4 6 C345 ) ) 3) 4) Louvlle Schrödnger Hesenberg Redfeld NMR e-mal 37( 7-37) e-mal nobuyuk@scl.kyoto-u.ac.jp

Size: px
Start display at page:

Download "4 6 C345 ) ) 3) 4) Louvlle Schrödnger Hesenberg Redfeld NMR e-mal 37( 7-37) e-mal nobuyuk@scl.kyoto-u.ac.jp"

Transcription

1

2 4 6 C345 ) ) 3) 4) Louvlle Schrödnger Hesenberg Redfeld NMR e-mal 37( 7-37) e-mal nobuyuk@scl.kyoto-u.ac.jp

3 . NMR [,]

4 . 3. Gbbs

5 ..3 g/cm 3.7 g/cm 3...

6 Gbbs [3].Gbbs Clausus-Clapeyron [] 999 [] 997 [3]

7 . (soluton) (mxture) (sold soluton) (solvent) (solute) (solublty) (saturated soluton) kg (molarty) (molalty) kg kg

8 5 5 (chemcal potental). dq P V dv U du=dq-pdv (..) dq S dq=ds (..) (.) (.) du=ds-pdv (..3) (..3) (..3) S V U (..3) S V S (..3) d (..3) V A=U-S (..4) (Helmholtz free energy) A (..3) da=-sd-pdv (..5)

9 V (..5) (..3) P G=U+PV-S=A+PV (..6) (Gbbs free energy) G dg=-sd+vdp (..7) P (..7) N N µ N dn (..7) dg=-sd+vdp+ µdn (..8) (..8) P N (..4) (..6) (..8) G A U µ = = = (..9) N N N, P, V µ S, V

10 Gbbs Helmholtz (component) N N µ µ (.8) dg=-sd+vdp+µ dn +µ dn (..) dn µ A A µ (µ -µ A )dn µ A > µ A µ A < µ A A µ A = µ A (reactant) (product)

11 .3 x R µ µ = Rlnx +µ (.3.) µ x= x (.3.) x Rlnx µ x µ µ µ µ µ ( ) µ ( ) µ ( )µ ( ) µ ( )µ ( ) A A (.3.) A knetcs Rlnx A µ A

12 .4 N V (canoncal ensemble) (Hamltonan)H (partton functon)q P X H Q = dp dxexp (.4.) fn N! h k k (oltzmann constant) h (Planck constant) /N! N h f x yz 3 f=3 h Q A A = -k lnq (.4.) (.4.) (.4.) U (.4.) P (.4.) X Q = N! Λ N U dx exp k (.4.3)

13 /Λ (thermal de rogle wavelength) Λ Λ U (.4.3) (.4.3) (.4.) (.4.3) n N U u n W n Λλ Q(n,N)n y n U + W + u n n (, N ) = dxdy n N Λ k n N n exp!! λ Q n (.4.4) n N n nn+ µ Q(n+,N)Q(n,N) (.4.) µ = k = k Q n + log log nλ (, N ) Q( n, N ) dxdy n+ dxdy U + Wn+ + u exp k U + Wn + un exp k n n+ (.4.5) V ρ s (.4.5)

14 ( ) = = k u W U d d k u W U d d k k k u W U d d V k u W U d d k V n k n n n n n n s n n n n n n exp exp log log exp exp log log y X y X y X y X λ ρ λ µ (.4.6) (.4.6) log n+ (.4.6) n+ (.4.6) ( ) + = k U d k u U d k k s exp exp log log X X λ ρ µ (.4.7) (.4.7) X u (.4.67) L A = k U d k U A d A exp exp X X (.4.8) (.4.7) = k u k k s exp ln ln λ ρ µ (.4.9) (.4.6)

15 (.4.6) Λ (.4.9) µ = k ln ρ sλ (.4.) (.4.) (.4.6) ρ g s (.4.)ρ s ρ g s ρ l s (.4.9)ρ s ρ l s ρ ρ l s g s u = exp k (.4.) (.4.) L λ (.4.) u ρ l s u ρ g s (.4.9) ρ s ρ s x (.3.) (.4.9) (.3.) (.4.9)

