,1 < k j,2 < < k j,n k j,i {k j,i 1 i n } P Fuchs (6.8

61 58 6 Fuchs {λ m } m = m + m, 0 < ord m < ord m m, m P {λ m } / {0, 1, 2,...} (6.9 Riemann {λ m } Fuchs k m P (n p+1 i λ j,ν (j = 0,..., p, ν = 1,..., n j (Fuchs Riemann {λ m } Fuchs ii idx m < 0 i λ j,ν km Riemann {λ km } Fuchs Proof. i m m = m + m, 0 < ord m < ord m {λ m } {0, 1, 2,...} {λ m } = 0 λ j,ν {λ m } Z l m = lm m m ii km = m + m, 0 < ord m < ord m {λ m } {0, 1, 2,...} l < k m = lm {λ lm } = n p j lm j,ν λ j,ν ord lm + l2 2 idx m j=0 ν=1 = l ( ord m k idx m l 2 l ord m idx m l(l k = idx m > 0 2 {λ m } > 0 m P idx m < m Fuchs generic P RAd ( µ (Tsai [Ts, Corollary 5.5]. Q W [x] C c 1,..., c p *2 x = c j λ j,ν {[0] (mj,1, [λ j,2 ] (mj,2,..., [λ j,nj ] (mj,nj } / Z Q W (x Q RQ W [x] W [x]rq *2 Tsai x =

62 Laplace Q W [x] Q = m 0 i= k x i q i (ϑ q i (s m 0, k, q m0 0, k > 0 x = Q Q x = {[λ 1 ] (m1,..., [λ n ] (mn } L(Q x = 0 {[0] (m0, [λ 1 1] (m1,..., [λ n 1] (mn } Proof. i 0 L ( x i q i (ϑ = ( i q i ( ϑ 1 r j (x (j = 1,..., k m 0 L(Q = ( i q i ( ϑ 1 + i=0 k x j r j (ϑ Fuchs P u = 0 Riemann (5.9 ( λ j,ν {λ m } = 0 0 j p 1 ν n j (λ j,ν 0 j p 1 ν n j C(λ C(λ W [x; λ] = W [x] C C(λ = { Q = n a i (x a i (x C(λ[x] } i=0 C W [x; λ] W (x; λ m j,1 = 0 (j = 1,..., p { λ j,1 = 0 (j = 1,..., p, { } (6.10 λ m = 0 RAd ( µ P, W (x; λ (6.10 generic P u = 0 µ = λ 0,1 1 ord P > 1 RAd ( µ RP

63 60 6 Fuchs Proof RP W [x; λ] Laplace LRP LRP / C(λ[x] LRP W (x; λ LRP C(λ[x] f(x C(λ[x] RP = f( f(x ord P > 1 L R P W (x; λ RAd (x µ RAd(x µ L R P W (x; λ RAd(x µ L R P x = 0 { [ µ]( p n j ν=2 m j,ν n, [0] } (m 0,1, [λ 0,2 1 µ] (m0,2,..., [λ 0,n0 1 µ] (m0,n RAd (x µ L R P W [x; λ] RAd ( µ P = L 1 RAd (x µ L R P C(λ[x] W (x; λ C(λ[x] P α C(λ[x] f(x C(λ[x] RAd (x µ L R P = + α, L R P = f(x(ϑ + αx µ R P = f( ( ϑ + α µ 1 P ord P > ord P = Katz RAd ( (x c τ RAd( µ Fuchs RAd ((x c τ RAd ( µ Fuchs Schlesinger *3 N. Katz middle convolution [Kz] *4, [DR] P u = 0 (P W [x] Riemann (5.9 Fuchs P = i,j p i,jx i j p i,j P Gauss x(1 x d2 u dx + ( γ (α + β + 1x du dx αβu = 0 *3 c 1,..., c p, du dx = p A j u u n A x c j j n *4 [Kz]

64 6.3 Katz 61 Riemann α 1 γ γ α β β α, β, γ *5 Gauss Heun Heun d 2 ( u γ dx 2 + x + δ x 1 + ɛ du x t dx + αβx q u = 0 (α + β + 1 = γ + δ + ɛ x(x 1(x t Riemann 0 1 t α 1 γ 1 δ 1 ɛ β α, β, γ, δ, ɛ, q q q q P u = 0 P P = n i=0 a i(x i a i (x = b i (x p (x c j i, b 0 (x = 1 deg b i (x (p 1n + i pi = (p 1(n i P c 0 =, c 1,..., c p Fuchs P n 1 ( (pn + p n + 1n (p 1(n i + 1 = 2 i=0 x = c j [λ j,ν ] (mj,ν (x c j m j,ν Ad ( (x c j λ j,ν P W [x] (x c j k P W [x] ( l a i (c j = 0 (0 l k 1, 0 i n *5

