PRML pdf PRML ( N x t y(x, w) = w 0 + w 1 x + w 2 x w M x m = M w j x j (1.1) j=0 E(w) = 1 {y(x n, w) t n } 2

Size: px
Start display at page:

Download "PRML pdf PRML (http://critter.sakura.ne.jp) N x t y(x, w) = w 0 + w 1 x + w 2 x w M x m = M w j x j (1.1) j=0 E(w) = 1 {y(x n, w) t n } 2"

Transcription

1 critter twitter ( PRML) PRML PRML PRML PRML PRML PRML 110 PRML 700 1

2 PRML pdf PRML ( N x t y(x, w) = w 0 + w 1 x + w 2 x w M x m = M w j x j (1.1) j=0 E(w) = 1 {y(x n, w) t n } 2 (1.2) 2 w w E RMS = 2E(w )/N (1.3) Ẽ(w) = 1 {y(x n, w) t n } 2 + λ 2 2 w 2 (1.4)

3 1.2.2 f (x) p(x) E[ f ] p(x) f (x) (1.5) x E[ f ] p(x) f (x)dx (1.6) N E[ f ] 1 N f (x n ) (1.7) E x [ f (x, y)] p(x, y) f (x, y) (1.8) x y E x [ f (x, y) y] p(x y) f (x, y) (1.9) x f (x) var[ f ] E [ ( f (x) E[ f (x)]) 2] = E[ f (x) 2 ] E[ f (x)] 2 (1.10) x var[x] = E[x 2 ] E[x] 2 (1.11) 2 x y cov[x, y] E [ {x E[x]}{y E[y]} ] = E[xy] E[x]E[y] (1.12) 2 x, y cov[x, y] E [ {x E[x]}{y T E[y T ]} ] = E[xy T ] E[x]E[y T ] (1.13) x x cov[x, x] (1.14) 3

4 1.2.3 w w p(w) D p(w D) = p(d w)p(w) p(d) (1.15) p(d w) p(d) = p(d w)p(w)dw (1.16) N(x µ, σ 2 ) { 1 exp 1 } (x (2πσ 2 µ)2 ) 1/2 2σ2 (1.17) N(x µ, Σ) E[x] = µ E[x 2 ] = µ 2 + σ 2 var[x] = σ 2 (1.18) { 1 exp 1 } (2π) D/2 Σ 1/2 2σ (x 2 µ)t Σ 1 (x µ) D Σ Σ (1.19) N x = (x 1,, x N ) µ σ 2 p(x µ, σ 2 ) = ln p(x µ, σ 2 ) = 1 2σ 2 N N(x n µ, σ 2 ) (1.20) (x n µ) 2 N 2 ln σ2 N ln(2π) (1.21) 2 µ ML = 1 N σ 2 ML = 1 N x N (x n µ ML ) 2 (1.22) 4

5 µ, σ 2 E[µ ML ] = µ E[σ 2 ML ] = ( N 1 N σ 2 = ) σ 2 (1.23) N N 1 σ2 ML (1.24) x = (x 1,, x N ) T t = (t 1,, t N ) T x t x t y(x, w) p(t x, w, β) = N(t y(x, w), β 1 ) (1.25) N p(t x, w, β) = N(t n y(x n, w), β 1 ) (1.26) ln p(t x, w, β) = β 2 {y(x n, w) t n } 2 + N 2 ln β N ln(2π) (1.27) 2 w β 1 β = 1 N {y(x n, w ML ) t n } 2 (1.28) w ( α (M+1)/2 { p(w α) = N(w 0, α 1 I) = exp 2π) α } 2 wt w (1.29) M w M + 1 α w p(w x, t, α, β) p(t x, w, β)p(w α) (1.30) β 2 {y(x n, w) t n } 2 + α 2 wt w (1.31) w 5

6 x t x t x X C 1 C 2 x p(c k x) p(c k x) = p(x C k)p(c k ) p(x) (1.32) x R k C k p() = p(x, C 2 )dx + p(x, C 1 )dx (1.33) R 1 R 2 K p() = K k=1 R k p(x, C k )dx (1.34) x p(c k x) 6

7 1.5.2 E[L] = L k j p(x, C k )dx (1.35) R j k, j x L kl p(x, C k ) (1.36) j k x t y(x) L(t, y(x)) E[L] = L(t, y(x))p(x, t)dxdt (1.37) E[L] = {y(x) t} 2 p(x, t)dxdt (1.38) δe[l] δy(x) = 2 {y(x) t}p(x, t)dt = 0 (1.39) y(x) tp(x, t)dt y(x) = = tp(t x)dt = E t [t x] (1.40) p(x) {y(x) t} 2 = {y(x) E t [t x] + E t [t x] t} 2 = {y(x) E t [t x]} 2 + 2{y(x) E t [t x]}{e t [t x] t} + 2{E t [t x] t} 2 (1.41) 7

8 {E t [t x] t}p(x, t)dt = 0 (1.42) E[L] = {y(x) E t [t x]} 2 p(x)dx + var[t x]p(x)dx (1.43) var[t x] = {t E t [t x]} 2 p(t x)dt (1.44) E[L q ] = {y(x) t} q p(x, t)dxdt (1.45) 1.6 H[x] = p(x) log 2 p(x) (1.46) x H[x] = p(x) ln p(x)dx (1.47) x, y H[y x] = p(y, x) ln p(y x)dydx (1.48) x y H[x, y] = p(y, x) ln p(y, x)dydx = H[y x] + H[x] (1.49) 8

9 1.6.1 p(x)t q(x) KL(p q) = = ( p(x) ln q(x)dx p(x) ln ) p(x) ln p(x)dx { } q(x) dx (1.50) p(x) p(x)t q(x) p(x) q(x) KL(p q) 0 p(x) = q(x) p(x) > 0 p(x)dx = 1 f ( ) f (g(x))p(x)dx f g(x)p(x)dx (1.51) f (b) f (a) + f (a)(b a) (1.52) b = a b g(x) a g(x)p(x)dx p(x) g(x) f ln g(x) q(x)/p(x) x y I[x, y] KL(p(x, y) p(x)p(y)) = p(x, y) ln ( p(x)p(y) p(x, y) I[x, y] 0 ) dxdy (1.53) I[x, y] = H[x] H[x y] = H[y] H[y x] (1.54) x {0, 1} Bern(x µ) = µ x (1 µ) 1 x (2.1) 9

10 x = 0, 1 1 µ, µ E[x] = µ var[x] = µ(1 µ) (2.2) D = (x 1,, x n ) p(d µ) = ln p(d µ) = N p(x n µ) = N µ x n (1 µ) 1 x n ln p(x n µ) = µ ML = 1 N {x n ln µ + (1 x n ) ln(1 µ)} (2.3) x n (2.4) N x = 1 Bin(m N, µ) = N m E[x] = Nµ N m µm (1 µ) N m N! (N m)!m! (2.5) var[x] = Nµ(1 µ) (2.6) (0, 1) Beta(µ a, b) Γ(x) E[µ] = var[µ] = Γ(a + b) Γ(a)Γ(b) µa 1 (1 µ) b 1 0 u x 1 e u du (2.7) a a + b ab (a + b) 2 (a + b + 1) 10 (2.8)

11 x = 1 m x = 0 l µ µ p(µ m, l, a, b) = Γ(m + a + l + b) Γ(m + a)γ(l + b) µm+a 1 (1 µ) l+b 1 (2.9) p(x = 1 m, l, a, b) = = = p(x = 1 µ)p(µ m, l, a, b)dµ µp(µ m, l, a, b)dµ m + a m + a + l + b (2.10) 2.2 K 1 K K µ k p(x µ) = K k=1 µ x k k (2.11) E[x µ] = p(x µ)x = µ (2.12) x N x 1,, x N D p(d µ) = m k = N K k=1 µ x nk k = K k=1 µ m k k x nk (2.13) n µ k µ k = 1 K K m k ln µ k + λ µ k 1 (2.14) k=1 k=1 0 µ ML k = m k N (2.15) 11

12 µ N m 1,, m K Mult(m 1,, m K µ, N) = N = m 1 m K N K m 1 m K N! m 1! m K! k=1 µ m k k (2.16) α Dir(µ α) = α 0 = Γ(a 0 ) Γ(a 1 ) Γ(a K ) K k=1 µ α k 1 k K α k (2.17) k=1 µ K k=1 µ k = 1 K 1 p K (µ 1,, µ K 1 ) = Γ(a 0 ) K 1 Γ(a 1 ) Γ(a K ) k=1 µ α k 1 k K 1 1 µ k 0 < µ k, K 1 k=1 µ k < 1 k=1 α K 1 (2.18) c 0 µ a 1 (c µ) b 1 a+b 1 Γ(a)Γ(b) dµ = c Γ(a + b) (2.19) µ cµ µ K 1 1 K 2 k=1 µ k 0 µ α K 1 1 M 1 K 2 1 µ k µ K 1 k=1 α K 1 dµ K 1 = Γ(α K 1)Γ(α K 1 ) Γ(α K 1 + α K ) K 2 1 µ k k=1 α K 1 +α K 1 (2.20) p(µ D, α) p(d µ)p(µ α) p(µ D, α) = Dir(µ α + m) = Γ(a 0 + N) Γ(a 1 + m 1 ) Γ(a K + m k ) K k=1 µ α k+m k 1 k (2.21) 12

13 2.3 1 x N(x µ, σ 2 ) = { 1 exp 1 } (x (2πσ 2 µ)2 ) 1/2 2σ2 µ σ 2 D { 1 N(x µ, Σ) = exp 1 } (2π) D/2 Σ 1/2 2 (x µ)σ 1 (x µ) (2.22) (2.23) E[x] = µ cov[x] = Σ (2.24) x N(x µ, Σ) D 2 x a, x b µ, Σ x = x a µ = µ a Σ = Σ aa x b µ b Σ ba Σ ab Σ bb (2.25) Λ = Λ aa Λ ab (2.26) Λ ba Λ bb x b x a p(x a x b ) p(x a, x b ) p(xa, x b )dx a = N(x a µ a b, Λ 1 aa ) µ a b = µ a Λ 1 aa Λ ab (x b µ b ) (2.27) p(x a ) = p(x a, x b )dx b = N(x a µ a, Σ aa ) (2.28) 13

14 2.3.3 p(x) = N(x µ, Λ 1 ) p(y x) = N(y Ax + b, L 1 ) (2.29) z T = (x T, y T ) µ E[z] = cov[z] = R 1 = Λ + AT LA Aµ + b LA A T L (2.30) L p(y) = p(y x)p(x)dx = N(y Aµ + b, L 1 + AΛ 1 A T ) p(x y) = N(x Σ{A T L(y b) + Λµ}, Σ) Σ = (Λ + A T LA) 1 (2.31) X = (x 1,, x N ) T ln p(x µ, Σ) = ND 2 ln(2π) N 2 ln Σ 1 2 (x n µ) T Σ 1 (x n µ) (2.32) µ ML = 1 N Σ ML = 1 N x n (x n µ ML )(x n µ ML ) T (2.33) Σ = 1 N 1 E[µ ML ] = µ E[Σ ML ] = N 1 N Σ (2.34) (x n µ ML )(x n µ ML ) T (2.35) 14