16 . (.3.)µ..3 A n A n.4 A n A n A.5 A+C.6 C S.7 p m p m ( ) h πmk M 5.8 I A I I C θφψ rot rot = I A + I sn θ sn θ {( p p cosθ ) cosψ p snθ snψ } φ {( p p cosθ ) snψ + p snθ cosψ } + p φ ψ ψ θ θ I C ψ 3 h dp θ dp φ dp ψ rot exp = k π 8π I Ak h 8π I k h 8π I h C k snθ θφψ f(θ,φ,ψ) rot dpθ dpφ dpψ dθdφdψ exp f 3 h k πi Ak πi k πi Ck = h h h ( θ, φ, ψ ) snθdθdφdψ f ( θ, φ, ψ ) dxdydz snθdθdφdψ Jacoban

17 θφψ snθdθdφdψ dθdφdψ dxdydz snθdθdφdψ (.4.3).9.4..oltzmann (E) (V) (N) S(E,V,N)k log(e,v,n ) S(E,V,N) f = f(e,v,n )..3 f oltzmann

18 x x x ρˆ x ρˆ ( x) δ ( x - ) = x ( ) (3.) x ( ) x ρˆ ( x) ρˆ ( x) dx ρˆ x d ( ) ρ x ρ ( x) ˆ ρ( x) = (3.) x ρ x ( )

19 ( ) ρ ρ x ρ( x) ρ ( ) ( x,y) ρ ( ) ( x, y) = δ ( x x ) δ ( y x j ) j j ρ( x) ρ( x) ρ x ρ x,y 3 ( ) ( ) ( ) ( ) ρ x ρ x r ρ x ρg(r) ( ) r g(r) 3. g(r) (3.)g(r) r 3. ( )

20 x 6 6 (H O) H O O-OO-HH-H 3 3 α γ g αγ (r) ( r) ρ( x) ρg αγ () r = dxδ rαγ ( x) (3.3) 4πr (3.3) r αγ (x) x α γ (3.3) 6 ρ( x) ρ( x) g αγ (r) (3.3) n m nm v(x) ρ e ε ( ) ( ε ) = dxδ ( v( x) ε ) ρ( x) e ρ (3.4) g αγ (r) ρ ( ρ e ε ) (3.4) ( x) g αγ (r)( ρ e ε )

21 [,] 3. 3.? v(x) v(x)( ρ x) 3.4 v(x) ( ) v αγ ( r) v x = αγ v αγ (r)g αγ (r) 3.5 ρ e ε ( ) 3.

22 v(x) v(x) µ µ µ = k ln exp v( x ) k (3.5) (3.5) k L v(x) x (couplng parameter) λλ uλ ( x) ( x) = ( x) = v( x) u (3.6) u (3.5) ( x) ρ ( x ) uλ µ = d λ dx ; uλ λ (3.7) ( ) ρ x; u λ uλ x (3.) (3.7) λ (3.6) u x µ µ ( ) (3.7)(Krkwood )chargng u x λ chargng v(x) λ ( ) ( )

23 v(x) v(x) ρ x;v v(x)w(x) v(x)-w(x)= v(x)w(x), k ln exp ( ) ( w( x ) v( x )) k < dx( w( x) v( x) ) ρ( x v) ; v (3.8) L v(x) v v w k ln exp ( v( x ) w( x )) k < dx( v( x) w( x) ) ρ( x w) ; w v(x)w(x) ( x; v ) ρ( x; w) (3.9) ρ = (3.) (3.8) (3.9) v(x)w(x) ρ( x;v) ( ρ x; w) (3.) v(x) ρ x;v ( ) v(x) ρ( x) v(x) v(x)+δv(x) ρ(x) ρ(x)+δρ(x) δv(x) δρ ( x) dyχ ( x y;v) δv( y) =, (3.) χ(x,y;v) χ ( ( x, y; v) δ ( x y) ρ( x; v) + ρ ) ( x, y; v) ρ( x; v) ρ( y; v) = (3.) χ(x,y;v) ( x; v) = dyχ ( x, y;) ( ρ( x; v) ρ( x;) ) c (3.3) c(x;v) (3.3)Ornsten-Zernke ρ( x;) (v=)

24 ( x) v ρ( x; ) exp v = ρ x k ( ;) (3.4) (3.4) ω x;v ( ) ( x; v) ( x;) ρ ω ( x; v) = k ln v( x) (3.5) ρ (3.7) (3.6) = k ( x; v) ω( x; ρ ) ρ( x; u ) ω λ dx ( ρ( x; v) ρ( x;) ) + ρ( x; v) dλ (3.6) k k λ λ µ ω ( x; ρ λ ) ( ω x; u λ ) (3.6) v ρ ( ) ω x; (3.6)λ ρ λ (3.4) (3.5) c(x;v)( ω x;v) v v (3.6) ρ c(x;v)( ω x;v) v ω ( x; ρ ) ( ρ( x; v) ρ( x;) ) Percus-Yevck PY hypernetted-chan HNC ω ( x; ρ ) ( ρ( x; v) ρ( x;) ) [3]( ω x; ρ ) (3.6) PY HNC