65 62 6 Fuchs ( l b i (c j = 0 (0 l k 1 i, 0 i k 1 b i (x (m j,ν + 1m j,ν 2 Fuchs n p j j=0 ν=1 m j,ν (m j,ν P (pn + p n + 1n 2 = (pn + p n + 1n 2 = 1 2( (p 1n 2 n p j j=0 ν=1 n p j j=0 ν=1 1 m j,ν (m j,ν m 2 j,ν (p + 1 n n p j m 2 j,ν + 2 = Pidx m j=0 Pidx m m Pidx m = 0 idx m = 2 m rigid rigid P u = 0 Riemann (5.9 Fuchs λ j,ν Fuchs P W [x; λ] *6 λ j,ν Fuchs generic P u = 0 ord P > 1 idx m 2 W (x; λ λ j,ν generic P idx m = 2 RAd ( (x c j τ RAd ( µ P Proof. j = 0,..., p m j,ν m j,1 = max{m j,ν ν = 1,..., n j } *6 λ j,ν Fuchs P [O6, Theorem 8.13] [O6, Example 7.5]

66 6.4 Riemann 63 p RAd ((x c j λ j,1 P Riemann x = c 0 c 1 c p [λ 0,1] (m0,1 [λ 1,1] (m1,1 [λ p,1] (mp,1.... [λ 0,n 0 ] (m0,n0 [λ 1,n 1 ] (m1,n1 [λ p,n p ] (mp,n p λ j,1 = 0 (j = 1,..., p λ j,ν Fuchs P λ j,ν generic µ = λ 0,1 1 RAd ( µ n d d = p j=0 m j,1 (p 1n addition generic n d 1 *7 ( p j=0 m j,1 (p 1n n = idx m + n p j (m j,1 m j,ν m j,ν. j=0 ν=1 d m j,1 2 0 idx m > 0 > 0 d > 0 0 < n d < n. ord m = 1 rigidity idx m = Riemann Riemann n P = a n (x n + a n 1 (x n a 0 (x n Fuchs Riemann (5.9 m j,ν 0 l = (l 1,..., l p (1 l j n j #{j m j,lj n, 0 j p} 2 *7 0

67 64 6 Fuchs d l (m := m 0,l0 + + m p,lp (p 1 ord m, ( p l P := Ad (x c j λ j,l j p (x c j m j,l j d l (m m 0,l 0 Ad( 1 λ 0,l0 λ p,l p m 0,l 0 d l (m a n (x 1 p ( p (x c j n m j,l j Ad (x c j λ j,l j P λ j,ν P l P W [x] m { λ m } l m := ( m j,ν 0 j p, 1 ν n j Riemann {λ m } m j,ν = m j,ν δ lj,νd l (m λ 0,ν 2µ l (j = 0, ν = l 0 l {λ m } := {λ m }, λ 0,ν µ l (j = 0, ν l 0 λ j,ν = λ j,ν (1 j p, ν = l j λ j,ν + µ l (1 j p, ν l j p µ l = λ j,lj 1. j=0 { } l λm l P Riemann m j,lj d l (m (j = 0,..., p l m well-defined m := (1,1,... m, l max (m l max (m j = min { ν m j,ν = max{m j,1, m j,2,...} } j max m := lmax (mm, p d max (m := max{m j,1, m j,2,..., m j,nj } (p 1 ord m j=0

68 6.4 Riemann idx m = idx l m, ord max m = ord m d max (m idx m > 0 d max (m > m P sm j m j,ν m P (n p+1 m n = ord m m P sm max m well-defined Proof. #{j m j,1 < n} < 2 max m well-defined P u = 0 m m j,1 = n c j [τ j ] (n RAd ( (x c j τ j cj P (5.15 (5.16 P = n m #{j m j,ν < n} m max m , 411, 42, =3 111, 111, =1 11, 11, , 1, 1 ( , 211, =1 111, 111, =0 111, 111, 111 ( , 211, 211, =1 111, 111, 111, = 1 211, 211, 211, 31 ( , 3311, =3 311, 311, =2 (idx m = , 3 d max (m 0 m m = ( m j,ν 0 j p 1 ν n j K P (n p+1 λ j,ν C m ord m > ord max m > > ord K maxm, s K maxm d max ( K maxm 0 k = 0,..., K m(k P p+1, l(k Z, λ(k j,ν C m(0 = m, m(k = max m(k 1,