15 N x = {x 1,, x N } σ 2 N 1 p(x µ) = p(x n µ) = exp (2πσ 2 ) N/2 1 2σ 2 µ N = 1 σ 2 N = (x n µ) 2 (2.36) p(µ) = N(µ µ 0, σ 2 0 ) (2.37) p(µ x) = 1 C p(x µ)p(µ) = N(µ µ N, σ 2 N ) (2.38) σ 2 Nσ µ Nσ 2 0 σ2 0 + Nσ µ σ2 ML 1 + N σ 2 σ 2 0 µ ML = 1 N x n (2.39) λ 1/σ 2 N p(x λ) = N(x n µ, λ 1 ) λ N/2 exp λ 2 (x n µ) 2 (2.40) Gam(λ a 0, b 0 ) 1 Γ(a) ba 0 0 λa 0 1 exp( b 0 λ) (2.41) E[λ] = a b a var[λ] = (2.42) b 2 15

16 p(λ x) = 1 C p(x λ)p(λ) = Gam(λ a N, b N ) (2.43) a N = a 0 + N 2 b N = b (x n µ) 2 = b 0 + N 2 σ2 ML (2.44) p(µ, λ) = N(µ µ 0, (β 0 λ) 1 )Gam(λ a 0, b 0 ) (2.45) a 0 = (1 + β 0 )/2 µ N, β N, b N t [0, 2π) p(θ θ 0, m) = I 0 (m) = 1 2πI 0 (m) exp{m cos(θ θ 0)} 1 2π 2π {θ 1,, θ N } ln p(d θ 0, m) = N ln(2π) N ln I 0 (m) + m 0 exp{m cos θ}dθ (2.46) cos(θ n θ 0 ) (2.47) θ 0 0 sin(θ n θ 0 ) = 0 (2.48) θ ML { } 0 = tan 1 n sin θ n n cos θ n (2.49) {(cos θ i, sin θ i )} m I 0 (m ML) I 0 (m ML) = 1 cos(θ n θ0 ML ) (2.50) N 16

17 2.3.9 K π k = 1 0 π k 1 (2.51) k=1 π k p(x) = X = {x 1,, x N } K ln p(x π, µ, Σ) = ln π k N(x n µ k, Σ k ) K π k N(x µ k, Σ k ) (2.52) k=1 k=1 (2.53) 2.4 η p(x η) = h(x)g(η) exp{η T u(x)} g(η) = 1 h(x) exp{ηt u(x)}dx (2.54) ln g(η) = E[u(x)] (2.55) X = {x 1,, x N } N p(x η) = h(x) g(η)n exp ηt u(x n ) 0 (2.56) ln g(η ML ) = 1 u(x n ) (2.57) N n u(x n ) 17

18 2.4.2 p(η χ, ν) = f (χ, ν)g(η) ν exp{νη T χ} (2.58) f (χ, ν) p(η X, χ, ν) g(η) ν+n exp ηt u(x n ) + νχ (2.59) x i i x n i i p i = n i (2.60) N i N k(u) 0 k(u)du = 1 (2.61) p(x) = 1 N 1 ( x h D k xn ) h (2.62) k p(x) = 1 1 exp { x x n 2 } N (2πh 2 ) D/2 2h 2 (2.63) 18

19 N {x n } t n x t y(x) p(t x) 3.1 M w i ϕ i (x) M 1 y(x, w) = w j ϕ j (x) = w T ϕ(x) (3.1) j=0 ϕ 0 = 1 M 1 w i y(x, w) p(t x, w, β) = N(t y(x, w), β 1 ) (3.2) N p(t X, w, β) = N N(t n w T ϕ(x n ), β 1 ) (3.3) ln p(t X, w, β) = ln N(t n w T ϕ(x), β 1 ) = N 2 ln β N 2 (2π) βe D(w) E D (w) = 1 {t n w T ϕ(x n )} 2 (3.4) 2 19

20 E D (w) w w i E D (w) = M 1 t n w j ϕ j (x) ϕ i(x n ) (3.5) ϕ i (x n ) = Φ ni 0 j=0 Φ ni t n = M 1 Φ n j Φ ni w j (3.6) j=0 β w ML = ( Φ T Φ ) 1 Φ T t (3.7) 1 β ML = 1 N {t n wml T ϕ(x n)} 2 (3.8) K y(x, w) = W T ϕ(x) (3.9) p(t x, W, β) = N(t W T ϕ(x), β 1 I) (3.10) 20

21 n t T n T ln p(t, X, W, β) = ln N(t n W T ϕ(x n ), β 1 T ) = NK ( β ) 2 ln β 2π 2 t n W T ϕ(x n ) 2 (3.11) W W ML = ( Φ T Φ ) 1 Φ T T (3.12) 3.2 x t E[L] = {y(x) t} 2 p(x, t)dxdt (3.13) h(x) = E[t x] = tp(t x)dt (3.14) y(x) E[L] = {y(x) h(x)} 2 dx + {h(x) t} 2 p(x, t)dxdt (3.15) {y(x; D) h(x)} 2 = {y(x; D) E D [y(x; D)] + E D [y(x; D)] h(x)} 2 = {y(x; D) E D [y(x; D)]} 2 + {E D [y(x; D)] h(x)} 2 + 2{y(x; D) E D [y(x; D)]}{E D [y(x; D)] h(x)} (3.16) D E D [{y(x; D) h(x)} 2 ] = {E D [y(x; D)] h(x)} 2 + E D [{y(x; D) E D [y(x; D)]} 2 ] (3.17) 21

22 E D [E[L]] = () () 2 = {E D [y(x; D)] h(x)} 2 p(x)dx = E D [{y(x; D) E D [y(x; D)]} 2 ]p(x)dx = {h(x) t} 2 p(x, t)dxdt (3.18) {(x i, t i )} N p(x i, t i )dx i dt i (3.19) i= p(w) = N(w m 0, S 0 ) (3.20) X = (x 1,, x N ), t = (t 1,, t N ) p(w t, X) p(w t, X)p(t, X) = p(t X, w)p(x w)p(w) (3.21) X w p(x w) w p(w t, X) p(t X, w)p(w) (3.22) p(t X, w, β) = ϕ i (x n ) = Φ ni N N(t n w T ϕ(x n ), β 1 ) (3.23) p(w t, X) = N(w m N, S N ) ( m N = S N S 1 0 m 0 + βφ T t ) S 1 N = S βφ T Φ (3.24) 22

23 3.3.2 w x t p(t x, t, X) = p(t x, w)p(w t, X)dw (3.25) p(t x, w, β) = N(t w T ϕ(x), β 1 ) p(w t, X, β) = N(w m N, S N ) (3.26) p(t x, t, X) = N(t m T N ϕ(x), σ2 N (x)) σ 2 N (x) = 1 β + ϕ(x)t S N ϕ(x) (3.27) w 0 y(x, m N ) = m T N ϕ(x) = βϕ(x)t S N Φ T t = m N = βs N Φ T t (3.28) βϕ(x) T S N ϕ(x n )t n (3.29) k(x, x ) = βϕ(x) T S N ϕ(x ) (3.30) y(x, m N ) = k(x, x n )t n (3.31) S N x n w S 1 N = βφt Φ (3.32) k(x, x n ) = 1 (3.33) 23

24 x 3.14 w k(x, x n ) = β ϕ i (x)s Ni j ϕ j (x n ) n i j = β ϕ i (x)s Ni j ϕ j (x n )ϕ 0 (x n ) = n i j ϕ i (x)i i0 i = 1 (3.34) x t y(x, w) w p(t w, β) = N(t y(x, w), β 1 ) (3.35) p(w α) = N(w 0, α 1 I) (3.36) p(w t, α, β) = N(w m N, S N ) m N = βs N Φ T t S 1 N = αi + βφ T Φ (3.37) α, β p(t t) = p(t w, β)p(w t, α, β)p(α, β t)dwdαdβ (3.38) p(α, β t) p(t α, β)p(α, β) (3.39) 24

25 3.5.1 p(t α, β) p(t α, β) = p(t w, β)p(w α)dw (3.40) p(t α, β) = ( β N/2 ( α ) M/2 2π) 2π exp{ E(w)}dw E(w) = βe D (w) + αe W (w) = β 2 t Φw 2 + α 2 wt w (3.41) exp{ E(w)}dw = exp{ E(m N )}(2π) M/2 S 1 N 1/2 (3.42) ln p(t α, β) = M 2 ln α + N 2 ln β E(m N) 1 2 ln S 1 N N ln(2π) (3.43) (3.86) (3.89) m N α x K C k 25

26 K = 2 y(x) = w T x + w 0 (4.1) x y(x) 0 C 1 y(x) < 0 C K y k (x) = wk T x + w k0 (4.2) j k y k (x) > y j (x) x C k 2 x A, x B R k 2 x C R k y k (x C ) = y k (λx A + (1 λ)x B ) = λy k (x A ) + (1 λ)y k (x B ) λy j (x A ) + (1 λ)y j (x B ) = y j (x C ) (4.3) t 1-of-K y k (x) = D w k j ϕ j (x) (4.4) j=0 ϕ 0 (x) = 1 ϕ j (x) = x j ( j 1) x = (1, x T ) T K y(x) = W T x (4.5) ϕ i (x n ) = Φ ni X ni = x ni W = ( X T X ) 1 X T T (4.6)

27 D 1 C 1 C 2 m 1 = 1 N 1 y = w T x (4.7) x n, m 2 = 1 x n, (4.8) N n C 2 1 n C 2 m k = w T m k (4.9) m 2 m 1 = w T (m 2 m 1 ) (4.10) 2 s 2 k = n C k (w T x n m k ) 2 (4.11) J(w) = (m 2 m 1 ) 2 s s2 2 J(w) = wt S B w w T S W w S B = (m 2 m 1 )(m 2 m 1 ) T S W = (x n m 1 )(x n m 1 ) T + n C 1 (4.12) n C 2 (x n m 2 )(x n m 2 ) T (4.13) w ( (4.22) w ) (w T S B w)s W w = (w T S W w)s B w (4.14) S B w (m 2 m 1 ) w w S 1 W (m 2 m 1 ) (4.15) 27

28 p(x C k ) p(c k ) 2 p(c 1 x) = = p(x C 1 )p(c 1 ) p(x C 1 )p(c 1 ) + p(x C 2 )p(c 2 ) 1 = σ(a) (4.16) 1 + exp( a) a = ln p(x C 2)p(C 2 ) p(x C 2 )p(c 2 ) σ(a) K > 2 p(c k x) = = p(x C k )p(c k ) j p(x C j )p(c j ) exp(a k ) j exp(a j ) (4.17) (4.18) a k = ln(p(x C k )p(c k )) (4.19) 28

29 4.2.1 C k p(x C k ) = { 1 exp 1 } (2π) D/2 Σ 1/2 2 (x µ k) T Σ 1 (x µ k ) (4.20) 2 p(c 1 x) = σ(w T x + w 0 ) w = Σ 1 (µ 1 µ 2 ) w 0 = 1 2 µt 1 Σ 1 µ µt 2 Σ 1 µ 2 + ln p(c 1) p(c 2 ) (4.21) p(c k x) = exp(a k (x)) j exp(a j (x)) a k (x) = w T k x + w k0 w k = Σ 1 µ k w k0 = 1 2 µt k Σ 1 µ k + ln p(c k ) (4.22) p(c 1 ) = π, p(c 2 ) = 1 π p(x n, C 1 ) = p(c 1 )p(x n C 1 ) = πn(x n µ 1, Σ) p(x n, C 2 ) = p(c 2 )p(x n C 2 ) = (1 π)n(x n µ 2, Σ) (4.23) {x n, t n } t n = 1 C 1 t n = 0 C 2 N p(t, X π, µ 1, µ 2, Σ) = [πn(x n µ 1, Σ)] t n [(1 π)n(x n µ 2, Σ)] 1 t n (4.24) 29

