hvac-dpos_dif.eps

Size: px
Start display at page:

Download "hvac-dpos_dif.eps"

Transcription

1 11 C(α, p) 14 N Feasibility Study of the Experiment on the Stellar Reaction 11 C(α, p) 14 N

2 CRIB C (F1) F (Wien filter) MCP C F F F C i

3 Si (α, p) (α, p 0 ) MCP MCP Delay linemcp(microchannel Plate) / C MCP ii

4 O 11 C+α, 14 N+p Activation ( ) CRIB [11] () ( ) EC TOF, EC kin z θ Si F2 SSD F F (low gain) C Telescope 1 E-E Telescope 2 E-E PPAC assd 1(0-500 ns) PPAC assd 1 (a) (b) ( ns) PPAC assd 2 (0-500 ns) MCP PPAC apsd 1 ( ns) iii

5 4.1 MCP/ MCP/ MCP MCP2 (Run 28) MCP (Run 28) MCP PPAC (Run 28) iv

6 2.1 CRIB F2 SSD F3 PSD (α, p) 11 C Si RoentDek DLD MCP TDC MCP PPAC-MCP TOF PPACMCP v

7 11 C(α, p) 14 N( 0.2 GK)II 12 Cα CNO - 11 C 11 C(α, p) 14 N CNO 14 N(p, α) 11 C Activation 14 N 11 C 11 C(α, p) 14 N 14 N 23 CRIB(CNS Radioactive Isotope Beam separator) 11 C 11 C(α, p) 14 N Microchannel Plate (MCP) 11 C pps,99 %, 7.6 ± 0.6 MeV (α, p) 4 36 ArMCP MCP 1.19±0.08 mm 2.82±0.05 mm > 95 %5

8 % ( Population III)100 [1] [2](Population II) -(p-p), CNO CNO T 6 < 20 (T 6 = 1 1 MK ) Coulomb p-p 1 H(p, e + ν) 2 H p-p T 6 > 20 CNO CNO CNO p-p [1] 3p-p ; pp-i: 1 H(p, e + ν) 2 H(p, γ) 3 He( 3 He, 2p) 4 He, pp-ii: 3 He(α, γ) 7 Be(e, ν) 7 Li (p, α) 4 He, pp-iii: 3 He(α, γ) 7 Be(p, γ) 8 B (e + ν) 8 Be(α) 4 He He

9 MeV T 6 > 50 p-p pp-i 3 He( 3 He, 2p) 4 He pp-iii 3 He(α, γ) 7 Be(p, γ) 8 B T 6 > 30 7 Be 7 Be pp-ii T 6 > 50 ρ > 10 4 g/cm 2 8 BT 1/2 = 0.77s β + pp-ivt 9 > Be α 7 Be pp-v ; pp-iv: 7 Be(p, γ) 8 B(p, γ) 9 C(e + ν) 9 B (p) 8 Be(α) 4 He, pp-v: 7 Be(α, γ) 11 C(β + ν) 11 B (p, 2α) 4 He. p-pp-pa 11 CNO 9 C 11 C rap- rap-i: 7 Be(p, γ) 8 B(p, γ) 9 C(α, p) 12 N(p, γ) 13 O(e + ν) 13 N(p, γ) 14 O, rap-ii: 7 Be(α, γ) 11 C(p, γ) 12 N(p, γ) 13 O(e + ν) 13 N(p, γ) 14 O, rap-iii: 7 Be(α, γ) 11 C(p, γ) 12 N(e + ν) 12 C(p, γ) 13 N(p, γ) 14 O, rap-iv: 7 Be(α, γ) 11 C(α, p) 14 N(p, γ) 15 O αa 12 rap-i ρ > 10 8 g/cm 3 T 1/2 = 1.26 ms 9 C(e + ν) 9 C(α, p) 12 N T 1/2 = min β + 11 C 11 C(p, γ) 12 N, 11 C(α, p) 14 N A 12 rap-ii, rap-iii, rap-ivrap- 14 O 15 O CNO rp-[3] rp- [4]p-p rap- 1.1 p-p rap- 11 C(α, p) 14 N rap-iv1.1 E 11 C(α, p) 14 N 1.1.a (4) C(α, p) 14 N 2

10 (a) (b) p-p, rp- 1.1: [1]: (a) β (1) 11 C(p, γ) = 11 C(e + ν), (2) 8 B(p, γ) = 8 B(e + ν), (3) 12 N(p, γ) = 12 N(e + ν), (4) 11 C(α, p) = 11 C(e + ν), (5) 8 B(α, p) = 8 B(e + ν), (6) 9 C(α, p) = 9 C(e + ν), (7) 7 Be(α, γ) = 7 Be(e, ν), (8) 13 O(α, p) = 13 O(e + ν), (9) 7 Be(p, γ) = 8 B(γ, p), (10) 11 C(p, γ) = 12 N(γ, p) (b)p-p( pp-ii: B, pp-iii: A, pp-iv: A, pp-v: C, rap-(rap-i: D, rapii: D, rap-iii: D, rap-iv: E, rp-: F, rap-iv T 9 < 3 11 Cα 15 O α MeV13 MeV 15 O 1.21 MeV 10 (α, p) α, pγ α, Γ p α α T 9 < 3 11 C(α, p) 14 N p-pwiescher 11 C(α, p) 14 NIngalls 14 N(p, α) 11 C [5] Ingalls 14 N 11 C β + Activation 14 N(α, p) 11 C 1.3.a 14 N(p, α) 11 C 1.3.b 3

11 Γ α π 1.2: 15 O 11 C+α, 14 N+p 11 C(α, p) 14 N Fowler [6] 11 C(α, p) 14 N σ α,p = E 1 αc exp( 2πη αc 0.555E αc 0.096E 2 αc ) (1.1) MeV η αc = 3.24E 1/2 αc Sommerfield E αc C+α 1.3 Activation 15% 4

12 10 3 Measurement FCZ-II 10 3 Measurement FCZ-II Total cross section [mb] Cross section [mb] E pn [MeV] E αc [MeV] (a) 14 N(p, α) 11 C (b) 11 C(α, p) 14 N 1.3: Activation[5]: (a)activation 14 N(p, α) 11 C FCZ-II Fowler15% (b) 11 C(α, p) 14 N T 9 =0.2, 0.5, 1.5, 3, 5 Gamow window 53 kev 1.3.bGamow window T T 9 = 3 11 C(α, p) 14 N 14 N E x = MeV, J π = 0 +, T = 1 11 C(α, p 1 ) 14 N WiescherSMOKER[7]Hauser- Feshbach 11 C(α, p 1 ) 14 N 11 C(α, p) 14 N 1.3 CRIB (CNS RadioIsotope Beam separator)[8]in-flight 11 C(α, p) 14 N 11 C 11 C(α, p) 14 N 14 N 5