25 [4] [5] PY HNC [4,5] 3.6 (3.5) 3.7 (3.5) µ = k ln exp v x ( ) k L (3.5) 3.8 x y k ln ρ x ρ y ( ( ) ( )) 3.9 (3.7) 3. v(x) ( ) v αγ ( r) v x = chargng αγ ( ) u x? λ 3. chargng u x? 3. (3.8) () F()=F()= F () (x)< F(x) F(x)> <x< () x x <λ< λ f () (x)> f(x) λf λ ( ) ( x ) + ( λ) f ( x ) > f ( λx + ( λ) x ) () () n (v) X f () (x)> f(x) ( ) ( ) f X > f X L

26 (v) (3.8) 3.3 (3.) (3.8) (3.9) (3.) 3.6 (3.3)Ornsten-Zernke Ornsten-Zernke (3.3) 3.7 (3.4) 3.8 (3.4) 3.9 (3.4) 3. ω( x;v) (3.5)x 3. (3.6) 3.c(x;v)( ω x;v) v 3.3PY ( ω( ) k ) ( ρ( x; v) ρ( x;) ) exp x;v PY c ( x; v) v = exp k ( x) ρ( x; v) ρ( x;) ρ = ρ ( x; v) ( x;) 3.4HNC x;v ω( ) ( ρ( x; v) ρ( x;) ) c ( x; v) ρ = ρ ( x; v) ( x;) ω + k ( x; v) ( x; v) ω exp k HNC 3.5 PY HNC 3.6 PY HNC [6] [4] 3.8

27 (3.6) [4] [5] 3.3 (3.6) 3.3 PY HNC 3 [] W. A. Steele, J. Chem. Phys., 39, 397 (963). [] L. lum and A. J. orruella, J. Chem. Phys., 56, 33 (97). [3] J. K. Percus, Phys. Rev. Lett., 8, 46 (96). [4] D. Chandler, J. D. McCoy, and S. J. Snger, J. Chem. Phys., 85, 597 (986). [5] N. Matubayas and M. Nakahara, J. Chem. Phys., 3, 67 (). [6] J. P. Hansen and I. R. McDonald, heory of Smple Lquds, nd Ed. Academc Press (986). Lennard-Jones 3. g(r) β µ r/σ ρσ 3 =.85, k /ε=.35 ρσ 3 k /ε=.35 3.Lennard-Jones

28 4 4. f N fn (q, q fn )fn (p, p fn ) fn fn fn (q, q fn ) q(p, p fn ) p (q,p) (Hamltonan)H(q,p) (Hamlton) dq H = dt p (4.) dp H = dt q (q,p) A(q,p) da A H A H = = LA (4.) dt q p p q L (Louvlle) (4.) (4.) ( t) exp( Lt) A( ) A = (4.3) L (q(),p()) (q(t),p(t)) ( q( t), p( t) ) ( q(), p() ) det = (4.4) ρ(q,p;t) ρ(q,p;t) (q,p) 6N A(q,p) t

29 <A(t)> A ( t) = dqdpa( q, p ) ( q, p; ) t t ρ (4.5) (q t, p t ) (q,p) t (q t, p t ) (q,p) t (4.5) (q,p) t, p t ) (q,p) (4.4) () = dqtdpt A( qt, pt ) ρ( q, p;) = dqdpa( q, p) ρ( q, p ;) A t (q t, p t ) (q -t, p -t (q,p) -t t () t = dqdpa( q p) ( q, p t) A (4.8) t (4.6) A, ρ ; (4.7) ( q p; t) = ρ( q, p ;) ρ (4.8), t t ( q, p; t) ρ( q, p; t) H ρ( q, p; t) ρ t ρ = q + p ( q, p; t) = exp( Lt) ρ( q, p;) p H = Lρ q ( q, p; t) (4.9) (4.) (4.3) (4.9) t (4.) (4.3) (q,p) (4.9) (q,p) (4.9) t (q,p) (4.5) (4.7) (4.9) t (4.9) (4.5) <A(t)> A(q t, p t ) ρ(q,p;) <A(t)> (4.7) A(q,p) <A(t)> ρ(q,p;t) 4.