30 0 π = µ 1 = µ 2 = N 1 N 1 + N 2 1 t n x n N 1 1 N 2 n=2 (1 t n )x n N i C i Σ = N 1 N S 1 + N 2 N S 2 1 S i = (x u i )(x u i ) T (4.25) N i n C ϕ C 1 p(c 1 ϕ) = y(ϕ) = σ(w T ϕ) (4.26) ϕ ϕ x p(t w) = N y t n n (1 y n ) 1 t n (4.27) 30

31 y n = p(c 1 ϕ n ) E(w) = ln p(t w) = {t n ln y n + (1 t n ) ln(1 y n )} (4.28) y n = σ(w T ϕ n ) w E(w) = (y n t n )ϕ n (4.29) E(w) w (new) = w (old) H 1 E(w) H = E(w) (4.30) E D (w) = 1 {t n w T ϕ(x n )} 2 2 (4.31) E(w) = (w T ϕ n t n )ϕ n = Φ T Φw Φ T t H = E(w) = Φ T Φ (4.32) w (new) = w (old) (Φ T Φ) 1 { Φ T Φw Φ T t } = (Φ T Φ) 1 Φ T t (4.33) w E(w) = H = R (y n t n )ϕ n = Φ T (y t) y n (1 y n )ϕ n ϕ T n = Φ T RΦ (4.34) R nn = y n (1 y n ) (4.35) 31

32 4.3.4 p(c k ϕ) = y k (ϕ) = exp(a k) j exp(a j ) (4.36) a k = w T k ϕ (4.37) w k 1-of-K y k (ϕ n ) = y nk p(t w 1,, w K ) = N k=1 K p(c k ϕ n ) t nk = E(w 1,, w K ) = ln p(t w 1,, w K ) = w j E(w 1,, w K ) = M M N K k=1 k=1 y t nk nk (4.38) K t nk ln y nk (4.39) (y n j t n j )ϕ n (4.40) wk w j E(w 1,, w K ) = y nk (I k j y n j )ϕ n ϕ T n (4.41) H v = (v T 1,, vt K )T v T Hv = K y nk (I k j y n j )vk T ϕ nϕ T n v j = k, j=1 = K y nk (I k j y n j )vk T ϕ nϕ T n v j k, j=1 y nk (v T ϕ k ) 2 y nk vk T ϕ k k k y nk a k y n j a j k j (4.42) a k = v T k ϕ n 32

33 4.3.5 ϕ t p(t η = ψ( f (w T ϕ)), s) = 1 ( t ) { ηt } s h g(η) exp s s g y t (4.43) 1 g(η) = 1 s h ( ) { t s exp ηt } (4.44) s dt y [t η] = s d ln g(η) (4.45) dη y η η = ψ(y) f w {ϕ n, t n } ln p(t η, s) = = ln p(t n η n, s) { w ln g(η n ) + η nt n s } + w (4.46) w ln p(t η, s) = = { d ln g(η n ) + t } n dηn dy n a n dη n s dy n da n 1 s {t n y n }ψ (y n ) f (a n )ϕ n (4.47) a n = w T ϕ f 1 (y) = ψ(y) (4.48) f f (ψ(y)) = y f (ψ)ψ (y) = 1 E(w) = 1 s {y n t n }ϕ n (4.49) (4.124) p(t w T ϕ, s) = 1 ( t ) { w s h g(w T T } ϕt ϕ) exp s s (4.50) 33

34 4.4 p(z) = 1 f (z) (4.51) Z z 0 d f (z) dz = 0 (4.52) z=z0 A = d2 ln f (z) dz2 (4.53) z=z0 ( A ) 1/2 q(z) = exp { A } 2π 2 (z z 0) 2 (4.54) BIC w t p(t w) = N y t n n {1 y n } 1 t n w y n = σ(w T ϕ n ) (4.55) p(w) = N(w m 0, S 0 ) (4.56) 34

35 p(w t) p(w)p(t w) (4.57) ln p(w t) = 1 2 (w m 0) T S 1 0 (w m 0) + {t n ln y n + (1 t n ) ln(1 y n )} + (4.58) 2 S 1 N = ln p(w t) = S y n (1 y n )ϕ n ϕ T n (4.59) q(w) = N(w w MAP, S N ) (4.60) w MAP ϕ p(c 1 ϕ, t) = p(c 1 ϕ, w)p(w t)dw σ(w T ϕ)q(w)dw (4.61) σ(w T ϕ) = δ(a w T ϕ)σ(a)da (4.62) σ(w T ϕ)q(w)dw = p(a) = σ(a)p(a)da δ(a w T σ)q(w)dw (4.63) p(a) (w a ) µ a = E[a] = p(a)ada = q(w)w T ϕdw = wmap T ϕ σ 2 a = var[a] = p(a){a 2 E[a] 2 }da = q(w){(w T ϕ) 2 (wmap T ϕ)2 }dw = ϕ T S N ϕ (4.64) 35

36 p(c 1 ϕ, t) = σ(a)p(a)da = σ(a)n(a µ a, σ 2 a)da (4.65) w {x i } {y k } M D y k (w, w) = σ w (2) k j h w (1) ji x i + w (1) j0 + w(2) k0 j=1 M = σ j=0 w (2) k j h i=1 D i=0 w (1) ji x i (5.1) h 5.2 z k = h w k j z j (5.2) j

37 E(w) = E n (w) (5.3) a j = w ji z i i z j = h(a j ) (5.4) E n = E n a j w ji a j w ji = δ j z i (5.5) δ j E n a j (5.6) δ j E n E n a k = a j a k k a j = h (a j ) w k j δ k (5.7) j k 37

38 J ki y k x i (5.8) J ki = y k x i = = = = y k a j a j j x i y k w ji a j j y k a l w ji a j l l a j w ji h y k (a j ) w l j (5.9) a l j l 5.15 J ki = y k y k = w l j h (a j )w ji (5.10) x i a l l j E w ji w lk (5.11) 38

39 E w 2 ji 2 E a 2 j = 2 E z 2 a 2 i j = h (a j ) 2 2 E n w k j w k j a kk k a k + h (a j ) k w k j E n a k (5.12) 2 2 E a 2 j h (a j ) 2 k w 2 2 E n k j + h (a a 2 j ) k k w k j E n a k (5.13) E = 1 2 (y n t n ) 2 (5.14) H = E = y n ( y n ) T + (y n t n ) y n (5.15)

40 5.4.6 H H v v T H v T H = v T ( E) (5.16) v T R{ } R{ f } = i j v i j f (5.17) w i j 2 a j = w ji x i i z j = h(a j ) y k = w k j z j (5.18) R{a j } = v ji x i i j R{z j } = h (a j )R{a j } R{y k } = w k j R{z j } + v k j z j (5.19) j j δ k E y k = y k t k δ j E a j = h (a j ) w k j δ k (5.20) k R{δ k } = R{y k } R{δ j } = h (a j )R{a j } w k j δ k + h (a j ) v k j δ k + h (a j ) w k j R{δ k } k k k (5.21) 1 E w k j = δ k z j E w ji = δ j x i (5.22) 40

41 v T H { } E R w k j { } E R w ji = R{δ k }z j + δ k R{z j } = x i R{δ j } (5.23) 5.5 Ẽ(w) = E(w) + λ 2 wt w (5.24) w x y z j = h w ji x i + w j0 i y k = w k j z j + w k0 (5.25) j {(x n, t n )} w {(ax n +b, t n )} w w ji = 1 a w ji w j0 = w j0 b w ji (5.26) a λ λ 1 2 i w 2 + λ 2 w 2 (5.27) 2 w W 1 w W 1 λ 1 a 2 λ 1 W 1, W 2 1,2 p(w α 1, α 2 ) exp α 1 2 w 2 α 2 2 w W 1 w W 2 w 2 (5.28) 41

42 x n 1 ξ x n s(x n, ξ) s(x, 0) = x τ n = s(x n, ξ) ξ (5.29) ξ=0 k ξ y k D y k x i ξ = ξ=0 x i ξ = ξ=0 i=1 D J ki τ i (5.30) i=1 Ẽ = E + λω Ω = 1 2 n k ( ynk ξ ) 2 = 1 ξ=0 2 n k D J nki τ ni i 2 (5.31) E = 1 2 {y(x) t} 2 p(t x)p(x)dxdt (5.32) 1 ξ Ẽ = 1 {y(s(x, ξ)) t} 2 p(t x)p(x)dxp(ξ)dtdξ (5.33) 2 42

43 p(ξ) ξ s s(x, ξ) = x + ξτ ξ2 τ + O(ξ 3 ) (5.34) τ ξ = 0 s(x, ξ) ξ 2 y(s(x, ξ)) = y(x) + ξτ T y(x) + ξ2 2 [ (τ ) T y(x) + τ T y(x)τ ] + O(ξ 3 ) (5.35) Ẽ = 1 {y(x) t} 2 p(t x)p(x)dxdt 2 + E[ξ] {y(x) t}τ T y(x)p(t x)p(x)dxdt + E[ξ 2 ] 1 [y(x) { t (τ ) T y(x) + τ T y(x)τ } 2 + (τ T y(x)) 2] p(t x)p(x)dxdt + O(ξ 3 ) (5.36) 0 E[ξ] = 0 E[ξ 2 ] = λ Ẽ = E + λω Ω = 1 [{y(x) { E[t x]} (τ ) T y(x) + τ T y(x)τ } 2 + (τ T y(x)) 2] p(x)dx (5.37) E[t x] O(ξ 2 ) y(x) = E[t x) + O(ξ 2 ) (5.38) Ω Ω = 1 (τ T y(x)) 2 p(x)dx (5.39)

44 5.5.7 w p(w) = p(w i ) p(w i ) = i M π j N(w i µ j, σ 2 j ) (5.40) j=1 Ẽ(w) = E(w) + Ω(w) M Ω(w) = ln π j N(w i µ j, σ 2 j ) (5.41) i j=1 γ j (w) = π jn(w µ j, σ 2 j ) k π k N(w µ k, σ 2 k ) (5.42) Ẽ w i + j γ j (w i ) (w i µ j ) σ 2 j (5.43) Ẽ µ j = Ẽ σ j = γ j (w i ) (µ j w i ) i σ 2 j γ j (w i ) 1 (w i µ j ) 2 σ (5.44) j i π j j π j = 1 π 0 {η j } π j = exp(η j ) Mk=1 exp(η k ) σ 3 j (5.45) Ẽ η j = {π j γ j (w i )} (5.46) i 5.6 p(t x, w) = K k=1 π k (x, w)n(t, µ k (x, w), σ 2 k (x, w)i) (5.47) 44

45 {(x n, t n )} w π k (x, w), µ k (x, w), σ 2 k (x, w) π k = exp(a π k ) Kl=1 exp(a π l ) σ k = exp(a σ k ) µ k j = a µ k j (5.48) w x a K E(w) = ln π k (x n, w)n(t n µ k (x n, w), σ 2 k (x n, w)i) k=1 (5.49) γ nk (t n x n ) = π k N(t n µ k (x n, w), σ 2 k (x n, w)i) Kl=1 π l N(t n µ k (x n, w), σ 2 k (x n, w)i) (5.50) E n a π k E n a µ kl E n a σ k = π k γ nk µ kl t nl = γ nk σ 2 k = γ nk L t n µ k 2 (5.51) σ 2 k L t t x y(x, w) p(t x, w, β) = N(t y(x, w), β 1 ) (5.52) w p(w α) = N(w 0, α 1 I) (5.53) N p(d w, β) = N(t n y(x, w), β 1 ) (5.54) 45