13 IngallsActivation 15% 53keV kev MeV(T ) 10% C : 10 6 pps (α, p) :(α, p 0 ), (α, p 1 ) MCP (α, p) 4 36 ArMCP 5 6

14 2 11 C 2.1 CRIB CRIB(CNS RadioIsotope Beam separator)[8] (CNS)( 2.1) in-flight(ri) 2.1: ( ) AVF (K = 70)A/Z > 2 10 MeV/u (RI) (p, n) (d, p) ( 3 He, d) 2 CRIBDouble achromatic system (Q1 M1 D1 Q2D2 M2 Q3) (Wien filter system; Q4 Q5 E B Q6 Q7)2 (Q,M,D, E B )p qdouble achromatic system Bρ = p/q E B Lorentz qe = qvb v 7

15 NPRE SS M1 Q1 F0 D1 beam Q2 F1 D2 F2 E x B F3 M2 Q3 Q4 Q5 Q6 Q7 2.2: CRIB TOF (Time of flight) CRIB2.1 8

16 84-98 cm 110 Z 2 /A MeV 30 % 5.6 msr (F1) 1/850 (F2) 0 2.1: CRIB C 11 C 4.57 MeV/u (3.1.1 ) 1.3 eµa 11 B 3+ 1 H( 11 B, n) 11 C C ( 30 MeV)H 2 ( 1.2mg/cm 2 ) 11 C [11]( 2.3) K 80 mm2.87 µm Havar (3.1.2 ) 11 C 1.2 mg/cm 2 (400 Torr, 90 K, 80 mm) H 2 11 CLISE++[12] % % 9

17 gas flow bypass to the chamber oxygen analyzer target gas in evacuation port N2 out Liquid N 2 level meter Liquid N 2 in isolation vacuum heat exchanger (coiled pipe) flow control valve 900 pump for gas f low (30 L/min) gas cell with Havar foil windows heat bath beam 2.3: [11] (F1) F1 ( ) 11 C Tm±5% (±80 mm) F1PPAC (Parallel Plate Avalanche Counter) [13] F2 Double achromaticf2 F0-F2 F0Bρ q/a F0-F2 10

18 RF (Radio Frequency) F2 PPAC PPAC Si PPAC Z (Wien filter) (Wien filter)[8] % 100 % 30 MeV 11 C 6+ ±70 kv 11 B 5+ F3 6 cm E C =3-12 MeV (E CM = MeV) 0.34 mg/cm 2 (775 Torr,20 mm,293 K) (2.3.1 ) 2.56 µm(3.1.5 ) Havar 11 C 8.2 MeV 8.2 MeV 5.4 MeVHavar 2.2 GK Gamow window 850 MK Gamow window 11 C(α, p 0 ) (α, p 1 ) 1 MeV B 3+ : I = 1.3eµA = [s 1 ] [14]: : dσ/dω 10 [mb/sr] (0,) Ω LAB = 5.6 [msr] Ω CM = 1.2 [sr] : ρ = 1.15 [mg/cm 2 ] : N A = [mol 1 ] : A = 1.00 [g/mol] Y total I dσ dω Ω CM ρ N A /A s 1 (2.1) 11

19 11 C % F % %40-60 % Y target s [16] CRIB 1 H( 11 C, p) 11 C, 1 H( 13 N, p) 13 N[17, 18] 4 He( 14 O, p) 17 F [19] (α, p) E E [16] E+ E/2 σ(e ) Y (E) = I(E) E E/2 ɛ(e ) de (2.2) I(E)σ(E)ɛ(E) = de/dn n σ(e), ɛ(e) E(effective thickness) 3E + E/2 E E/2 dσ/dωn events N beam 12

20 n ef Ω dσ N (E, Ω) = dω events (E, Ω) N beam n ef (E) Ω (2.3) 2.4 σ Ω 2.4: , 2.6 2PPAC PPAC a, PPAC bppac bmcp2 13

21 Si E-E 2 Telescope 1Telescope 2 E-E2 PSD SSD 2 PSD 1, SSD1 (Telescope 1), PSD 2, SSD 2 (Telescope 2) SiMCP 2.5:() 14

22 2.6:( ) 15

23 2.3.1 φ20 mm 20 mm 2.56 µm (3.1.5 ) Havar0.171 mg/cm 2 (775 Torr, 273 K) (CH 2 ) () 1 mm PPAC PPAC PSD mm Si21 E-E E-E (Telescope 1) (Telescope 2) PSD (Position sensitive Detector)2 62 µm (PSD 1), 1.5 mm (SSD 1) 64 µm (PSD 2), 1.5 mm (SSD 2) mm 2 64 µm 62 µm 2.42 MeV 2.37 MeV C(α, p) 14 N θ p 11 C E C E p = m C m p (m α + m N ) 2 ( ) 2 cos θ p + γ 2 sin 2 θ p E C, (2.4) γ = mc m p m α m N E αc E αc + Q (2.5) m C m p m α m N 11 C p α 14 NE αc α+ 11 C Q α( 11 C, p) 14 N Q 16

24 tan θ p CM = sin θ p cos θ p 1 cos θ p+ γ 2 sin 2 θ p (2.6) θ p E p, θ p 2.4, 2.5( E CM 30 kev) E αc 0 θ p E αc TOF E C TOF (z) E C kin(z) E C E TOF C PPAC a-b (PPAC a-mcp ) TOF PPAC a-rf TOF 2PPAC 0.5 nsppac a b t ns PPAC a-b510 mm PPAC 21.5 MeV t 26 ns E/E 2 t/t E 1.2 MeV t 2-3 ns F0-PPAC a 13 m F0-PPAC a 30 MeVt 570 ns E 0.3 MeV 4 PPAC a-rf PPAC a, PPAC b(mcp) 4 He ATIMA[20]FWHM 150 kev, 120 kev, 80 kev, 56 kev 4 He E 365 kev, E 370 kev E CM 100 kev E p Si Si (5 MeV α ) kev 4 He HavarKeV 2.7 TOF370 kev Si 100 kev E TOF C (z)() E kin(z)()(a)-(d) C θ 0 = 0, θ 0 = 30, θ 0 = 60, θ 0 = 90 E kin C (z) Ekin C (0) = 6.5 MeV Ziegler [21] enewz E TOF C ze kin C 17