30 Α(q t,p t ) Α(q,p ) Α(q,p) ρ(q,p;) ρ(q,p;) ρ(q,p;t) q, p Hesenberg pcture q, p Schrödnger pcture H(q,p) p H = + m ( q, p) V ( q) (4.) 4. (4.) 4.3 (4.4) 4.4 L L ρ ( q, p) X Y dqdpx dqdpx ( LY ) ρ ( q, p) = dqdp( LX ) Yρ ( q, p) { exp( Lt) Y } ρ ( q, p) = dqdp{ exp( Lt) X } Yρ ( q, p) ω exp ( ω t) dqdpx { exp( Lt) X } ρ ( q, p) 4.5 (4.8) (4.9) 4.6

31 4. (4.9) F(t) A H H =AF(t) (4.) L L L U(t) du dt U () t = L () t U () t t () t = exp( L t) ds exp( L ( t s) ) L U() s (4.) L t U () t = exp( Lt) U(t) L L t exp t ( Lt) = exp( L t) ds exp( L ( t s) ) L exp( L s) (4.) t> ρ (q,p) (4.9) (4.) ( ) L ( q, p) ( q p; t) = ρ ( q, p) ds exp L ( t s) t ρ, ρ ρ(q,p;t) (4.3) (4.3) (q,p) t ( ) L ( q, p) () t = ds dqdp L ( t s) exp ρ (4.4) (4.4) <(t)> L

32 X Y X Y, = (4.5) q p p q { X Y } (Posson) (4.4) Φ A () t = { () t, A} (t) (4.6) Φ A (t) (4.) t () t = dsf() s Φ ( t s) A (4.7) (4.6) () t A& & () t A Φ A () t = = (4.8) k k n A A n n ( t ) A ( ) n t A L n 3 U() U = ( ) dt A( t) F t ( t) (4.9) F(t) F(t) = F cos(ωt+α) (4.) U ( ) ωf ωf = dtφ AA AA exp () t sn( ωt) = Im dtφ () t ( ωt) (4.)

33 Φ A (t) A ( ω ) = dtφ ( t) exp( ωt) χ (4.) A χ A (ω) (4.) 4.7 (4.) 4.8 L t (4.)U(t) U ( t) = + ( ) dt L( t ) U ( t ) = + t t ( ) dt L( t ) + ( ) dt dt L( t ) L( t ) + L t t U t = () t exp dsl( s) L(t) 4.9 (4.3)L (4.) 4. XYZ { X,{ Y, Z } + { Y,{ Z, X } + { Z, { X, Y } = 4. XYZ { Y, Z} = dqdpy{ Z, X } dqdpz{ X Y } = dqdpx, 4. (4.7) 4.3 (4.6) (4.8) 4.4 (4.7) F(s)s F

34 A ( ) = F dtφ () t 4.5 (4.9) 4.6 (4.) 4.7 (4.) F(t) F(t) (4.)? 4.8 Φ A (t)t χ A (ω) Kramers-Krong χ A ( ω ) ( κ ) Im χ A = P dκ + Im χ A ( ω ) P π κ ω 4.9 χ AA (ω)ωim χ AA (ω) > 4.3 Redfeld (q s,p s ) (q b,p b ) ρ s (q s,p s ;t) ρ(q s,p s,q b,p b ;t) s ρ s s b b s s b b ( q, p ; t) dq dp ρ( q, p, q, p ; t) = (4.3) (q s,p s ) (q b,p b ) L s (q s,p s ) L b (q b,p b ) V s s b b s s b b ( q p, q, p ) A ( q, p ) F ( q p ) V, =, (4.4)