46 p(w D, α, β) p(w α)p(d w, β) (5.55) y(x, w) w () ln p(w D) = α 2 wt w β 2 {y(x n, w) t n } 2 + (5.56) w MAP A = ln p(w D, α, β) = αi + βh (5.57) p(w D) q(w D) = N(w w MAP, A 1 ) (5.58) x t p(t x, D) = p(t x, w)q(w D)dw (5.59) y(x, w) y(x, w MAP ) + g T (w w MAP ) g = w y(x, w) w=wmap (5.60) p(t x, w, β) = N(t y(x, w MAP ) + g T (w w MAP ), β 1 ) (5.61) p(t x, D, α, β) = N(t y(x, w MAP ), σ 2 (x)) σ 2 (x) = β 1 + g T A 1 g (5.62)

47 D = {(x n, t n )} x y(x) k(x, x ) = k(x, x) y(x) = k(x, x n ) f n (D) (6.1) n k(x, x ) 6.1 w J(w) = 1 {w T ϕ(x n ) t n } 2 + λ 2 2 wt w (6.2) y(x) = w T ϕ(x) = k(x) T (K + λt N ) 1 t (6.3) w w K nm = ϕ(x n ) T ϕ(x m ) = k(x n, x m ) (6.4)

48 6.3 RBF (radial basis function) ν(ξ) E = 1 2 {y(x n + ξ) t n } 2 ν(ξ)dξ (6.5) y(x) y(x) = h(x x n ) = t n h(x x n ) ν(x x n ) N ν(x x n) (6.6) E = 1 {y(x) t n } 2 ν(x x n )dx (6.7) 2 N y(x) = t nν(x x n ) N ν(x x (6.8) n) h(x x n ) x x n Nadaraya-Watson Nadaraya-Watson {x n, t n } p(x, t) Parzen y(x) = E[t x] = = tp(x, t)dt p(x, t)dt p(x, t) = 1 f (x x n, t t n ) (6.9) N tp(t x)dt = t f (x xn, t t n )dt n f (x x m, t t m )dt (6.10) f (x, t)tdt = 0 (6.11) 48

49 g(x) = f (x, t)dt (6.12) y(x) = = n g(x x n )t n m g(x x m ) k(x, x n )t n (6.13) n k(x, x n ) = g(x x n) m g(x x m ) (6.14) x y(x) = w T ϕ(x) (6.15) w p(w) = N(w 0, α 1 I) (6.16) x 1,, x N y(x 1 ),, y(x N ) y y = Φw (6.17) Φ nk = ϕ k (x n ) E[y] = ΦE[w] = 0 cov[y] = E[yy T ] = ΦE[ww T ]Φ T = 1 α ΦΦT = K (6.18) K K nm = k(x n, x m ) = 1 α ϕ(x n) T ϕ(x m ) (6.19) 49

50 6.4.2 y n t n = y n + ϵ n (6.20) p(t n y n ) = N(t n y n, β 1 ) (6.21) y = (y 1,, y N ) T t = (t 1,, t N ) T p(t y) = N(t y, β 1 I N ) (6.22) p(y) p(y) = N(y 0, K) (6.23) p(t) p(t) = p(t y)p(y)dy = N(t 0, C) C(x n, x m ) = k(x n, x m ) + β 1 δ nm (6.24) { k(x n, x m ) = θ 0 exp θ } 1 2 x n x m 2 + θ 2 + θ 3 x T n x m (6.25) x 1,, x N t 1,, t N x N+1 t N+1 p(t N+1 ) = N(t N+1 0, C N+1 ) (6.26) t N+1 (t 1,, t N, t N+1 ) T C N+1 = C N k T k (6.27) c p(t N+1 t) = N(t N+1 k T CN 1 t, c kt CN 1 k) (6.28) 50

51 6.4.3 θ ln p(t θ) = 1 2 ln C N 1 2 tt CN 1 t N ln(2π) (6.29) 2 ln p(t θ) = 1 ( θ i 2 Tr C 1 N ) C N θ i tt C 1 N C N CN 1 θ t (6.30) i x 1,, x N t N = (t 1,, t N ) T t {0, 1} 2 a(x) y = σ(a) y (0, 1) a t p(t a) = σ(a) t (1 σ(a)) 1 t (6.31) a p(a N+1 ) = N(a N+1 0, C N+1 ) (6.32) C(x n, x m ) = k(x n, x m ) + νδ nm (6.33) N N + 1 p(t N+1 = 1 t N ) = p(t N+1 = 1 a N+1 )p(a N+1 t N )da N+1 (6.34) p(t N+1 = 1 a N+1 ) = σ(a N+1 ) (6.35) p(a N+1 t N ) = p(a N+1 a N )p(a N t N )da N p(a N+1 a N ) = N(a N+1 k T CN 1 a N, c k T CN 1 k) (6.36) 51

52 6.4.6 p(a N t N ) p(a N t N ) p(a N ) + p(t N a N ) N N p(t N a N ) = σ(a n ) t n (1 σ(a n )) 1 t n = e a nt n σ( a n ) (6.37) a N a N 1 Ψ(a N ) Ψ(a N ) = ln p(a N ) + ln p(t N a N ) = 1 2 at N C 1 N a N N 2 ln(2π) 1 2 ln C N + t T N a N ln(1 + e a n ) (6.38) Ψ(a N ) = t N σ N C 1 N a N Ψ(a N ) = W N C 1 N (6.39) σ N σa n W N σ(a n )(1 σ(a n )) a new N = a old N ( Ψ(a N)) 1 Ψ(a N ) = a old N + (W N + C 1 N ) 1 (t N σ N C 1 N a N) = C N (I + W N C N ) 1 (t N σ N C 1 N a N) (6.40) 206 p(a N t N ) q(a N t N ) = N(a N a N, (W N + C N ) 1 ) (6.41) a N Φ(a N) p(a N+1 t N ) p(a N+1 t N ) N(a N+1 k T (t σ N ), c k T (W 1 N + C N) 1 k) (6.42) θ p(t N θ) p(t N θ) = p(t N a N )p(a N θ)da N (6.43) 52

53 Ψ(a N ) (4.135) ln p(t N θ) Ψ(a N ) 1 2 ln W N + CN 1 + N ln(2π) (6.44) 2 C N θ a N θ C N ln p(t N θ) θ j = 1 2 a T N C 1 N C N CN 1 θ a 1 N j 1 2 Tr [ (I + C N W N ) 1 W N C N θ j ] (6.45) θ j ln W N + C 1 N = (W Tr N + CN 1 ( = Tr (W N + C 1 ( ln C N = Tr θ j C 1 N ) 1 θ j N ) 1 CN 1 ) C N CN 1 θ j ) ( = Tr CN 1 NW N + I) 1 C N θ j ) C 1 N C N θ j [ I (CN W N + I) 1] (C N W N + I) = C N W N I (C N W N + I) 1 = C N W N (C N W N + I) 1 (6.46) W N (I + C N W N ) 1 a N Ψ(a N ) a N = 1 2 a n ln W N + C N 1 a n θ j [(I + C N W N ) 1 C N ] nn σ n(1 σ n)(1 2σ n) a n θ j (6.47) σ n = σ(a n) (6.84) θ j a N = C N a N (t N σ N ) C N W N θ j θ j θ j a N = (I + W N C N ) 1 C N (t N σ N ) (6.48) θ j θ j 53

54 y(x) = w T ϕ(x) + b (7.1) 2 N x 1,, x N t 1,, t N (t n { 1, 1}) x y(x) w b n t n y(x n ) > 0 x n t n y(x n ) w = t n(w T ϕ(x n ) + b) w (7.2) y = w T x + b (7.3) { } 1 max w,b w min[t n(w T ϕ(x n ) + b)] n (7.4) arg max max w, b t n (w T ϕ(x n ) + b) = 1 (7.5) t n (w T ϕ(x n ) + b) 1 (7.6) w, b 54

55 t n w 1 w 2 E a n L(w, b, a) = 1 2 w 2 a n {t n (w T ϕ(x n ) + b) 1} (7.7) a n 0 t n y(x n ) 1 0 a n {t n y(x n ) 1} = 0 (7.8) w b w = 0 = a n t n ϕ(x n ) a n t n (7.9) w, b L(a) = a n 1 2 m=1 a n a m t n t m k(x n, x m ) (7.10) k(x, x ) = ϕ(x) T ϕ(x ) a a 1, a 2 L(a 1 ) < L(a 2 ) a 1 w 2 a n y(x) y(x) = a n t n k(x, x n ) + b (7.11) a n = 0 t n y(x n ) = 1 a x n t n t n a m t m k(x n, x m ) + b = 1 (7.12) m S S t n b = 1 N S t n a m t m k(x n, x m ) (7.13) m S 55

56 g 1 (x) = g 2 (x) = 0 ϵ g 1 (x)ϵ = 0 and g 2 (x)ϵ = 0 f (x)ϵ = 0 (7.14) f (x) = λ 1 g 1 (x) + λ 2 g 2 (x) (7.15) t n y(x n ) 1 (7.16) ξ n 0 t n y(x n ) 1 ξ n (7.17) C ξ n w 2 (7.18) C L(w, b, ξ, a, µ) = 1 2 w 2 + C ξ n a n {t n y(x n ) 1 + ξ n } µ n ξ n (7.19) a n 0 t n y(x n ) 1 + ξ n 0 a n (t n y(x n ) 1 + ξ n ) = 0 µ n 0 ξ n 0 µ n ξ n = 0 (7.20) 56

57 L w = 0 w = a n t n ϕ(x n ) L b = 0 a n t n = 0 L ξ n = 0 a n = C µ n (7.21) L(a) = a n 1 2 m=1 a n a m t n t m k(x n, x m ) (7.22) 0 a n C a n t n = 0 (7.23) a n > 0 t n y(x n ) = 1 ξ n (7.24) 0 < a n < C ξ n = 0 t n y(x n ) = 1 t n a m t m k(x n, x m ) + b = 1 (7.25) m S b b = 1 N M t n a m t m k(x n, x m ) (7.26) n M m S M 0 < a n < C SVM 57

58 7.1.4 SVM SVM 1 2 {y n t n } 2 + λ 2 w 2 (7.27) 0 y(x t < ϵ E ϵ (y(x) t) = y(x t ϵ (7.28) C E ϵ (y(x n ) t n ) w 2 (7.29) C t n y(x n ) + ϵ + ξ n t n y(x n ) ϵ ˆξ n (7.30) (ξ n + ˆξ n ) w 2 (7.31) a n 0, â n 0, µ n 0, ˆµ n 0 L = C (ξ n + ˆξ n ) w 2 (µ n ξ n + ˆµ n ˆξ n ) a n (ϵ + ξ n + y n t n ) â n (ϵ + ˆξ n y n + t n ) (7.32) L w = 0 w = (a n â n )ϕ(x n ) L b = 0 (a n â n ) = 0 L ξ n = 0 a n + µ n = C L ˆξ n = 0 â n + ˆµ n = C (7.33) 58

59 L(a, â) = 1 (a n â n )(a m â m )k(x n, x m ) 2 m=1 (a n + â n ) + (a n â n )t n (7.34) a n â n µ n ˆµ n 0 a n C 0 â n C (7.35) a n (ϵ + ξ n + y n t n ) = 0 â n (ϵ + ˆξ n y n + t n ) = 0 (C a n )ξ n = 0 (C â n ) ˆ ξ n = 0 (7.36) 0 < a n < C ξ n = 0 ϵ + y n t n = 0 b = t n ϵ w T ϕ(x n ) = t n ϵ (a m â m )k(x n, x m ) (7.37) b m= RVM x t p(t x, w, β) = N(t y(x), β 1 ) M y(x) = w i ϕ i (x) = w T ϕ(x) y(x) = i=1 w n k(x, x n ) + b (7.38) 59