25 z E p z θ 0 = 90 z E C E TOF C E kin C E αc θ 0 E αc = 2.00, 1.73, 1.46 MeV kev 18

26 8 E kin E TOF 8 E kin E TOF Energy [MeV] Energy [MeV] z [mm] z [mm] (a) θ 0 = 0 (b) θ 0 = 30 8 E kin E TOF 8 E kin E TOF Energy [MeV] Energy [MeV] z [mm] z [mm] (c) θ 0 = 60 (d) θ 0 = : EC TOF, EC kin z : E C kin(z)tof E TOF C (z)e C kin E kin E TOF C E kin C (z) Ekin C (0) = 6.5 MeV ETOF C (z) C (10mm) Ekin C ( 10mm) + Ekin C MeV ETOF C (z) 19

27 MeV 1.73 MeV 1.46 MeV 40 Energy resolution [kev] angle [deg] 2.8: θ MCP PPACPPAC MylarSi (α, p) 0 0 PPAC a( b) TDC PSD( SSD) (α, p) ns PPAC MCPMyalrPPAC MCP 4 36 ArMCP / 20

28 MCP Si2.9Si Pre Amplifier 2.9: Si (PA)Fast Amplifier (FA), Shaping Amplifier (SA) FA Constant Fraction Discriminator (CFD) PSD 2 X,Y 16 X CFDOR PSD1 RI PPAC 5 X,Y Scaler Coincidence registerbeam/n ➀PPAC a, b PPAC 100% a, b 21

29 PPACa PPACb Pile-up flag Beam Beam&PSD flag Beam&PSD Beam/n Beam-single flag 2.10: PPAC a➁500 ns ADC TDC busy2 PPACPile-upBeamBeam 2 ➂ Down scalerbeam/n➃ SiCoincidence ➄ T rigger = Beam/n + ( i P SD i ) Beam, (2.7) Beam = (P P ACa) (pile up), n = n Beam/n ( i P SD i) Beam 22

30 n = RTLinux CAMAC/VME BabarlDAQ[22] BabarlDAQ Collector, Driver, Transfer, Database, Controller, Recorder, Analyzer Collector Driver, TransferPC Database () Controller ControllerBabarlDAQ Recorder Transfer Analyzer Anapaw Database Collector Driver Transfer Driver CAMACTransfer Recorder Database Anapaw[23] Anapaw /Analys Cernlib paw[24] Babarl 23

31 C B 3+ F1 PPAC D1 Bρ = Tm x = 1.21 mmdx/(dbρ/bρ) = 16 mm/% Bρ/Bρ = 0.076%, E = ± 0.04 MeV (4.572 ± MeV/u ) F2 F2 SSD 2 α ( 241 Am; MeV, 244 Cm; MeV) 3.1 HavarH 2 PPAC Bρ = Tm±0.625% Si PPAC PPACRFF0-F2TOF(Time of flight) PPAC 11 C MeV±12.5%, 11 B MeV±12.5% 24

32 Particle Materials Channel Energy [MeV] y = *x , R 2 = measurement α α C C H C H+G C P C P+H C P+H+G : F2 SSD Energy [MeV] Channel 3.1: F2 SSD H 2Havar (4.424mg/cm 2 ) G H 2 (400Torr) P PPAC(13.8µm Mylar ) PPAC PPAC F mg/cm 2 (400Torr, 90K, 80mm) F1 Gauss Tm ±6.6 % 27.4±3.6 MeV ±1.6 MeV 4.4 MeV Bρ = Tm F1 ±10 mm ( 30.19±0.38 MeV) 0.86 mg/cm 2 (300 Torr, 90 K, 80 mm) F3 F3 PPAC arf TOF RF PPAC a-ppac btof PPACs TOF PPACs 11 C ns 11 B ns 3.3 F3 11 C 35.1 % 11 B 53.3 % ±70 kv 99.7 % 11 C 25

33 Energy after a PPAC [MeV] TOF RF [ns] 3.2: F2 : Bρ = Tm±0.625 % F0- F2PPAC PPAC 11 C MeV±12.5 %, 11 B MeV±12.5 %RF 75.6 ns TOF PPACs [ns] TOF PPACs [ns] TOF RF [ns] (a) TOF RF [ns] (b) 3.3: F3 : Bρ = Tm±0.625 %PPAC a-b (TOF PPACs ) PPAC a-rf (TOF RF )TOF PPAC 11 C ns, 11 B ns(tof PPAC 2 ns ) 26

34 He SiPPAC b Havar 4 He PSD1 (Low gain) 3 α PPAC a, PPAC b, Havar PPAC a, PPAC b, Havar 25 R 2 = PPAC a, b Havar 14.7 µm(mylar ), 10.7 µm(mylar ), 2.65 µm 40 y = *x , R 2 = measurement Energy [MeV] Channel 3.4: (low gain) 3.5 Gauss 7.6 MeV1.2 MeV 27

35 Particle Bρ Materials Channel Energy [Tm] [MeV] 11 B A+B α B A+H C A+H+H α α B H+H C A+B B A B A C A+H B B B H C H+H C A C A B C B C H C B A+B B A B B B H B : F3 PSD1: A PPAC a B PPAC b H Havar 28

36 Counts / 29 Constant Mean E-02 Sigma E Beam Energy [MeV] 3.5: 11 C : Gauss C 2.7 Beam/nPSD ( i P SD i) BeamSi P ile up Beam coincidence BeamPPAC a b Beam Beam/n n = (α, p) Beam/n Ungated Gated Dead time = 1 Gated Ungated (3.1) 80, , 000 = /20, 690 = pps pps PPAC a, b Gauss28 mm, 16 mm 29

37 Y [mm] Counts Run Time Beam/n U ngated Gated Dead time No. [sec] ( ) [%] 21 8,327 29, , , ,020 5,454 22,912 22, ,019 5,436 22,648 22, ,324 40, , , total 20,690 80, , , : (α, p) 11 C φ20 mmppac a, b 11 C 43 % X [mm] Counts 3.6: 30