35 L ρ s (q s,p s )ρ b (q b,p b ) s s b b b b ( q, p ) = L ρ ( q, p ) = s s ρ (4.5) ρ s (q s,p s )ρ b (q b,p b ) F (q b,p b ) ρ b (q b,p b ) L v (4.) ρ s s b b ( q, p, q, p ; t) s b s s b b v s s s b b b = ( L + L ) ρ( q, p, q, p ; t) L ρ ( q, p ) ρ ( q, p ) t + t v s s b b ( ) L ρ( q, p, q, p ; y) v s b ( ) L dy exp ( L + L )( t y) (4.6) V(q s,p s,q b,p b ) t b {, } F ρ (4.7) ρ b (q b,p b ) s s b b s s s b b b ( q, p, q, p ; t) ρ ( q, p ; t) ρ ( q, p ) ρ = (4.8) ( ) (4.7) F t = L ρ b (q b,p b ) (4.6) (q b,p b ) ρ s (q s,p s ;t) s ρ ( s s q, p ; t ) s s = ( s s L ρ q, p ; t ) t + t, j dy F s s s { ( ){ A, ρ ( q, p ; y) } s () t F ( y) A,exp L ( t y) j j (4.9) (4.9) (4.9) ρ s (q s,p s ;t) () () F F t t j

36 s ρ s s ( q, p ; t) s s s s = L ρ ( q, p ; t) t +, j dy F s s s s () F ( y) { A,exp( L y) { A, ρ ( q, p ; t) } j j (4.3) (4.3)Redfeld (q s,p s ) t ( ) s s s s s s s s s () t dq dp ( q, p ) ( q, p ; t) = ρ (4.3) (4.3) d () t dt s = s L s +, j dy F s () F ( y) { A,exp( L y){ A, } (4.3) j ρ s (q s,p s ;t) j s d dt d = dt +, j dy F s () F ( y) { A,exp( L y){ A, } (4.33) j j (4.33) L s exp( L s y) A (q s,p s ) (4.33) exp L s y (4.33) ( ) () () A (q s,p s ) F F t j 4. (4.6) 4. (4.7) (4.8) 4. (4.9) 4.3 (4.3) 4.4 (4.3)

37 4.4 Ψ > p ρ ρ = p Ψ Ψ Redfeld 4.3 [,] 4.5 H ρ ρ = [ H, ρ] t h { } 4.6 (4.5) X, Y h h { X, Y } [ X, Y ] = ( XY YX ) (4.8) (4.8) Φ A k () t = dλ () t exp( λh ) A& exp( λh ) [] C. P [] J. McConnell, he heory of Nuclear Magnetc Relaxaton n Lquds, Cambrdge Unversty Press (987), pages 3-46.

38 5 NMR NMR (nuclear magnetc resonance) NMR F-NMR Redfeld 5. M=(M x, M y, M z ) µ µ =γm (5.) γ H E E = µh = γmh (5.) {M x, M y } = M z {M y, M z } = M x {M z, M x } = M y (5.3) (5.) (5.3) dm = { M, E} = γm H dt (5.4) H z H= (,, H) (5.4) M M M x y z () t = cos( γht) M x( ) + sn( γht) M y ( ) ( t) = sn( γht) M x( ) + cos( γht) M y ( ) () t = M ( ) z (5.5) (5.5) M z M x M y x-y γh γh 5. x-y

39 γh NMR M z γ M y C 6 O 5. H (M x, M y, M z ) (M x, M y, M z ) M M M x y z M x () t = [ cos( γh t) M x( ) + sn( γh t) M y ( ) ] () t = [ sn( γh t) M x () + cos( γh t) M y () ] () t = M ( ) z (5.6) H (H H )/H [] (5.4) M NMR M H γm = χh (5.7) χ χ z H= (,, H) M z M z (χ/γ)h M x M y

40 (5.4) dm dt dm dt dm dt z x y = γ = γ = γ ( M H ) ( M H ) ( M H ) z x y M z M M x M y z (5.8) loch loch 5. (5.4) 5. γ MHz MHz 3 C 7 O H 4 N 5.5 loch dm/dt = M 5. F-NMR F F 4. NMR F z H= (,, H) H x H (t) E ( t) = M H ( t) E = M x H x (5.9)

41 4. M x Φ(t) Φ t () = t ( ) = t exp sn γh t M z exp sn( γh t) χ H γ (5.) χ H (t) δ(t) (4.7) Φ(t) γh Φ(t) δ(t) Φ(t) F 5.6 (5.) 5.7 (5.9) M y M z 5.8 H (t)δ(t) H (t) H (t) δ(t) (5.) 5.9 F-NMR Φ(t) t t α (4.) α Redfeld H= (,, H) (5.) V V = γ (M x h x + M y h y + M z h z ) (5.) (h x, h y, h z ) 4.3 (h x, h y, h z ) H