60 X t N p(t X, w, β) = p(t n x n, w, β) (7.39) w w i α i p(w α) = M i=1 N(w i 0, α 1 i ) (7.40) p(w t, X, α, β) = N(w m, Σ) m = βσφ T t Σ = ( A + βφ T Φ ) 1 (7.41) Φ ni = ϕ i (x n ) A = diag(α i ) α, β w p(t X, α, β) = p(t X, w, β)p(w α)dw ln p(t X, α, β) = ln N(t 0, C) = 1 2 {N ln(2π) + ln C + tt C 1 t} (7.42) C = β 1 I + ΦA 1 Φ T (7.43) (7.87) (7.89) α, β x t p(t x, X, t, α, β ) = p(t x, w, β )dw = N(t m T ϕ(x), σ 2 (x)) σ 2 (x) = (β ) 1 + ϕ(x) T Σϕ(x) (7.44) (7.85) α i α i C α i C = β 1 I + α 1 j φ j φ T j + α i φ i φ T i j i = C i + α 1 i φ i φ T i (7.45) 60

61 φ i = (ϕ i (x 1 ),, ϕ i (x N )) T C = C 1 (a + α 1 i φ T i C 1 i φ i) C 1 = C 1 i φ iφ T i C 1 i α i + φ T i C 1 i C 1 i φ i (7.46) (7.85) L(α) = L(α i ) + λ(α i ) λ(α i ) = 1 ln α i ln(α + s i ) + q2 i 2 α i + s i s i = φ T i C 1 i φ i q i = φ T i C 1 i t dλ(α i ) dα i = α 1 i s 2 i (q 2 i s i ) 2(α i + s i ) 2 (7.47) α i 0 q 2 i < s i α i w i 0 w i 0 q 2 i > s i α i = s 2 i q 2 i s i (7.48) RVM

62 a,b,c p(a, b c) = p(a c)p(b c) (8.1) a b c a b c (8.2) p(a, b, c) = p(a)p(c a)p(b c) (8.3) c a, b tail-to-tail p(a, b, c) = p(a)p(b a)p(c b) (8.4) c a, b head-to-tail p(a, b, c) = p(a)p(b)p(c a, b) (8.5) c a, b head-to-head tail-to-tail head-to-head a b c (8.6) x y y x 62

63 8.2.2 D A, B, C A B C a, b c C head-to-tail tail-to-tail d C head-to-head d C a b C a A, b B a b C A B C p(x) = 1 Z ψ 1,2(x 1, x 2 )ψ 2,3 (x 2, x 3 ) ψ N 1,N (x N 1, x N ) (8.7) 63

64 x n p(x n ) p(x n ) = p(x) x 1 x n 1 x n+1 x N = 1 Z ψ n 1,n (x n 1, x n ) ψ 2,3 (x 2, x 3 ) ψ 1,2 (x 1, x 2 ) x n 1 x 2 x 1 ψ n,n+1 (x n, x n+1 ) ψ N 1,N (x N 1, x N ) x n+1 x N 1 Z µ α(x n )µ β (x n ) (8.8) µ α (x 2 ) = ψ 1,2 (x 1, x 2 ) (8.9) x 1 µ α (x n ) = ψ n 1,n (x n 1, x n )µ α (x n 1 ) (8.10) x n 1 µ α µ β x p(x) = f s (x s ) (8.11) s x i f s x i f s x p(x) p(x) = F s (x, X s ) (8.12) s ne(x) 64

65 ne(x) x F s (x, X s ) = f s (x, x 1,, x M )G 1 (x 1, X s1 ) G M (x M, X sm ) (8.13) F s p(x) = F s (x, X s ) s ne(x) X s = µ fs x(x) (8.14) s ne(x) µ fs x(x) F s (x, X s ) (8.15) X s µ µ fs x(x) = = x 1 x M f s (x, x 1,, x M ) x 1 x M f s (x, x 1,, x M ) x m ne( f s )\x x m ne( f s )\x G m (x m, X sm ) X sm µ xm f s (x m ) (8.16) µ xm f s (x m ) G m (x m, X sm ) (8.17) X sm G m (x m, X sm ) = F l (x m, X lm ) (8.18) f l ne(x m )\ f s µ xm f s (x m ) = = f l ne(x m )\ f s F l (x m, X lm ) X lm f l ne(x m )\ f s µ fl x m (x m ) (8.19) µ fs x(x) F G max-sum x max p(x max ) = max p(x) (8.20) x 65

66 max p(x) = 1 x Z max x 1 max[ψ 1,2 (x 1, x 2 ) ψ N 1,N (x N 1, x N )] x N = 1 [ [ [ ] ]] Z max max ψ 1,2 (x 1, x 2 ) max ψ N 1,N (x N 1, x N ) x 1 x 2 x N (8.21) max p(x) = max x x = f s ne(x) f s ne(x) µ fs x(x) µ fs x(x) max X s F s (x, X s ) [ ] max F s (x, X s ) X s = max x 1 x M f s (x, x 1,, x M ) = max x 1 x M f s (x, x 1,, x M ) x m ne( f s )\x x m ne( f s )\x [ ] max G m (x m, X sm ) X sm f l ne(x m )\ f s µ fl x m (x m ) (8.22) (8.4.4 G EM 66

67 9.1 K-means {x 1,, x N } K K 2 r nk {0, 1}(k = 1,, K) µ k (k = 1,, K) J = k=1 K r nk x n µ k 2 (9.1) r nk n 1 k r nk µ k µ k r nk 1 k = arg min j x n µ j 2 r nk = 0 J µ k = 2 r nk (x n µ k ) = 0 µ k = (9.2) n r nk x n n r nk (9.3) K-means π k 1 K π k = 1 (9.4) k=1 {π k } K p(x) = π k N(x µ k, Σ k ) (9.5) k=1 67

68 1-of-K K 2 z z x p(z k = 1) = π k p(x z k = 1) = N(x µ k, Σ k ) (9.6) p(x) = p(z)p(x z) = z K N(x µ k, Σ k ) (9.7) p(x, z) x z γ(z k ) p(z k = 1 x) = k=1 p(z k = 1)p(x z k = 1) Kj=1 p(z j = 1)p(x z j = 1) = π k N(x µ k, Σ k ) Kj=1 π j N(x µ j, Σ j ) (9.8) {x 1,, x N } K ln p(x π, µ, Σ) = ln π k N(x µ k, Σ k ) k=1 (9.9) µ j = x n N(x n x n, σ 2 j I) = 1 (2π) D/2 1 σ D j σ j 0 (9.10) EM µ k 0 0 = γ(z nk ) = γ(z nk )Σ 1 k (x n µ k ) π k N(x n µ k, Σ k ) Kj=1 π j N(x n µ j, Σ j ) (9.11) 68

69 Σ k µ k = N k = 1 N k γ(z nk )x n γ(z nk ) (9.12) Σ k 0 Σ k = 1 N k γ(z nk )(x n µ k )(x n µ k ) T (9.13) π k K ln p(x π, µ, Σ) + λ π k 1 (9.14) 0 = k=1 N(x n µ k, Σ k ) Kj=1 π j N(x n µ j, Σ j ) + λ (9.15) π k = N k N EM 1. µ k M k π k 2. E (9.16) γ(z nk ) = π k N(x n µ k, Σ k ) Kj=1 π j N(x n µ j, Σ j ) (9.17) 3. M µ new k = Σ new k = 1 N k 1 N k γ(z nk )x n γ(z nk )(x n µ new k )(x n µ new π new k = N k N N k = γ(z nk ) (9.18) 69 k ) T

70 4. ln p(x π, µ, Σ) = K ln π k N(x µ k, Σ k ) 2 k=1 (9.19) EM X Z θ ln p(x θ) = ln p(x, Z θ) Z (9.20) EM p(x, Z θ) EM X Z p(x, Z θ) p(x θ) θ 1. θ old 2. E p(z X, θ old ) 3. M θ new θ new = arg max Q(θ, θ old ) θ Q(θ, θ old ) = p(z X, θ old ) ln p(x, Z θ) (9.21) Z 4. θ old θ new K-means

71 9.3.4 EM 9.4 EM X, Z θ p(x, Z θ) p(x θ) = p(x, Z θ) (9.22) Z EM p(x θ) p(x, Z θ) q(z) ln p(x θ) = L(q, θ) + KL(q p) { } p(x, Z θ) L(q, θ) = q(z) ln q(z) Z { } p(z X, θ) KL(q p) = q(z) ln q(z) Z (9.23) ln p(x, Z θ) = ln p(z X, θ) + ln p(x θ) (9.24) KL(q p) KL KL(q p) 0 q = p EM = ln p(x θ old ) { p(x, Z θ p(z X, θ old old } ) ) ln p(z X, θ old ) Z { p(x, Z θ p(z X, θ old new } ) ) ln p(z X, θ old ) Z { p(x, Z θ p(z X, θ old new } ) { p(z X, θ ) ln p(z X, θ old new } ) ) ln p(z X, θ old ) p(z X, θ old ) Z Z = ln p(x θ new ) (9.25) q(z) KL 2 θ new 3 KL 71

72 Z X p(x, Z) q(z) ln p(x) = L(q) + KL(q p) { p(x, Z) L(q) = q(z) ln q(z) KL(q p) = q(z) ln { p(z X) q(z) } dz } dz (10.1) Z Z i (i = 1,, M) q(z) = M q i (Z i ) (10.2) i=1 L(q) q j (Z j ) q j (Z j ) q j L(q) = = = q i ln p(x, Z) ln q i dz i i q j ln p(x, Z) q i dz i i j dz j q j ln q j dz j q i ln q i dz i i j q j ln p(x, Z j )dz j q j ln q j dz j + const (10.3) ln p(x, Z j ) = E i j [ln p(x, Z)] + const E i j [ln p(x, Z)] = ln p(x, Z) q i dz i (10.4) const p(x, Z j ) L(q) q j (Z j ) L(q) q j (Z j ) p(x, Z j ) KL i j 72

73 q j (Z j ) = p(x, Z j ) q j (Z j) ln q j (Z j) = E i j [ln p(x, Z)] + const (10.5) q j (Z j) q j (Z j) = exp(e i j [ln p(x, Z)]) exp(ei j [ln p(x, Z)])dZ j (10.6) KL KL(p q) ln p(x) Z m p(m) q(z, m) = q(z m)q(m) { } p(z, m X) ln p(x) = L q(z m)q(m) ln q(z m)q(m) m Z { } p(z, X, m) L = q(z m)q(m) ln q(z m)q(m) L q(m) m Z (10.7) q(m) p(m) exp{l m } { } p(z, X m) L m = q(z m) ln q(z m) Z (10.8) { } p(z, X, m) f = q(z m) ln + λ q(z m)q(m) q(m) 1 (10.9) Z m 73

74 q(m) f q(m) { } p(z, X, m) = q(z m) ln q(z m)q(m) Z = ln p(m) ln q(m) + q(z m) ln Z q(z m) + λ Z { p(z, X m) q(z m) } 1 + λ = 0 (10.10) 10.2 X = {x 1,, x N } Z = {z 1,, z N } z n (k = 1,, K) 1 π Z p(z π) = N K k=1 π z nk k (10.11) p(x Z, µ, Λ) = N K k=1 N(x n µ k, Λ 1 k )z nk (10.12) µ, Λ, π π m 0 = 0 p(π) = Dir(π α 0 ) = C(α 0 ) K k=1 π α 0 1 k p(µ, Λ) = p(µ Λ)p(Λ) K = N(µ k m 0, (β 0 Λ) 1 )W(Λ k W 0, ν 0 ) (10.13) k= p(x, Z, π, µ, Λ) = p(x Z, µ, Λ)p(Z π)p(π)p(µ Λ)p(Λ) (10.14) 74