38 F1 11 B 3+, 4.6 MeV/u,1.3 eµa 11 B(p, n) 11 C 0.86 mg/cm 2 (300 Torr, 90 K, 80 mm) 75 slm 1.25% (E11 C6+=30.19±0.38 MeV) ±70 kv F Tm±6.6% (1.15 mg/cm 2, 300 Torr, 90 K, 80 mm) F2 11 C 6+ :38 %, 11 B 5+ :55 % F2-F3 18 %(Wien Filter off), 18 %(Wien Filter on) F3 11 C 6+ :99 % 7.6 ± 0.6 MeV 28 mm 16 mm (FWHM) pps 3.4: Torr10 % F2-F3 18 %43 % Si Si 3 α( 237 Np; MeV, 241 Am; MeV, 244 Cm; MeV) α 3Gauss 3 5 MeV α 3 Gauss

39 Telescope 1 Telescope 2 FWHM[keV] FWHM[keV] PSD SSD Total : Si , 3.8 Telescope 1,2 E-E res Telescope 1 α, 3 He 32

40 E res [MeV] 6 E res [MeV] E [MeV] Proton Deuteron Triton 3 Heα E [MeV] E [MeV] 3.7: Telescope 1 E-E Proton Deuteron Triton 3 Heα E res [MeV] E [MeV] E [MeV] 3.8: Telescope 2 E-E 33

41 500 ns (α, p) PPACMylar 0-10 PPAC SSD Time between PPAC a and SSD 1 [ns] Proton energy [MeV] 3.9:PPAC assd 1(0-500 ns) Time between PPAC a and SSD 1 [ns] ns TOF between PPAC a and SSD 1 [ns] ns (α,p 1 ) PPAC b 2.5 m away from PPAC a (α,p 0 ) PPAC a Proton energy [MeV] (a) Proton energy [MeV] (b) 3.10:PPAC assd 1 (a)(b) ( ns) 34

42 Time between PPAC a and SSD 2 [ns] PPAC apsd ns ns RF 75.6 ns 3.10.a ns (α, p 0 ), (α, p 1 ), PPAC a, PPAC b, PPAC a2.5 m( ) 3.10.b TDC Gate PPAC a, b (α, p 0 ) (α, p 1 ) PPAC bppac a2.5 m E p [MeV] 3.11:PPAC assd 2 (0-500 ns) (α, p) E p + E p /2E p E p /2 E beam + E beam /2 E beam 35

43 E beam /2 E beam (E p ) ρ ef (E beam )E beam R(E beam ) ρ ef (E beam ) = R(E beam + E beam /2) R(E beam E beam /2) (3.2) mg/cm 2 4 He 7.6 MeV 11 C E p, E beam Int = 9.69e4 pps, time = sec, SA = 50.**2/219.**2 sr, EX0 = 7.6 MeV, ltgt = 20. mm, P = 775. Torr, C energy [MeV] proton energy [MeV] Effective thickness [mg/cm 2 ] Energy [MeV] 3.12: : 11 C (α, p 0 ) 3.10(a)(α, p 0 ) 7±3 1.1 Ingalls Ω EN p 2.3 N p = dσ dω Ω N C ρ ef N Avo /A α σ Ω CM /4π N C ρ ef N Avo /A α (3.3) dσ/dωn C 11 C ρ ef N Avo = mol 1 Avogadro A α = He 3.3 Ingalls 11 C(α, p 0 ) 14 N ( 1.1) E p = 100 MeV ( 36

44 ) Ω CM = 50 msr3.1.6 I = A = ±3 Int = 9.69e4 pps, time = sec, SA = 50.**2/219.**2 sr, EX0 = 7.6 MeV, ltgt = 20. mm, P = 775. Torr 10 11c4he.dat u 4:5 1 Yield proton Energy [MeV] 3.13: MCP PPAC MCP3.14 PPAC b (α, p 1 ) 37

45 TOF between PPAC a and SSD 1 [ns] ns TOF between PPAC a and SSD 1 [ns] ns (α,p 1 ) PPAC b (α,p 0 ) PPAC a m away from PPAC a Proton energy [MeV] Proton energy [MeV] (a) (b) 3.14: MCP PPAC apsd 1 ( ns) 38

46 4 MCP MCP MCP 11 C(α, p) 14 N 3.66 MeV/u 36 Ar Delay linemcp(microchannel Plate) MCP(Microchannel Plate)µm ( ) 2MCP Chevron 2400 V 10 7 MCP (Delay-line anode) MCP RoetDek MCPX / DLD40 [25] MCP MCP 2MCP 1 mm1 2 ( signal, reference ) ( 1, 2 )2 8 (X signal 1, X reference 1, X signal 2, X reference 2, Y signal 1, Y reference 1 Y signal 2, Y reference 2 ) signal reference 36 V (12V 3) 4(X 1, X 2, Y 1, Y 2 ) Constant-fraction discrminator (CFD) Time-todigital convertor (TDC) CFDRoentDekATR19 39

47 <0.1 mm 0.2 mm 1 MHz 20 ns 47 mm 1.5 mm 25 µm 32 µm 7 ± 2 >50 % < mbar (2 MCP, Chevron ) (2400 V ) V 4.1: RoentDek DLD40 40

48 4.1.2 / MCP / MCP 5 4.1MCP X Y 11 C(α, p) 14 N6 µm Al 36 Ar MCP0.7 µm Al Mylar/MCP CsI CsI kV 10 ev 1 kv50 mm 1 mm 3 1, kV MCP 1 4 MCP mm 4 MCP kv-1.6 kv 5 X 1 X 2 (Y 1 Y 2 ) MCP RC ( RC ) ATR19CFD 41

49 4.1: MCP/ 42

50 y φ x CsI Ω MCP φ X 1 X 2 Y 1 Delay-line anode Y 2 Ω 4.2: MCP/ 43

51 PPAC, MCP, PSD(Si φ φ φ φ 4.3: : PPAC, MCP, PSD PPAC PSD MCP MCP ) 36 ArPSD PSD mm Double-sided stripsmcpppac PSD PPAC PPAC, MCP, PSD PSD 1.1 µm Mylar 0.35 mg/cm 2 PSD / 4.2 Run MCPV MCP Run V ac = V MCP V foil Run V dly Run Run 22 PSDRun PSD 44