42 (4.33) dm dt dm dt dm dt z x y = γ = γ = γ ( x x y y ) ( M H ) γ M ds cos( γhs) h ( ) h ( s) + h () h () s z ( y y z z ) ( M H ) γ M ds h ( ) h ( s) + cos( γhs) h ( ) h ( s) x ( x x z z ) ( M H ) γ M ds h ( ) h ( s) + cos( γhs) h ( ) h ( s) y z x y (5.) x y loch M z loch Redfeld h h x x () hx () t = hy () hy () t = hz () hz () t C() t () h () t = h () h () t = h () h () t = y (5.) y z z x (5.3) = γ dt cos = γ dt ( γht) C( t) ( + cos( γht) ) C( t) (5.4) C(t) τ t C() t = C exp (5.5) τ NMR = γ Cτ + ( γhτ ) = γ Cτ + + ( γhτ ) (5.6) C τ τ /γh τ

43 τ /γh τps γh GHz (5.6) = = γ Cτ (5.7) γhτ τ C τ 5. (5.) 5. (5.6) 5.C(t) /γh (5.5) (5.7) = τ C(t)? 5.4 []

44 [] [3]NMR 5 [] C. P []. Yamazak, H. Sato, and F. Hrata, J. Chem. Phys., 5, (). [3] (a) N. Matubayas, C. Waka, and M. Nakahara, J. Chem. Phys. 7, (997). NMR (b) N. Matubayas, C. Waka, and M. Nakahara, J. Chem. Phys., 8-8 (999). (c) N. Matubayas, N. Nakao, and M. Nakahara, J. Chem. Phys. 4, (). NMR

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad 13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

受賞講演要旨2012cs3

受賞講演要旨2012cs3 アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート α β α α α α α

More information

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1........................... 2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2.

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2. 213 12 1 21 5 524 3-5465-74 nkiyono@mail.ecc.u-tokyo.ac.jp http://lecture.ecc.u-tokyo.ac.jp/~nkiyono/index.html 3 2 1 3.1 ρp, t EP, t BP, t JP, t 35 P t xyz xyz t 4 ε µ D D S S 35 D H D = ε E B = µ H E

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3.....................

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3..................... NumRu::GPhys::EP Flux 7 2 9 NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3................................. 5 2.4.............................

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

2010 4 3 0 5 0.1......................................... 5 0.2...................................... 6 1 9 2 15 3 23 4 29 4.1............................................. 29 4.2..............................

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

( ) 24 1 ( 26 8 19 ) i 0.1 1 (2012 05 30 ) 1 (), 2 () 1,,, III, C III, C, 1, 2,,, ( III, C ),, 1,,, http://ryuiki.agbi.tsukuba.ac.jp/lec/12-physics/ E104),,,,,, 75 3,,,, 0.2, 1,,,,,,,,,,, 2,,, 1000 ii,

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

A

A A05-132 2010 2 11 1 1 3 1.1.......................................... 3 1.2..................................... 3 1.3..................................... 3 2 4 2.1............................... 4 2.2

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

Note5.dvi

Note5.dvi 12 2011 7 4 2.2.2 Feynman ( ) S M N S M + N S Ai Ao t ij (i Ai, j Ao) N M G = 2e2 t ij 2 (8.28) h i μ 1 μ 2 J 12 J 12 / μ 2 μ 1 (8.28) S S (8.28) (8.28) 2 ( ) (collapse) j 12-1 2.3 2.3.1 Onsager S B S(B)

More information

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T 3 3.1 [ ]< 85, 86 > ( ) ds > 0. (1) dt ds dt =0, S = S max. (2) ( δq 1 = TdS 1 =0) (δw 1 < 0) (du 1 < 0) (δq 2 > 0) (ds = ds 2 = TδQ 2 > 0) 39 3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3)

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

3 - { } / f ( ) e nπ + f( ) = Cne n= nπ / Eucld r e (= N) j = j e e = δj, δj = 0 j r e ( =, < N) r r r { } ε ε = r r r = Ce = r r r e ε = = C = r C r e + CC e j e j e = = ε = r ( r e ) + r e C C 0 r e =

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p F 1-1................................... p38 p1w A A A 1-................................... p38 p1w 1-3................................... p38 p1w () (1) ()?? (w) F (3) (4) (5)??? -1...................................

More information

「数列の和としての積分 入門」

「数列の和としての積分 入門」 7 I = 5. introduction.......................................... 5........................................... 7............................................. 9................................................................................................