75 q(z, π, µ, Λ) = q(z)q(π, µ, Λ) (10.15) (10.9) ln q (Z) = E π,µ,λ [ln p(x, Z, π, µ, Λ)] + const = E π [ln p(z π)] + E µ,λ [ln p(x Z, µ, Λ)] + const (10.16) ln q (Z) = K z nk ln ρ nk + const k=1 ln ρ nk = E[ln π k ] E[ln Λ k ] D 2 ln(2π) 1 2 E µ k,λ k [(x n µ k ) T Λ k (x n µ k )] (10.17) q (Z) N K k=1 ρ z nk nk (10.18) q (Z) = r nk = N K k=1 r z nk nk ρ nk Kj=1 ρ n j (10.19) N K Z k=1 N K nk = ρ nk (10.20) ρ z nk k=1 q (Z) E[z nk ] = r nk (10.21) N k = x k = S k = 1 r nk N k 1 N k r nk x n r nk (x n x k )(x n x k ) T (10.22) 75

76 q(π, µ, Λ) (10.9) ln q (π, µ, Λ) = ln p(π) + + K k=1 K ln p(µ k, Λ k ) + E Z [ln p(z π)] k=1 E[z nk ] ln N(x n µ k, Λ 1 k ) + const (10.23) K q (π, µ, Λ) = q (π) q (µ k, Λ k ) (10.24) k=1 π K K ln q (π) = (α 0 1) ln π k + r nk ln π k + const (10.25) k=1 k=1 q (π) = Dir(π α) (10.26) α α k = α 0 + N k (10.27) q (µ k, Λ k ) q (µ k, Λ k ) = N(µ k m k, (β k Λ k ) 1 )W(Λ k W k, ν k ) (10.28) β k = β 0 + N k m k = 1 (β 0 m 0 + N k x k ) β k W 1 k = W N k S k + β 0N k β 0 + N k ( x k m 0 )( x k m 0 ) T ν k = ν 0 + N k (10.29) E[z nk ] = r nk E µk,λ k [(x n µ k ) T Λ k (x n µ k )] = Dβ 1 k + ν k (x n m k ) T W k (x n m k ) D ( ) νk + 1 i ln Λ k E[ln Γ k ] = ψ + D ln 2 + ln W k 2 i=1 ln π k E[ln π k ] = ψ(α k ) ψ α k (10.30) k 76

77 ˆx ẑ p( ˆx X) = p( ˆx ẑ, µ, Λ)p(ẑ π)p(π, µ, Λ X)dπdµdΛ (10.31) ẑ K p( ˆx X) = π k N( ˆx µ k, Λ 1 )p(π, µ, Λ X)dπdµdΛ (10.32) k=1 p(π, µ, Λ X) q(π)q(µ, Λ) p( ˆx X) K π k N( ˆx µ k, Λ 1 )q(π)q(µ k, Λ k )dπdµ k dλ k k=1 1ˆα K α k St( ˆx m k, L k, ν k + 1 D) (10.33) k=1 t L k = (ν k + 1 D)β k 1 + β k W k (10.34)

78 f (x) = exp( x) x x = ξ η = exp( ξ) y(x) = f (ξ) + f (ξ)(x ξ) (10.35) y(x) = exp( ξ) exp( ξ)(x ξ) (10.36) y(x, η) = ηx η + η ln( η) (10.37) η f (x) y(x, η) f (x) = max{ηx η + η ln( η)} (10.38) η y = ηx g(η) g(η) = max x {ηx f (x)} (10.39) x y f (x) = max{ηx g(η)} (10.40) η t N p(t) = p(t w)p(w)dw = p(t n w) p(w)dw (10.41) 78

79 p(t w) = σ(a) t {1 σ(a)} 1 t ( ) ( 1 1 = 1 + e a e a a = w T ϕ ) 1 t = e at e a 1 + e a = eat σ( a) (10.42) σ(z) σ(ξ) exp{(z ξ)/2 λ(ξ)(z 2 xi 2 )} [ 1 λ(ξ) = σ(ξ) 1 ] 2ξ 2 (10.43) p(t w) = e at σ( a) e at σ(ξ) exp{ (a + ξ)/2 λ(ξ)(a 2 ξ 2 )} (10.44) p(t, w) = p(t w)p(w) h(w, xi)p(w) (10.45) ξ {ξ n } N h(w, ξ) = σ(ξ n ) exp{w T ϕ n t n (w T ϕ n + ξ n )/2 λ(ξ n )( w T ϕ n 2 ξn)} 2 (10.46) ln{p(t w)p(w)} ln p(w) + p(w) w + {ln σ(ξ n ) + w T ϕ n t n (w T ϕ n + ξ n )/2 λ(ξ n )( w T ϕ n 2 ξ 2 n)} (10.47) 1 2 (w m 0) T S0 1 (w m 0) { w T ϕ n (t n 1/2) λ(ξ n )w T (ϕ n ϕ T n )w } + const (10.48) w q(w) = N(w m N, S N ) m N = S N S 1 0 m 0 + (t n 1/2)ϕ n S 1 N = S λ(ξ n )ϕ n ϕ T n (10.49) q(w) 79

80 10.7 {ξ n } ln p(t) = ln p(t w)p(w) ln h(w, ξ)p(w)dw = L(ξ) (10.50) EM ξ old Q(ξ, ξ old ) = Q(ξ, ξ old ) = E[ln{h(w, ξ)p(w)}] (10.51) { ln σ(ξn ) ξ n /2 λ(ξ n )(ϕ T n E[ww T ]ϕ n ξn) } 2 + const (10.52) const ξ ξ n 0 λ(ξ) λ (ξ) 0 L(ξ) 0 = λ (ξ n )(ϕ T E[ww T ]ϕ n ξ 2 n) (10.53) (ξ new n ) 2 = ϕ T E[ww T ]ϕ n = ϕ T (S N + m N m T N )ϕ n (10.54) L(ξ) = 1 2 ln S N S mt N S 1 N m N 1 2 mt 0 S 1 0 m 0 { ln σ(ξ n ) 1 2 ξ n + λ(ξ n )ξ 2 n } (10.55) w p(w α) = N(w 0, α 1 I) (10.56) α p(α) = Gam(α a 0, b 0 ) (10.57) 80

81 p(t) = q(w, α) (10.152) p(w, α, t)dwdα p(w, α, t) = p(t w)p(w α)p(α) (10.58) ln p(t) = L(q) + KL(q p) { p(w, α, t) L(q) = q(w, α) ln q(w, α) KL(q p) = q(w, α) ln { p(w, α t) q(w, α) } dwdα } dwdα (10.59) ln p(t) L(q) L(q, ξ) { } h(w, ξ)p(w α)p(α) = q(w, α) ln dwdα (10.60) q(w, α) (10.9) q(w) ln q(w) = E[α] 2 wt w + q(α) q(w, α) = q(w)q(α) (10.61) ln q(w) = E α [ln{h(w, ξ)p(w α)p(α)}] + const = ln h(w, ξ) + E α [ln p(w α)] + const (10.62) { (tn 1/2)w T ϕ n λ(ξ n )w T ϕ n ϕ T n w } + const (10.63) q(w) = N(w µ N, Σ N ) Σ 1 N µ N = (t n 1/2)ϕ n Σ 1 N = E[α]I + 2 λ(ξ n )ϕ n ϕ T n (10.64) ln q(α) = E w [ln p(w α)] + ln p(α) + const = M 2 ln α α 2 E[wT w] + (a 0 1) ln α b 0 α + const (10.65) 81

82 q(α) = Gam(α a N, b N ) a N = a 0 + M 2 b N = b E w[w T w] (10.66) ξ n L(q, ξ) ξ α L(q, ξ) = q(w) ln h(w, ξ)dw + const (10.67) (ξ new n ) 2 = ϕ T n (Σ N + µ N µ T N )ϕ n (10.68) q(w), q(α), ξ E[α] = a N b N E[ww T ] = Σ N + µ N µ T N (10.69) 10.8 EP p(z) KL(p q) q(z) q(z) q(z) = h(z)g(η) exp{η T u(z)} (10.70) η KL KL(p q) = ln g(η) η T E p(z) [u(z)] + const (10.71) η 0 ln g(η) = E p(z) [u(z)] (10.72) (2.226) E q(z) [u(z)] = E p(z) [u(z)] (10.73) q(z) N(z µ, Σ) µ Σ p(z) KL 82

83 p(d, θ) = f i (θ) (10.74) ( f i (D, θ) ) i p(θ D) = 1 f i (θ) (10.75) p(d) i EP p(d) = f i (θ)dθ (10.76) q(θ) = 1 Z i i f i (θ) (10.77) 1. f j (θ) 2. q \ j (θ) = q(θ) f j (θ) Z j = q \ j (θ) f j (θ)dθ (10.78) q new (θ) ( f j (θ)q \ j (θ) ) KL qnew (θ) Z j (10.79) f j (θ) 3. f q new (θ) j (θ) = Z j q \ j (θ) (10.80)

84 EP 11 p(z) f (z) E[ f ] = f (z)p(z)dz (11.1) p(z) z (l) (l = 1,, L) ˆ f = 1 L L f (z (l) ) (11.2) l=1 ˆ f = 1 L L f (z (l) ) l=1 var[ ˆ f ] = 1 L E [ ( f E[ f ]) 2] (11.3) (0, 1) z y = f (z) y y p(y) = p(z) dz dy (11.4) y z z = h(y) y p(ŷ)dŷ (11.5) p(y) y y = h 1 (z) 84

85 p(z) p(z) z p(z) Z p(z) = 1 p(z) (11.6) Z p p(z) Z p 1. q(z) 2. k z kq(z) p(z) 3. z 0 q(z) 4. u 0 [0, kq(z 0 )] 5. u 0 p(z 0 ) p(z) z p(z) z E[ f ] 1 L L p(z (l) ) f (z (l) ) (11.7) l=1 z q(z) E[ f ] = f (z)p(z)dz = f (z) p(z) q(z) q(z)dz 1 L L l=1 p(z (l) ) q(z (l) ) f (z(l) ) (11.8) 85

86 p(z) = p(z)z p q(z) = q(z)z q E[ f ] = = Z q Z p Z q Z p 1 L f (z)p(z)dz f (z) p(z) q(z) q(z)dz L r l f (z (l) ) (11.9) l= SIR EM EM M θ Q(θ, θ old = p(z X, θ old ln p(z, X θ)dz (11.10) p(z X, θ old {Z (l) } Q(θ, θ old ) 1 L L ln p(z (l), X θ) (11.11) l=1 EM p(z X) p(θ Z, X) IP p(θ) θ (l) p(z θ (l), X) Z (l) (I ) θ p(θ X) 1 L L p(θ Z (l), X) (11.12) l=1 (P ) 86