52 Run no. V ref [kv] V foil [kv] V mcp [kv] V dly [V] PPAC counts[k] : MCP TDCTime calibrator 20ns 5 X 1, X 2, Y 1, Y 2, RCTDC ps 45

53 Y [mm] [ps/channel] X ± 0.04 X ± 0.05 Y ± 0.04 Y ± 0.06 MCP-RC ± : TDC T x1, T x1, T x1, T x1 T x = T x1 T x2, T y = T y1 T y2 x = k x T x + x 0, (4.1) y = k y T y + y 0. (4.2) k x, k y, x 0, y run 28 PPAC PSD MCP 2 (x int, y int ) =(-15,0), (-10,-10), (-10,0), (-10,10), (0,-15), (0,-10), (0,0), (0,10), (0,15), (10, X [mm] 4.4: MCP 10), (10,0), (10,10), (15,0) 131 1mm MCP 46

54 xy4.5 k x = 0.62±0.01[mm/ns], k x = 0.67±0.01[mm/ns], x 0 = 4.2±1.2[mm], y 0 = 10.3 ± 1.5[mm]MCP X [ns] -> X [mm] Y[mm] = *Y[ns] , R 2 = Run22 Run23 Run25 Run X [ns] -> X [mm] Y[mm] = *Y[ns] , R 2 = Run22 Run23 Run25 Run X [mm] 0 X [mm] X [ns] (a) x[ns] x[mm] X [ns] (b) y[ns] y[mm] 4.5: 4.6 x y V ac V ref V ac y 47

55 Y [mm] Counts Counts X [mm] 4.6: MCP(Run 28):2x, y 48

56 2 X differnce Y diffrence 1.5 Position defference from interpolation [mm] HV [V] 4.7: MCP 5 mm x 10 mm, 5 mm y 10mm 4.4 PPAC 1.0 mm [13] PSD 0.76 mm MCP θ MCP, θ ICfoil, θ ICgas PSD Gauss ATIMA θ MCP = 3.27 mrad, θ ICfoil = 4.19 mrad, θ ICgas = 6.21 mrad 4.9 MCP0.6 mmppac-mcpmcp-psd 180 mm, 342 mmppac 1.0±0.2 mm MCP 0.6±0.2 mm MCP x, y x = ( /522 2 (1.0 ± 0.2) / (0.6 ± 0.2) 2 ) 1/2 = 1.19 ± 0.08 mm, (4.3) y = ( /522 2 (1.0 ± 0.2) / (0.6 ± 0.2) 2 ) 1/2 49

57 Counts / 103 Constant Mean E E-02 Sigma E / 130 Constant Mean E-02 Sigma E Counts x MCP - x interpolation [mm] y MCP - y interpolation [mm] 4.8: MCP (Run 28) θ MCP θ foil + θ gas 4.9: MCP = 2.82 ± 0.05 mm (4.4) x y x x y 50

58 Run no. FWHM x [mm] FWHM y [mm] ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± : MCP MCP PPAC MCP TOF T x1, T x2, T y1, T y2 PPAC PPAC 0.2 %PPAC, MCP 4.5 V ac (= V MCP V foil ), V delay ps PPAC500±100 ps [13] MCP 720±70 ps 51

59 Y [mm] Run no. [ps] ± ± ± ± ± ± ± ± ± ± ± : PPAC-MCP TOF PPAC 5 mm MCPPPAC % Y [mm] X [mm] X [mm] (a) PPAC (b) PPACMCP : PPAC (Run 28) 52

60 Run no. PPAC MCP [%] ± ± ± ± ± ± ± ± ± ± ± : PPACMCP 53

61 C 4.57 Mev/u,1.3 eµa 11 B mg/cm 2 (300 Torr, 90 K, 80 mm) pps C F1 F2-F3 1.3eµA10 F1 10 % 2-3 F2-F3 18 % 240 % Ingalls (α, p 0 ) 40 % Ingalls (E C = MeV) 2 E C = MeV 1.0 mg/cm 2 4 He 293 K 760 Torr 60 mm pps MeV1.0 mg/cm ±0.1 MeV 100(10%)(α, p 1 ) 54

62 (α, p) PPAC b (α, p) PPAC b MCP F3 11 C B 5+ 6 cm 3 cm 5.4 MCP 3.2.6MCP (α, p 1 ) PPAC b 4 x 1.19±0.08 mm y 2.82±0.05 mm720±70 ps 95% Si y 0 y 2.82 mm y1 y x 2 MCP xy y x MCP 2 2 ( 10 6 pps) 55

63 MCP MCP 56

64 [1] M. Wiescher et al., The Hot Proton-proton Chains in Low-metallicity Objects, Astro. J., 343(1989)352. [2] N. Iwamoto et al., The First Chemical Enrichment in the Universe and the Formation of Hyper Metal-poor Stars, Sci. 309(2005)451. [3] R.K. Wallace and S.E. Woosley, Explosive Hydrogen Burning, Astrophys. J. Suppl. Ser. 45(1981)389. [4] S. Wanajo, The rp-process in Neutrino-driven Winds, Astrophys. J, 647(2006)1323. [5] P.D. Ingalls et al., 14 N(p, α) 11 C Cross Sections from 3.8 to 6.4 MeV, Phys. Rev. C 13(1976)524. [6] W.A. Fowler, G.R. Caughlan, B.A Zimmerman, Thermonuclear Reaction Rates, II, Ann. Rev. Astron. Astrophys. 13(1975)69. [7] F.K. Thielemann et al., Thermonuclear Reaction Rates from Statistical Model Calculations, Advances in Nuclear Astrophysics, p525 [8] Y. Yanagisawa et al., Low-energy Radioisotope Beam Separator CRIB, Nucl. Inst. and Meth.A, 539(2005)74. [9] M.S. Smith and K.E.Rehm Nuclear Astrophysics Measurement with Radioactive Beams, Annu. Rev. Nucl. Part. Sci. 51(2001) [10] S.Kubono et al., New Low-energy RIB separator CRIB for Nuclear Astrophysics Eur. Phys. J. A 13(2002)217. [11] H. Yamaguchi et al., Development of a Cryogenic Gas Target System for Intense Radioisotope Beam Production at CRIB Nucl. Inst. and Meth., submitted. [12] LISE++, A simulation of fragment separators, [13] H. Kumagai et al., Delay-line PPAC for High-energy light ions, Nucl. Inst. and Meth. A 470(2001)