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

Maxwell

Maxwell I 2016 10 6 0 4 1 6 1.1............................ 6 1.2 Maxwell......................... 8 1.3.......................... 9 1.4..................... 11 1.5..................... 11 2 13 2.1...................

More information

untitled

untitled Y = Y () x i c C = i + c = ( x ) x π (x) π ( x ) = Y ( ){1 + ( x )}( 1 x ) Y ( )(1 + C ) ( 1 x) x π ( x) = 0 = ( x ) R R R R Y = (Y ) CS () CS ( ) = Y ( ) 0 ( Y ) dy Y ( ) A() * S( π ), S( CS) S( π ) =

More information

330

330 330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1 6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) (e) Γ (6.2) : Γ B A R (reversible) 6-1 (e) = Clausius 0 = B A: Γ B A: Γ d Q A + d Q (e) B: R d Q + S(A) S(B) (6.3) (e) // 6.2 B A: Γ d Q S(B) S(A) = S (6.4) (e) Γ (6.5)

More information

Untitled

Untitled 23 1 11 A 2 A.1..................................... 2 A.2.................................. 4 A.3............................... 5 A.4.................................... 6 A.5.......................

More information

. p.1/14

. p.1/14 . p.1/14 F(x,y) = (F 1 (x,y),f 2 (x,y)) (x,y). p.2/14 F(x,y) = (F 1 (x,y),f 2 (x,y)) (x,y) (x,y) h. p.2/14 F(x,y) = (F 1 (x,y),f 2 (x,y)) (x,y) (x,y) h h { F 2 (x+ h,y) F 2 2(x h,y) F 2 1(x,y+ h)+f 2 1(x,y

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656 SPring-8 PF( ) ( ) UVSOR( HiSOR( SPring-8.. 3. 4. 5. 6. 7. E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8

More information

平成18年度弁理士試験本試験問題とその傾向

平成18年度弁理士試験本試験問題とその傾向 CBA CBA CBA CBA CBA CBA Vol. No. CBA CBA CBA CBA a b a bm m swkmsms kgm NmPa WWmK σ x σ y τ xy θ σ θ τ θ m b t p A-A' σ τ A-A' θ B-B' σ τ B-B' A-A' B-B' B-B' pσ σ B-B' pτ τ l x x I E Vol. No. w x xl/ 3

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

1.3 (heat transfer with phase change) (phase change) (evaporation) (boiling) (condensation) (melting) (solidification) 1.4 (thermal radiation) 4 2. 1

1.3 (heat transfer with phase change) (phase change) (evaporation) (boiling) (condensation) (melting) (solidification) 1.4 (thermal radiation) 4 2. 1 CAE ( 6 ) 1 1. (heat transfer) 4 1.1 (heat conduction) 1.2 (convective heat transfer) (convection) (natural convection) (free convection) (forced convection) 1 1.3 (heat transfer with phase change) (phase

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c

(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c 10. : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck constant J: Ĵ 2 = J(J +1),Ĵz = J J: (J = 1 2 for 1 H) I m A 173/197 10.1

More information

2 1 17 1.1 1.1.1 1650

2 1 17 1.1 1.1.1 1650 1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy

More information

2002 7 i 1 1 2 3 2.1............................. 3 2.1.1....................... 5 2.2............................ 5 2.2.1........................ 6 2.2.2.................... 6 2.3...........................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2 3 1 2 Fig.2.1. 2V 2.3.3

2 3 1 2 Fig.2.1. 2V 2.3.3 2 2 2.1 2000 1800 1 2.2 1 2 2.3 2.3.1 1 1 2 2.3.2 2 3 1 2 Fig.2.1. 2V 2.3.3 2 4 2.3.4 2 C CmAh = ImA th (2.1) 1000mAh 1A 1 2 1C C (Capacity) 1 3Ah 3A Rrate CAh = IA (2.2) 2.3.5 *1 2 2 2.3.6 2 2 *1 10 2

More information

S = k B (N A n c A + N B n c B ) (83) [ ] B A (N A N B ) G = N B µ 0 B (T,P)+N Aψ(T,P)+N A k B T n N A en B (84) 2 A N A 3 (83) N A N B µ B = µ 0 B(T,