87 11.2 p(z) = p(z)/z p Metropolis 1. z (0) 2. z (τ) q(z z (τ) ) z (τ+1) q(z A z B ) = q(z B z A ) 3. ( A(z, z (τ) ) = min 1, p(z ) ) p(z (τ) ) (11.13) z z (τ+1) z (τ+1) = z (τ) p(z (m+1) z (1),, z (m) ) = p(z (m+1) z (m) ) (11.14) p(z (0) ) T m (z (m), z (m+1) ) p(z (m+1) p(z (m) ) m p(z (m+1) ) = z (m) p(z (m+1) z (m) )p(z (m) ) (11.15) p (z) = T(z, z)p (z ) (11.16) z p (z) p (z) p (z)t(z, z ) = p (z )T(z, z) (11.17) p (z) p (z )T(z, z) = z z p (z)t(z, z ) = p (z) p(z z) = p (z) (11.18) z 87

88 Metropolis-Hastings p(z) = p(z)/z p 1. z (0) 2. z (τ) q(z z (τ) ) z (τ+1) 3. ( A(z, z (τ) ) = min 1, p(z )q(z (τ) z ) ) p(z (τ) )q(z z τ ) (11.19) z z (τ+1) z (τ+1) = z (τ) Metropolis T(z, z ) = q(z z)a(z, z) (11.20) p(z)q(z z)a(z z) = min(p(z)q(z z), p(z )q(z z )) = min(p(z )q(z z ), p(z)q(z z)) = p(z )q(z z )A(z, z ) (11.21) Metropolis-Hastings p(z) 11.3 p(z) = p(z 1,, z M ) 1. z (0) 2. τ = 1,, T z (τ+1) 1 p(z 1 z (τ) 2,, z(τ) M ). z (τ+1) j. z (τ+1) M p(z j z (τ+1) 1,, z (τ+1) j 1,, z(τ) j+1,, z(τ) M ) p(z M z (τ+1) 1,, z (τ+1) M 1 ) 88

89 q(z z) = p(z k z \k) Metropolis-Hastings z \k z z k p(z )q(z z ) p(z)q(z z) = p(z k z \k )p(z \k )p(z k z \k ) p(z k z \k )p(z \k )p(z k z \k) = 1 (11.22) A(z, z) = 1 z \k = z \k 11.4 p(z) u 1/Z p 0 u p(z) ˆp(z, u) = (11.23) 0 0 u p(z) z 0 u p(z) u u {z : p(z) > u} z

90 D {x n } M < D D u 1 u T 1 x n x = 1 N x n (12.1) u T 1 x n 1 N {u T 1 x n u T 1 x}2 = u T 1 Su 1 (12.2) S = 1 N (x n x)(x n x) T (12.3) u u T 1 Su 1 + λ 1 (1 u T 1 u 1) (12.4) Su 1 = λ 1 u 1 (12.5) u T 1 u T 1 Su 1 = λ 1 (12.6) u 1 S D u T i u j = δ i j (12.7) 90

91 x n = D α ni u i (12.8) i=1 x n = D (x T n u i )u i (12.9) i=1 M x n = M D z ni u i + b i u i (12.10) i=1 i=m+1 {z ni } {b i } J = 1 N x n x n 2 (12.11) {u i }, {z ni }, {b i } {z ni } b i J x n z n j = x T n u j b j = x T u j (12.12) D x n x n = {(x n x) T u i }u i (12.13) i=m+1 J = 1 N D D (x T n u i x T u i ) 2 = u T i Su i (12.14) i=m+1 i=m+1 u i (i > M) S D J = λ i (12.15) i=m+1 91

92 x n x n = x = D ( x T u i )u i (12.16) i=1 M (x T n u i )u i + i=1 = x + D ( x T n u i )u i i=m+1 M (x T n u i x T n u i )u i (12.17) D M i=1 ρ i j = 1 N (x ni x i ) ρ i (x n j x j ) ρ j (12.18) SU = UL U L y n = L 1/2 U T (x n x) (12.19) 0 1 N y n yn T = I (12.20) D X n (x n x) T N D S = N 1 X T X 1 N XT Xu i = λ i u i (12.21) D D N N 1 D N X 1 N XXT (Xu i ) = λ(xu i ) (12.22) N 92

93 12.2 M z p(z) x p(x z) p(z) = N(z 0, I) p(x z) = N(x W z + µ, σ 2 I) (12.23) p(x) = p(x z)p(z)dz = N(x µ, C) C = W W T + σ 2 I (12.24) p(x) µ, W, σ 2 W W W T R W = W R p(z x) = N(z M 1 W T (x µ), σ 2 M 1 ) M = W T W + σ 2 I (12.25) X = {x n } ln p(x µ, W, σ 2 ) = ln p(x n W, µ, σ 2 ) = ND 2 ln(2π) N 2 ln C 1 2 (x n µ) T C 1 (x n µ) (12.26) µ µ ML = 1 N x n (12.27) W W ML = U M (L M σ 2 I) 1/2 R (12.28) 93

94 U M D M S M M L M M M W σ 2 σ 2 ML = 1 D M D i=m+1 λ i (12.29) σ 2 0 (12.24) E[z x] = M 1 WML T (x x) (12.30) E[z x] (WML T W ML) 1 WML T (x x) = L M UM T (x x) (12.31) A {x Ax = 0} R M R D EM EM EM ln p(x, Z µ, W, σ 2 ) = {ln p(x n z n ) + ln p(z n )} (12.32) Q(θ, θ old ) = E[ln p(x, Z µ, W, σ 2 )] { D = 2 ln(2πσ2 ) Tr(E[z nzn T ]) σ x 2 n µ 2 1 σ 2 E[z]T W T (x n µ) 1 2σ Tr(E[z nz T 2 n ]W T W ) + M } 2 ln(2π) (12.33) 94

95 µ E[z n ] = M 1 old W T old (x n x) E[z n z T n ] = σ 2 old M 1 old + E[z n]e[z n ] T (12.34) Q 1 W new = (x n x)e[z n ] T E[z n zn T ] σ new = 1 ND { xn x 2 2E[z n ] T Wnew(x T n x) + Tr(E[z n z T n ]W T neww new ) } (12.35) D Ψ p(x z) = N(x W z + µ, Ψ) (12.36) p(x) = N(x µ, C) C = W W T + Ψ (12.37) µ x W, Ψ EM E E[z n ] = G old W T old Ψ 1 old (x n x) E[z n z T n ] = G old + E[z n ]E[z n ] T G = (I + W T Ψ 1 W ) 1 (12.38) W new = (x n x)e[z n ] T E[z n zn T ] Ψ new = diag S W 1 new N 1 E[z n ](x n x) T (12.39) 95

96 12.3 {x n } n x n = 0 M ϕ(x) M M n ϕ(x n ) = 0 C = 1 N ϕ(x n )ϕ(x n ) T (12.40) i = 1,, M C 1 N Cv i = λ i v i (12.41) ϕ(x n ){ϕ(x n ) T v i } = λ i v i (12.42) v i ϕ(x n ) v i = a in ϕ(x n ) (12.43) ({ϕ(x n )} N a in ) 1 N ϕ(x n )ϕ(x n ) T a im ϕ(x m ) = λ i a in ϕ(x n ) (12.44) ϕ(x l ) T ϕ(x n ) T ϕ(x n ) = k(x n, x m ) 1 N m=1 m=1 k(x l, x n ) a im k(x n, x m ) = λ i a in k(x l, x n ) (12.45) 0 1 = v T i v i = m=1 K 2 a i = λ i NKa i (12.46) Ka i = λ i Na i (12.47) a in a im ϕ(x n ) T ϕ(x m ) = a T i Ka i = λ i Na T i a i (12.48) 96

97 x i y i (x) = ϕ(x) T v i = a in ϕ(x) T ϕ(x) = a in k(x, x n ) (12.49) ϕ(x n ) 0 ϕ(x n ) = ϕ(x n ) 1 N ϕ(x l ) (12.50) l=1 K nm = ϕ(x n ) T ϕ(x m ) = (x n ) T ϕ(x m ) 1 N 1 N (x n ) T ϕ(x l ) l=1 (x l ) T ϕ(x m ) + 1 (x N 2 j ) T ϕ(x l ) l=1 j=1 l=1 = k(x n, x m ) 1 N 1 N k(x l, x m ) l=1 k(x n, x l ) + 1 N 2 l=1 k(x j, x l ) (12.51) j=1 l=1 K = K I N K K1 N + 1 N K1 N (12.52) 1 N 1/N

98 N p(x 1,, x N ) = p(x 1 ) p(x N x 1,, x n 1 ) (13.1) n=2 N p(x 1,, x N ) = p(x 1 ) p(x n x n 1 ) (13.2) n n 1 p(x n x 1,, x n 1 ) = p(x n x n 1 ) (13.3) n=2 N p(x 1,, x N ) = p(x 1 )p(x 2 x 1 ) p(x n x n 1, x n 2 ) (13.4) n=3 x n z n N N p(x 1,, x N, z 1,, z N ) = p(z 1 ) p(z n z n 1 ) p(x n z n ) (13.5) n=2 z n z n 1 z n+1 z n+1 z n 1 z n (13.6) 98

99 13.2 z n K A jk p(z nk = 1 z n 1, j = 1) p(z n z n 1, A) = π p(z 1 π) = K k=1 K k=1 K j=1 A z n 1, jz nk jk (13.7) π z 1k k (13.8) z n x n ϕ p(x n z n, ϕ) = K p(x n ϕ k ) z nk (13.9) k=1 A ϕ n N N p(x, Z θ) = p(z 1 π) p(z n z n 1, A) p(x m z m, ϕ) (13.10) n=2 θ = {π, A, ϕ} A k j A jk left-to-righthmm m= HMM X = {x 1,, x N } HMM EM Q(θ, θ old ) = p(z X, θ old ) ln p(x, Z θ) = Z p(z X, θ old ) ln p(z 1 π) + ln p(z n z n 1, A) + ln p(x n z n, ϕ) Z n=2 (13.11) γ(z n ) = p(z n X, θ old ) ξ(z n 1, z n ) = p(z n 1, z n X, θ old ) (13.12) γ(z nk ) = p(z nk = 1 X, θ old ) ξ(z n 1, j, z nk ) = p(z n 1, j = z nk = 1 X, θ old ) (13.13) 99

100 Q(θ, θ old ) = + K K K γ(z 1k ) ln π k + ξ(z n 1, j, z nk ) ln A jk k=1 n=2 j=1 k=1 K γ(z nk ) ln p(x n ϕ k ) (13.14) k=1 M γ(z n ) ξ(z n 1, z n ) θ = {π, A, ϕ} Q(θ, θ old ) π k = A jk = γ(z 1k ) Kj=1 γ(z 1 j ) N n=2 ξ(z n 1, jz nk ) Kl=1 N n=2 ξ(z n 1, jz nl ) (13.15) EM γ(z nk ) ξ(z n 1, j, z nk ) p(x z n ) = p(x 1,, x n z n )p(x n+1,, x N z n ) p(x 1,, x n 1 x n, z n ) = p(x 1,, x n 1 z n ) p(x 1,, x n 1 z n 1, z n ) = p(x 1,, x n 1 z n 1 ) p(x n+1,, x N z n z n+1 ) = p(z n+1,, x N z n+1 ) p(x n+2,, x N z n+1 x n+1 ) = p(z n+2,, x N z n+1 ) p(x z n 1 x n ) = p(x 1,, x n 1 z n 1 )p(x n z n )p(x n+1,, x N z n ) p(x N+1 X, z N+1 = p(x N+1 z N+1 ) p(z N+1 z N, X) = p(z N+1 z N ) (13.16) γ(z n ) γ(z n ) = p(z n X) = p(x z n)p(z n ) p(x) = p(x 1,, x n, z n )p(x n+1,, x N ) = α(z n)β(z n ) p(x) p(x) (13.17) α(z n ) p(x 1,, x n, z n ) β(z n ) p(x n+1,, x N z n ) (13.18) 100