69 66 6 Fuchs l(k = l max ( m(k, d(k = dmax ( m(k, {λ(k m(k } = k max{λ m } i rigid 2 6 2:11,11,11 3:111,111,21 3:21,21,21,21 4:1111,1111,31 4:1111,211,22 4:211,211,211 4:211,22,31,31 4:22,22,22,31 4:31,31,31,31,31 5:11111,11111,41 5:11111,221,32 5:2111,2111,32 5:2111,221,311 5:221,221,221 5:221,221,41,41 5:221,32,32,41 5:311,311,32,41 5:32,32,32,32 5:32,32,41,41,41 5:41,41,41,41,41,41 6:111111,111111,51 6:111111,222,42 6:111111,321,33 6:21111,222,33 6:21111,3111,33 6:2211,2211,411 6:222,222,321 6:222,3111,321 6:3111,3111,321 6:2211,33,42,51 6:222,33,411,51 6:321,321,42,51 6:33,33,33,42 6:33,33,411,42 6:33,411,411,42 6:411,411,411,42 6:33,42,42,51,51 6:321,33,51,51,51 6:411,42,42,51,51 6:51,51,51,51,51,51,51 ii rigidity 0 m P d max (m 0 *8 idx m = 0 ( :11,11,11,11 3:111,111,111 4:22,1111,1111 6:33,222, idx m = 2 ([O2, Proposition 8.4] 2:11,11,11,11,11 3:111,111,21,21 4:211,22,22,22 4:1111,22,22,31 4:1111,1111,211 5:11111,11111,32 5:11111,221,221 6:111111,2211,33 6:2211,222,222 8:22211,2222,44 8: ,332,44 10:22222,3331,55 12: ,444,66 idx m = 4 2:11,11,11,11,11,11 3:111,21,21,21,21 4:22,22,22,31,31 3:111,111,111,21 4:1111,22,22,22 4:1111,1111,31,31 4:211,211,22,22 4:1111,211,22,31 6:321,33,33,33 6:222,222,33,51 4:1111,1111,1111 5:11111,11111,311 5:11111,2111,221 6:111111,222,321 6:111111,21111,33 6:21111,222,222 6:111111,111111,42 6:222,33,33,42 6:111111,33,33,51 6:2211,2211,222 7: ,2221,43 7: ,331,331 7:2221,2221,331 8: ,3311,44 8:221111,2222,44 8:22211,22211,44 9:3321,333,333 9: ,333,54 9:22221,333,441 10: ,442,55 10:22222,3322,55 10:222211,3331,55 12: ,444,66 12:33321,3333,66 14: ,554,77 18: ,666,99 *8 rigidity d max (m 0 m P [O2, Proposition 8.1] m P p+1 ord m 3 idx m + 6, p 1 idx m + 3 [O6, Proposition 9.13] 2

70 67 7 Fuchs Riemann n n Fuchs Riemann Fuchs n Fuchs Deligne-Simpson quiver * m = (m j,ν 0 j p P (n p+1 1 ν n j m j,1 m j,2 m j,nj > 0, n > m 0,1 m 1,1 m p,1 > 0, (7.1 m 0,1 + + m p,1 (p 1n (7.2 n j m j,i = max{m j,ν i, 0} ν=1 ( : i= *1 Deligne-Simpson W. Crawley-Boevey [CB] P 1 (C/{c 0,..., c p } Deligne-Simpson (cf. [Ha2], [Ko2]

71 68 7 ν = 2, 3,..., n 1 #{(j, i Z 2 i 0, 0 j p, m j,i n ν} (p 1(ν (7.3 m k 2 (k, k ; k, k ; k, k ; k, k, (k, k, k ; k, k, k ; k, k, k, (2k, 2k ; k, k, k, k ; k, k, k, k, (3k, 3k ; 2k, 2k, 2k ; k, k, k, k, k, k. (7.4 Proof. n j φ j (t = max{m j,ν t, 0}, φj (t = n ( 1 t m j,1 ν=1 0 < t < m j,1 n n n j 0 1 m j,1 t φ j (t = φ j (t φ j (t < φ j (t (n = m j,1 n j, (, ν = 2,..., n 1 p #{i Z 0 φ j (i n ν} = j=0 p φ 1 j j=0 (n ν + 1 p ( φ 1 j (n ν + 1 j=0 p ( φ 1 j (n ν + 1 = p j=0 j=0 (νm j,1 (p 1ν + (p + 1 = (p 1(ν r r 2 ν n 1 ν (7.3 n + 1 φ 1 j (n ν Z (j = 0,..., p, n = m j,1 n j (j = 0,..., p, (p 1n = m 0,1 + + m p,1, (7.5 n = m j,1 n j m j,1 = = m j,nj = n n j p 1 = 1 n n p p+1 2 p = 2, 3 p = 3 n 0 = n 1 = n 2 = n 3 = 2 p = 2 1 = 1 n n n 2 p = 2 {n 0, n 1, n 2 } {3, 3, 3} {2, 4, 4} {2, 3, 6} (7.4 k 1 φ 1 1 j (n ν = φ j (n ν = νm j,1 n = ν n j Z (j = 0,..., p