S = k B (N A n c A + N B n c B ) (83) [ ] B A (N A N B ) G = N B µ 0 B (T,P)+N Aψ(T,P)+N A k B T n N A en B (84) 2 A N A 3 (83) N A N B µ B = µ 0 B(T, 8.5 [ ] 2 A B Z(T,V,N) = d 3N A p N A!N B!(2π h) 3N A d 3N A q A d 3N B p B d 3N B q B e β(h A(p A,q A ;V )+H B (p B,q B ;V )) = Z A (T,V,N A )Z B (T,V,N B ) (74) F (T,V,N)=F A (T,V,N A )+F B (T,V,N

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

,..,,.,,.,.,..,,.,,..,,,. 2

,..,,.,,.,.,..,,.,,..,,,. 2 A.A. (1906) (1907). 2008.7.4 1.,.,.,,.,,,.,..,,,.,,.,, R.J.,.,.,,,..,.,. 1 ,..,,.,,.,.,..,,.,,..,,,. 2 1, 2, 2., 1,,,.,, 2, n, n 2 (, n 2 0 ).,,.,, n ( 2, ), 2 n.,,,,.,,,,..,,. 3 x 1, x 2,..., x n,...,,

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

master.dvi

master.dvi 4 Maxwell- Boltzmann N 1 4.1 T R R 5 R (Heat Reservor) S E R 20 E 4.2 E E R E t = E + E R E R Ω R (E R ) S R (E R ) Ω R (E R ) = exp[s R (E R )/k] E, E E, E E t E E t E exps R (E t E) exp S R (E t E )

More information

橡Taro11-卒業論文.PDF

橡Taro11-卒業論文.PDF Recombination Generation Lifetime 13 9 1. 3. 4.1. 4.. 9 3. Recombination Lifetime 17 3.1. 17 3.. 19 3.3. 4. 1 4.1. Si 1 4.1.1. 1 4.1.. 4.. TEG 3 5. Recombination Lifetime 4 5.1 Si 4 5.. TEG 6 6. Pulse

More information

untitled

untitled B2 3 2005 (10:30 12:00) 201 2005/10/04 10/04 10/11 9, 15 10/18 10/25 11/01 17 20 11/08 11/15 22 11/22 11/29 ( ) 12/06 12/13 L p L p Hölder 12/20 1/10 1/17 ( ) URL: http://www.math.tohoku.ac.jp/ hattori/hattori.htm

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5-

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5- 45 5 5.1 Y 3.2 Eq. (3) 1 R [s -1 ] ideal [s -1 ] Y [-] Y [-] ideal * [-] S [-] 3 R * ( ω S ) = ω Y = ω 3-1a ideal ideal X X R X R (X > X ) ideal * X S Eq. (3-1a) ( X X ) = Y ( X ) R > > θ ω ideal X θ =

More information

esba.dvi

esba.dvi Ehrenberg-Siday-Bohm-Aharonov 1. Aharonov Bohm 1) 0 A 0 A A = 0 Z ϕ = e A(r) dr C R C e I ϕ 1 ϕ 2 = e A dr = eφ H Φ Φ 1 Aharonov-Bohm Aharonov Bohm 10 Ehrenberg Siday 2) Ehrenberg-Siday-Bohm-Aharonov ESBA(

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

1

1 1 2 3 4 5 6 7 8 9 10 A I A I d d d+a 11 12 57 c 1 NIHONN 2 i 3 c 13 14 < 15 16 < 17 18 NS-TB2N NS-TBR1D 19 -21BR -70-21 -70-22 20 21 22 23 24 d+ a 25 26 w qa e a a 27 28 -21 29 w w q q q w 30 r w q!5 y

More information

4

4 4 5 6 7 + 8 = ++ 9 + + + + ++ 10 + + 11 12 WS LC VA L WS = LC VA = LC L L VA = LC L VA L 13 i LC VA WS WS = LC = VA LC VA VA = VA α WS α = VA VA i WS = LC VA i t t+1 14 WS = α WS + WS α WS = WS WS WS =

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

第88回日本感染症学会学術講演会後抄録(III)

第88回日本感染症学会学術講演会後抄録(III) !!!! β! !!μ μ!!μ μ!!μ! !!!! α!!! γδ Φ Φ Φ Φ! Φ Φ Φ Φ Φ! α!! ! α β α α β α α α α α α α α β α α β! β β μ!!!! !!μ !μ!μ!!μ!!!!! !!!!!!!!!! !!!!!!μ! !!μ!!!μ!!!!!! γ γ γ γ γ γ! !!!!!! β!!!! β !!!!!! β! !!!!μ!!!!!!

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information