65 [14] L. Van Der Zwan and K.W.Geiger, The 11 B(p, n) 11 C Cross Section from Threshold to 4.9 MeV, Nucl. Phys. A 306(1978)45. [15] K.P. Artemov el al., Effective Method of Study of α-cluster States, Sov. J. Nucl. Phys., 52(1990)408. [16] S. Kubono et al., Experimantal Determination of Astrophysical Reaction Rates With Radioactive Nuclear Beams, Nucl. Phys. A, 693(2001)221. [17] T. Teranishi et al, Study of Resonance States in 12 N Using a Radioactive Ion Beam of 11 C, Phys. Let. B, 556(2003) [18] T. Teranishi et al, Single-particle Resonance Levels in 14 O Examined by 13 N + p Elastic Resonance Scattering, Phys. Let. B, 650(2007) [19] M. Notani et al., Direct Measurement of the Astrophysical Reaction 14 O(α, p) 17 F Nucl. Phys. A 746(2004)113. [20] H. Weick, ATIMA, weick/atima/ [21] J.F. Ziegler, J.P. Biersack and U. Littmark, The Stopping and Range of Ions in Solids, Pergamon Press, New York (1985). [22] H. Baba et al., RIKEN Accel. Prog. Rep. 34(2001)221. [23] T. Takeuchi, ANAPAW, takesato/anapaw/anapaw.html. [24] PAW, phisics analysis workstation, CERN, [25] RoentDek, MCP Detector With Delay-line Anode, 58

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

Canvas-tr01(title).cv3

Canvas-tr01(title).cv3 Working Group DaiMaJin DaiRittaikaku Multiparticle Jiki-Bunnsekiki Samurai7 Superconducting Analyser for Multi particles from RadioIsotope Beams with 7Tm of bending power (γ,n) softgdr, GDR non resonant

More information

untitled

untitled TOF ENMA JAEA-RMS) TOF Pre-scission JAERI-RMS (m-state 16 O + 27 Al 150MeV d TOF Nucl. Phys. A444, 349-364 (1985). l = m d Pre-scission Scission 10-19 (Post_scission) (Pre-scission) Proton_fission Alpha_fission

More information

untitled

untitled --- = ---- 16 Z 8 0 8 8 0 Big Bang 8 8 s-process 50 r-process 8 50 N r-process s-process Hydrogen 71% Helium 8% Others 1.9% Heay 4-4% lements(>ni p-process (γ process? r-process s-process Big Bang H,He

More information

main.dvi

main.dvi MICE Sci-Fi 2 15 3 7 1 1 5 1.1 MICE(Muon Ionization Cooling Experiment)............. 5 1.1.1........................... 5 1.1.2............................... 7 1.1.3 MICE.......................... 10

More information

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10 1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10 14 m) ( 10 10 m) 2., 3 1 =reaction-text20181101b.tex

More information

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 19 Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 1 1 1.1 γ ΛN................. 1 1.2 KEK J-PARC................................ 2 1.2.1 J-PARC....................................

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE 21 2 27 Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE ) Bethe-Bloch 1 0.1..............................

More information

Undulator.dvi

Undulator.dvi X X 1 1 2 Free Electron Laser: FEL 2.1 2 2 3 SACLA 4 SACLA [1]-[6] [7] 1: S N λ [9] XFEL OHO 13 X [8] 2 2.1 2(a) (c) z y y (a) S N 90 λ u 4 [10, 11] Halbach (b) 2: (a) (b) (c) (c) 1 2 [11] B y = n=1 B

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

untitled

untitled N0 N8 N0 N8 N0 * 49MeV/nuceon β 0.3c γ Hgh Z Target Pb Equvaent Photon Method 0 d σ dωde σ π γ γ π E 3 γ [!! ] dnπ σ dω π γ Eγ c h C.A.Bertuan and G.Baur Phys.Rep.63,99 988. J.D. Jackson Cassca Eectrodynamcs

More information

Donald Carl J. Choi, β ( )

Donald Carl J. Choi, β ( ) :: α β γ 200612296 20 10 17 1 3 2 α 3 2.1................................... 3 2.2................................... 4 2.3....................................... 6 2.4.......................................

More information

mthesis.dvi

mthesis.dvi Study of multiple electron transfer processes to Highly charged ions with microcapillary targets : 96941 2001/01/19 1 5 1.1... 5 1.2... 6 1.2.1... 6 1.2.2 Classical over barrier(cob)... 7 1.2.3... 8 1.3...

More information

From Evans Application Notes

From Evans Application Notes 3 From Evans Application Notes http://www.eaglabs.com From Evans Application Notes http://www.eaglabs.com XPS AES ISS SSIMS ATR-IR 1-10keV µ 1 V() r = kx 2 = 2π µν x mm 1 2 µ= m + m 1 2 1 k ν = OSC 2

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete J-PARC E15 (TGEM-TPC) TGEM M1 ( ) J-PARC E15 TPC TGEM TGEM J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

修士論文

修士論文 SAW 14 2 M3622 i 1 1 1-1 1 1-2 2 1-3 2 2 3 2-1 3 2-2 5 2-3 7 2-3-1 7 2-3-2 2-3-3 SAW 12 3 13 3-1 13 3-2 14 4 SAW 19 4-1 19 4-2 21 4-2-1 21 4-2-2 22 4-3 24 4-4 35 5 SAW 36 5-1 Wedge 36 5-1-1 SAW 36 5-1-2

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

1 1 2 2 3 3 RBS 3 K-factor 3 5 8 Bragg 15 ERDA 21 ERDA 21 ERDA 21 31 31 33 RUMP 38 42 42 42 42 42 42 4 45 45 Ti 45 Ti 61 Ti 63 Ti 67 Ti 84 i Ti 86 V 90 V 99 V 101 V 105 V 114 V 116 121 Ti 121 Ti 123 V

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

B

B B07557 0 0 (AGN) AGN AGN X X AGN AGN Geant4 AGN X X X (AGN) AGN AGN X AGN. AGN AGN Seyfert Seyfert Seyfert AGN 94 Carl Seyfert Seyfert Seyfert z < 0. Seyfert I II I 000 km/s 00 km/s II AGN (BLR) (NLR)

More information

2005 4 18 3 31 1 1 8 1.1.................................. 8 1.2............................... 8 1.3.......................... 8 1.4.............................. 9 1.5.............................. 9

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

25 3 4

25 3 4 25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W

More information

24 10 10 1 2 1.1............................ 2 2 3 3 8 3.1............................ 8 3.2............................ 8 3.3.............................. 11 3.4........................ 12 3.5.........................