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu rigidity 2014.9.1-2014.9.2 Fuchs 1 Introduction y + p(x)y + q(x)y = 0, y 2 p(x), q(x) p(x) q(x) Fuchs 19 Fuchs 83 Gauss Fuchs rigid rigid rigid 7 1970 1996 Nicholas Katz Rigid local systems [6] Fuchs Katz

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

all.dvi

all.dvi 29 4 Green-Lagrange,,.,,,,,,.,,,,,,,,,, E, σ, ε σ = Eε,,.. 4.1? l, l 1 (l 1 l) ε ε = l 1 l l (4.1) F l l 1 F 30 4 Green-Lagrange Δz Δδ γ = Δδ (4.2) Δz π/2 φ γ = π 2 φ (4.3) γ tan γ γ,sin γ γ ( π ) γ tan

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

webkaitou.dvi

webkaitou.dvi ( c Akir KANEKO) ).. m. l s = lθ m d s dt = mg sin θ d θ dt = g l sinθ θ l θ mg. d s dt xy t ( d x dt, d y dt ) t ( mg sin θ cos θ, sin θ sin θ). (.) m t ( d x dt, d y dt ) = t ( mg sin θ cos θ, mg sin

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de Riemann Riemann 07 7 3 8 4 ). π) : #{p : p } log ) Hadamard de la Vallée Poussin 896 )., f) g) ) lim f) g).. π) Chebychev. 4 3 Riemann. 6 4 Chebychev Riemann. 9 5 Riemann Res). A :. 5 B : Poisson Riemann-Lebesgue

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

Sturm-Liouville Green KEN ZOU Hermite Legendre Laguerre L L [p(x) d2 dx 2 + q(x) d ] dx + r(x) u(x) = Lu(x) = 0 (1) L = p(x) d2 dx

Sturm-Liouville Green KEN ZOU Hermite Legendre Laguerre L L [p(x) d2 dx 2 + q(x) d ] dx + r(x) u(x) = Lu(x) = 0 (1) L = p(x) d2 dx Sturm-Liouville Green KEN ZOU 2006 4 23 1 Hermite Legendre Lguerre 1 1.1 2 L L p(x) d2 2 + q(x) d + r(x) u(x) = Lu(x) = 0 (1) L = p(x) d2 2 + q(x) d + r(x) (2) L = d2 2 p(x) d q(x) + r(x) (3) 2 (Self-Adjoint

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia B2 ( 19) Lebesgue ( ) ( 19 7 12 ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purposes. i Riemann f n : [0, 1] R 1, x = k (1 m

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = ( 1 1.1 X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ) ( ) X 1,..., X n f 1,..., f r A T X + XA XBR 1 B T X + C T QC = O X 1.2 X 1,..., X n X i X j X j X i = 0, P i

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α SO(3) 48 6 SO(3) t 6.1 u, v u = u 1 1 + u 2 2 + u 3 3 = u 1 e 1 + u 2 e 2 + u 3 e 3, v = v 1 1 + v 2 2 + v 3 3 = v 1 e 1 + v 2 e 2 + v 3 e 3 (6.1) i (e i ) e i e j = i j = δ ij (6.2) ( u, v ) = u v = ij

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T 0 2 8 8 6 3 0 0 Young Young [F] 0.. Young λ n λ n λ = (λ,, λ l ) λ λ 2 λ l λ = ( m, 2 m 2, ) λ = n, l(λ) = l {λ n n 0} P λ = (λ, ), µ = (µ, ) n λ µ k k k λ i µ i λ µ λ = µ k i= i= i < k λ i = µ i λ k >

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

III Kepler ( )

III Kepler ( ) III 9 8 3....................................... 3.2 Kepler ( ).......................... 0 2 3 2.................................. 3 2.2......................................... 7 3 9 3..........................................

More information