More information

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................

More information

untitled

untitled masato@icrr.u-tokyo.ac.jp 996 Start 997 998 999 000 00 00 003 004 005 006 007 008 SK-I Accident Partial Reconstruction SK-II Full reconstruction ( SK-III ( ),46 (40%) 5,8 (9%),9 (40%) 5MeV 7MeV 4MeV(plan)

More information

thesis.dvi

thesis.dvi 3 17 03SA210A 2005 3 1 introduction 1 1.1 Positronium............ 1 1.2 Positronium....................... 4 1.2.1 moderation....................... 5 1.2.2..................... 6 1.2.3...................

More information

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

反D中間子と核子のエキゾチックな   束縛状態と散乱状態の解析 .... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2 . Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state? . D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

natMg+86Krの反応による生成核からのβ線の測定とGEANTによるシミュレーションとの比較

natMg+86Krの反応による生成核からのβ線の測定とGEANTによるシミュレーションとの比較 nat Mg+ 86 Kr の反応による生成核からの β 線の測定と GEANT によるシミュレーションとの比較 田尻邦彦倉健一朗 下田研究室 目次 実験の目的 nat Mg+ 86 Kr 生成核からの β 線の測定 @RCNP 実験方法 実験結果 GEANT によるシミュレーション 解析 結果 まとめ 今後の課題 実験の目的 偏極した中性子過剰 Na アイソトープの β-γ-γ 同時測定実験を TRIUMF

More information

2004 A1 10 4 1 2 2 3 2.1................................................ 3 2.2............................................. 4 2.3.................................................. 5 2.3.1.......................

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV]

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV] 3 PET 3-1 PET 3-1-1 PET PET 1-1 X CT MRI(Magnetic Resonance Imaging) X CT MRI PET 3-1 PET [1] H1 D2 11 C-doxepin 11 C-raclopride PET H1 D2 3-2 PET 0 0 H1 D2 3-1 PET 3-2 PET ( : CYRIC ) ( 0 ) 3-1-2 (3-1

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

rcnp01may-2

rcnp01may-2 E22 RCP Ring-Cyclotron 97 953 K beam K-atom HF X K, +,K + e,e K + -spectroscopy OK U U I= First-order -exchange - coupling I= U LS U LS Meson-exchange model /5/ I= Symmetric LS Anti-symmetric LS ( σ Λ

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

1-x x µ (+) +z µ ( ) Co 2p 3d µ = µ (+) µ ( ) W. Grange et al., PRB 58, 6298 (1998). 1.0 0.5 0.0 2 1 XMCD 0-1 -2-3x10-3 7.1 7.2 7.7 7.8 8.3 8.4 up E down ρ + (E) ρ (E) H, M µ f + f E F f + f f + f X L

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

CdTe γ 02cb059e :

CdTe γ 02cb059e : CdTe γ 02cb059e : 2006 5 2 i 1 1 1.1............................................ 1 1.2............................................. 2 1.3............................................. 2 2 3 2.1....................................

More information

news

news ETL NEWS 1999.9 ETL NEWS 1999.11 Establishment of an Evaluation Technique for Laser Pulse Timing Fluctuations Optoelectronics Division Hidemi Tsuchida e-mail:tsuchida@etl.go.jp A new technique has been

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

LEPS

LEPS LEPS2 2016 2 17 LEPS2 SPring-8 γ 3 GeV γ 10 Mcps LEPS2 7 120 LEPS Λ(1405) LEPS2 LEPS2 Silicon Strip Detector (SSD) SSD 100 µm 512 ch 6 cm 3 x y 2 SSD 6 3072 ch APV25-s1 APVDAQ VME APV25-s1 SSD 128 ch

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

03J_sources.key

03J_sources.key Radiation Detection & Measurement (1) (2) (3) (4)1 MeV ( ) 10 9 m 10 7 m 10 10 m < 10 18 m X 10 15 m 10 15 m ......... (isotope)...... (isotone)......... (isobar) 1 1 1 0 1 2 1 2 3 99.985% 0.015% ~0% E

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

FPWS2018講義千代

FPWS2018講義千代 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 3つの究極の 宗教や神話 哲学や科学が行き着く人間にとって究極の問い 宇宙 世界 はどのように始まり どのように終わるのか 全てをつかさどる究極原理は何か 今日はこれを考えます 人類はどういう存在なのか Wikipediaより 4 /72 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 電子レンジ 可視光では中が透け

More information

0.1 I I : 0.2 I

0.1 I I : 0.2 I 1, 14 12 4 1 : 1 436 (445-6585), E-mail : sxiida@sci.toyama-u.ac.jp 0.1 I I 1. 2. 3. + 10 11 4. 12 1: 0.2 I + 0.3 2 1 109 1 14 3,4 0.6 ( 10 10, 2 11 10, 12/6( ) 3 12 4, 4 14 4 ) 0.6.1 I 1. 2. 3. 0.4 (1)

More information

untitled

untitled MPPC 18 2 16 MPPC(Multi Pixel Photon Counter), MPPC T2K MPPC T2K (HPK) CPTA, MPPC T2K p,π T2K > 5 10 5 < 1MHz > 15% 200p.e. MIP 5p.e. p/π MPPC HPK MPPC 2 1 MPPC 5 1.1...................................

More information

I II

I II I II I I 8 I I 5 I 5 9 I 6 6 I 7 7 I 8 87 I 9 96 I 7 I 8 I 9 I 7 I 95 I 5 I 6 II 7 6 II 8 II 9 59 II 67 II 76 II II 9 II 8 II 5 8 II 6 58 II 7 6 II 8 8 I.., < b, b, c, k, m. k + m + c + c b + k + m log

More information

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 + ( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n

More information

Muon Muon Muon lif

Muon Muon Muon lif 2005 2005 3 23 1 2 2 2 2.1 Muon.......................................... 2 2.2 Muon........................... 2 2.3................................. 3 2.4 Muon life time.........................................

More information

( ) : 1997

( ) : 1997 ( ) 2008 2 17 : 1997 CMOS FET AD-DA All Rights Reserved (c) Yoichi OKABE 2000-present. [ HTML ] [ PDF ] [ ] [ Web ] [ ] [ HTML ] [ PDF ] 1 1 4 1.1..................................... 4 1.2..................................

More information

1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21

1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21 1 3 KamLAND shimizu@awa.tohoku.ac.jp 014 ( 6 ) 1 31 1 KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR.1 ν e ν µ ν τ ν 1 ν ν 3 3 3 MNS m 1 = 7.5 10 5 ev m 31 m 3 =.3 10 3 ev 100 m ν e [1] 71 Ga SAGEGallex

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

RIBF

RIBF MEASUREMENT OF ISOCHRONISM OF RIBF CYCLOTRONS Ryo Koyama 1, A), B), Masaki Fujimaki A), Nobuhisa Fukunishi A), Akira Goto A), Masatake Hemmi A), Masayuki Kase A), Naruhiko Sakamoto A), Tamaki Watanabe

More information

05Mar2001_tune.dvi

05Mar2001_tune.dvi 2001 3 5 COD 1 1.1 u d2 u + ku =0 (1) dt2 u = a exp(pt) (2) p = ± k (3) k>0k = ω 2 exp(±iωt) (4) k

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

ELECTRONIC IMAGING IN ASTRONOMY  Detectors and Instrumentation   5 Instrumentation and detectors ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors 4 2017/5/10 Contents 5.4 Interferometers 5.4.1 The Fourier Transform Spectrometer (FTS) 5.4.2 The Fabry-Perot

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

C: PC H19 A5 2.BUN Ohm s law

C: PC H19 A5 2.BUN Ohm s law C: PC H19 A5 2.BUN 19 8 6 3 19 3.1........................... 19 3.2 Ohm s law.................... 21 3.3.......................... 24 4 26 4.1................................. 26 4.2.................................

More information

橡実験IIINMR.PDF

橡実験IIINMR.PDF (NMR) 0 (NMR) 2µH hω ω 1 h 2 1 1-1 NMR NMR h I µ = γµ N 1-2 1 H 19 F Ne µ = Neh 2mc ( 1) N 2 ( ) I =1/2 I =3/2 I z =+1/2 I z = 1/2 γh H>0 2µH H=0 µh I z =+3/2 I z =+1/2 I z = 1/2 I z = 3/2 γh H>0 2µH H=0

More information

Electron Ion Collider と ILC-N 宮地義之 山形大学

Electron Ion Collider と ILC-N 宮地義之 山形大学 Electron Ion Collider と ILC-N 宮地義之 山形大学 ILC-N ILC-N Ee Ee == 250, 250, 500 500 GeV GeV Fixed Fixed target: target: p, p, d, d, A A 33-34 cm-2 LL ~~ 10 1033-34 cm-2 ss-1-1 s s == 22, 22, 32 32 GeV GeV

More information

OHO.dvi

OHO.dvi 1 Coil D-shaped electrodes ( [1] ) Vacuum chamber Ion source Oscillator 1.1 m e v B F = evb (1) r m v2 = evb r v = erb (2) m r T = 2πr v = 2πm (3) eb v

More information

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X 4 4. 4.. 5 5 0 A P P P X X X X +45 45 0 45 60 70 X 60 X 0 P P 4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P 0 0 + 60 = 90, 0 + 60 = 750 0 + 60 ( ) = 0 90 750 0 90 0

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

Microsoft Word - 章末問題

Microsoft Word - 章末問題 1906 R n m 1 = =1 1 R R= 8h ICP s p s HeNeArXe 1 ns 1 1 1 1 1 17 NaCl 1.3 nm 10nm 3s CuAuAg NaCl CaF - - HeNeAr 1.7(b) 2 2 2d = a + a = 2a d = 2a 2 1 1 N = 8 + 6 = 4 8 2 4 4 2a 3 4 π N πr 3 3 4 ρ = = =

More information

untitled

untitled 27.2.9 TOF-SIMS SIMS TOF-SIMS SIMS Mass Spectrometer ABCDE + ABC+ DE + Primary Ions: 1 12 ions/cm 2 Molecular Fragmentation Region ABCDE ABCDE 1 15 atoms/cm 2 Molecular Desorption Region Why TOF-SIMS?

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21

Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21 Mathews Grant J. (University of Notre Dame) Boyd Richard N. (Lawrence Livermore National Laboratory) 2009/5/21 Abstract strongly interacting massive particles (SIMPs, X) Big Bang (BBN) X heavy colored

More information

NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter L

NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter L 19 P6 γ 2 3 27 NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter LaBr 3 (Ce) PMT 662keV 2.9% CsI(Tl) 7.1%

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

untitled

untitled 50cm 2500mm 300mm 15 CCD 15 100 1 2 3 4 23 SORA Kwak SeungJo 1 1.1 1995 20 2015 6 18 1931 1 2 3 2 ˆ 300mm 2500mm ˆ 2 1.2 WASP 1: 15 2048 2048 CCD 200mm 70 13 WASP 8 1.3 50cm 1 1: CCD 2: 1.4 MOST MOST 15

More information

[ ] [ ] [ ] [ ] [ ] [ ] ADC

[ ] [ ] [ ] [ ] [ ] [ ] ADC [ ] [ ] [ ] [ ] [ ] [ ] ADC BS1 m1 PMT m2 BS2 PMT1 PMT ADC PMT2 α PMT α α = n ω n n Pn TMath::Poisson(x,[0]) 0.35 0.3 0.25 0.2 0.15 λ 1.5 ω n 2 = ( α 2 ) n n! e α 2 α 2 = λ = λn n! e λ Poisson Pn 0.1

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1 ... 0 60 Q,, = QR PQ = = PR PQ = = QR PR = P 0 0 R 5 6 θ r xy r y y r, x r, y x θ x θ θ (sine) (cosine) (tangent) sin θ, cos θ, tan θ. θ sin θ = = 5 cos θ = = 4 5 tan θ = = 4 θ 5 4 sin θ = y r cos θ =

More information

untitled

untitled Tokyo Institute of Technology high-k/ In.53 Ga.47 As MOS - Defect Analysis of high-k/in.53 G a.47 As MOS Capacitor using capacitance voltage method,,, Darius Zade,,, Parhat Ahmet,,,,,, ~InGaAs high-k ~

More information