101 α, β β(z n ) α(z n ) = p(x 1,, x n, z n ) = p(x 1,, x n z n )p(z n ) = p(x n z n )p(x 1,, x n 1 z n )p(z n ) = p(x n z n ) p(x 1,, x n 1, z n 1, z n ) z n 1 = p(x n z n ) p(x 1,, x n 1, z n z n 1 )p(z n 1 ) z n 1 = p(x n z n ) p(x 1,, x n 1 z n 1 )p(z n z n 1 )p(z n 1 ) z n 1 = p(x n z n ) p(x 1,, x n 1, z n 1 )p(z n z n 1 ) z n 1 = p(x n z n ) α(z n 1 )p(z n z n 1 ) (13.19) z n 1 α(z 1 ) = p(x 1, z 1 ) = p(z 1 )p(x 1 z 1 ) = K {π k p(x 1 ϕ k )} z 1k (13.20) k=1 β(z n ) = p(x n+1,, x N z n ) = p(x n+1,, x N, z n+1 z n ) z n+1 = p(x n+1,, x N z n, z n+1 )p(z n+1 z n ) z n+1 = p(x n+1,, x N z n+1 )p(z n+1 z n ) z n+1 = p(x n+1,, x N z n+1 )p(x n+1 z n+1 )p(z n+1 z n ) z n+1 = β(z n+1 )p(x n+1 z n+1 )p(z n+1 z n ) (13.21) z n+1 (13.33) n = N α p(z N X) = p(x, z N)β(z N ) p(x) β(z N ) = 1 (13..33) z n p(x) = α(z n )β(z n ) z n = (13.22) z N α(z N ) (13.23) 101

102 ξ(z n 1, z n ) ξ(z n 1, z n ) = p(z n 1, z X) = p(x z n 1, z n )p(z n 1, z n ) p(x) = p(x,, x n 1 z n 1 )p(x n z n )p(x n+1,, x N z n )p(z n z n 1 )p(z n 1 ) p(x) = α(z n 1 p(x n z n )p(z n z n 1 )β(z n ) p(x) p(x N+1 X) = = = = = = (13.24) p(x N+1, z N+1 X) z N+1 p(x N+1 z N+1 )p(z N+1 X) z N+1 p(x N+1 z N+1 ) p(z N+1, z N X) z N+1 z N p(x N+1 z N+1 ) p(z N+1 z N )p(z N X) z N+1 z N p(x N+1 z N+1 ) p(z N+1 z N ) p(z N, X) p(x) z N+1 z N 1 p(x N+1 z N+1 ) p(z N+1 z N )α(z N ) (13.25) p(x) z N+1 z N HMM α(z n ) ˆα(z n ) = p(z n x 1,, x n ) = α(z n ) p(x 1,, x n ) (13.26) c n = p(x n x 1,, x n 1 ) (13.27) n p(x 1,, x n ) = c m (13.28) m=1 102

103 n α(z n ) = p(z n x 1,, x n )p(x 1,, x n ) = c m ˆα(z n) (13.29) α c n ˆα(z n ) = p(x n z n ) ˆα(z n 1 )p(z n z n 1 ) (13.30) z n 1 β ˆβ(z n ) = β(z n ) N m=n+1 c = m m=1 p(x n+1,, x N z n ) p(x n+1,, x N x 1,, x n ) (13.31) c n+1 ˆβ(z n ) = ˆβ(z n+1 )p(x n+1 z n+1 )p(z n+1 z n ) (13.32) z n+1 p(x) = N c n γ(z n ) = ˆα(z n )ˆβ(z n ) ξ(z n 1, z n ) = (c n ) 1 ˆα(z n 1 )p(x n z n )p(z n z n 1 )ˆβ(z n ) (13.33) Viterbi {x 1,, x N } z n w(z n ) = max z 1,,z n 1 ln p(x 1,, x n, z 1,, z n ) (13.34) w(z n+1 ) = max z 1,,z n ln p(x 1,, x n+1, z 1,, z n+1 ) = max z 1,,z n [ ln p(x1,, x n, z 1,, z n ) + ln p(z n+1 z n ) + ln p(x n+1 z n+1 ) ] = ln p(x n+1 z n+1 ) + max z n {ln p(z n+1 z n ) + w(z n )} (13.35) w(z 1 ) = ln p(z 1 ) + ln p(x 1 z 1 ) (13.36) n = 1 max z n w(z n ) = max p(x, Z) (13.37) Z 103

104 p(z n z n 1 ) = N(z n Az n 1, Γ) p(x n z n ) = N(x n Cz n, Σ) p(z 1 ) = N(z 1 µ 0, P 0 ) (13.38) θ = {A, Γ, C, Σ, µ 0, P 0 } LDS LDS Linear Dynamical System HMM ˆα(z n ) = p(z n x 1,, x n ) (13.39) ˆα(z n ) = N(z n µ n, V n ) (13.40) HMM c n ˆα(z n ) = p(x n z n ) ˆα(z n 1 )p(z n z n 1 )dz n 1 (13.41) µ n = Aµ n 1 + K n (x n CAµ n 1 ) V n = (I K n C)P n 1 c n = N(x n CAµ n 1, CP n 1 C T + Σ) (13.42) P n 1 = AV n 1 A T + Γ K n = P n 1 C T (CP n 1 C T + Σ) 1 (13.43) c 1 ˆα(z 1 ) = p(z 1 )p(x 1 z 1 ) (13.44) 104

105 µ 1 = µ 0 + K 1 (x 1 Cµ 0 ) V 1 = (I K 1 C)P 0 c 1 = N(x 1 Cµ 0, CP n 1 C T + Σ) K 1 = P 0 C T (CP 0 C T + Σ) 1 (13.45) γ(z n ) = p(z n X) (13.46) γ(z n ) = ˆα(z n )ˆβ(z n ) = (z n ˆµ n, ˆV n ) (13.47) ˆβ(z n ) ˆµ n, Vˆ n c n+1 ˆβ(z n ) = ˆβ(z n+1 )p(x n+1 z n+1 )p(z n+1 z n )dz n+1 (13.48) ˆµ = µ n + J n ( ˆµ n+1 Aµ n ) ˆV n = V n + J n ( ˆV n+1 P n )Jn T (13.49) J n = V n A T (P n ) 1 (13.50) ξ(z n 1, z n ) = (c n ) 1 ˆα(z n 1 )p(x n z n )p(z n z n 1 )ˆβ(z n ) = N(z n 1 µ n 1, V n 1 )N(z n Az n 1, Γ)N(x n Cz n, Σ)N(z n ˆµ n, ˆV n ) c n ˆα(z n ) (13.51) [ ˆµ n 1, ˆµ n ] T cov[z n 1, z n ] = J n 1 ˆV n (13.52) LDS EM θ = {A, Γ, C, Σ, µ 0, P 0 } p(z X, θ old ) 105

106 E[z n ] = µ ˆ n E[z n z T n 1 ] = ˆV n J T n 1 + ˆµ n ˆµ T n 1 E[z n z T n ] = ˆV n + ˆµ n ˆµ T n (13.53) ln p(x, Z θ) = ln p(z 1 µ 0, P 0 ) + + ln p(z n z n 1, A, Γ) n=2 ln p(x n z n, C, Σ) (13.54) Q(θ, θ old ) = ln p(x, Z θ)p(z X, θ old )dz = E Z θ old[ln p(x, Z θ)] (13.55) µ 0 P 0 Q(θ, θ old ) = 1 [ ] 1 2 ln P 0 E Z θ old 2 (z 1 µ 0 ) T P0 1 (z 1 µ 0 ) + const (13.56) µ new 0 = E[z 1 ] P new 0 = E[z 1 z T 1 ] E[z 1]E[z T 1 ] (13.57) A Γ Q(θ, θ old ) = N 1 2 ln Γ E Z θ old 1 2 (z n Az n 1 ) T Γ 1 (z n Az n 1 ) + const n=2 (13.58) A A new = E[z n zn 1 T ] E[z n 1 zn 1 T ] n=2 n=2 1 (13.59) 106

107 Q(θ, θ old ) = E Z θ old 1 [z(n) i z(n 1) h A ih ]Γ 1 i j 2 [z(n) j A jk z(n 1) k ] + const n=2 Q(θ, θ old ) = 1 A αβ 2 E Z θ old z(n 1) β Γ 1 α j [z(n) j A jk z(n 1) k ] n=2 + [z(n) i z(n 1) h A ih ]Γ 1 iα z(n 1) ] β = E Z θ old z(n 1) β Γ 1 α j [z(n) j A jk z(n 1) k ] A Q(θ, θ old) = E Z θ old n=2 z n 1 [Γ 1 (z n Az n 1 )] T n=2 = E Z θ old z n 1 (z n Az n 1 ) T (Γ 1 ) T = 0 (13.60) E Z θ old n=2 (z n Az n 1 )zn 1 T = 0 (13.61) n=2 z n z(n) Γ Γ new = 1 N 1 { E[zn zn T ] A new E[z n 1 zn T ] n=2 E[z n z T n 1 ](Anew ) T + A new E[z n 1 z T n 1 ](Anew ) T } (13.62) Γ 1 i j = Γ 1 iα Γ Γ 1 β j αβ Γ αβ ln Γ = Γ 1 βα (13.63) Q(θ, θ old ) = N 1 Γ 1 βα Γ αβ E Z θ old [z(n) i z(n 1) h A T hi ]Γ 1 iα Γ 1 β j [z(n) j A jk z(n 1) k ] n=2 Γ Q(θ, θ old) = N 1 Γ 1 + E 2 Z θ old Γ 1 (z n Az n 1 )(zn T zn 1 T AT )Γ 1 = 0 (13.64) Γ = n=2 1 N 1 E Z θ old [ (zn Az n 1 )(z T n z T n 1 AT ) ] (13.65) C Σ Q(θ, θ old ) = N 2 ln Σ E Z θ 1 old (x n Cz n ) T Σ 1 (x n Cz n ) 2 + const n=2 (13.66) 107

108 C new = Σ new = 1 N x n E[zn T ] E[z n zn T ] 1 { E[xn x T n ] C new E[z n ]x T n x n E[z T n ](C new ) T + C new E[z n z T n ](C new ) T } (13.67) LDS X n p(z n X n ) L z n E[ f (z n )] = f (z n )p(z n X n )dz n = f (z n )p(z n x n, X n 1 )dz n = f (z n ) p(x n, z n X n 1 ) dz n p(x n X n 1 ) = f (zn )p(x z n )p(z n X n 1 )dz n p(xn z n )p(z n X n 1 )dz n = l l=1 f (z(l) n )p(x n z n (l) ) l l=1 p(x n z n (l) ) l w n (l) f (z n (l) ) (13.68) l=1 w n (l) p(x n z n (l) ) = Lm=1 p(x n z n (m) ) (13.69)

109 14.1 p(x) = = p(x, z) z K π k N(x µ k, Σ k ) (14.1) k=1 X = {x 1,, x N } N N p(x) = p(x n ) = p(x n, z n ) (14.2) z n x n z n h = 1,, H p(h) H p(x) = p(x h)p(h) (14.3) k=1 p(h X) 14.2 X = {x 1,, x N } M N N M y m (x) y COM (x) = 1 y m (x) (14.4) M h(x) y m (x) = h(x) + ϵ m (x) (14.5) [ E x {ym (x) h(x)} 2] = E x [ϵ m (x) 2 ] (14.6) m=1 E AV = 1 M E x [ϵ m (x) 2 ] (14.7) M m=1 109

110 1 M E COM = E x 2 y m (x) h(x) M m=1 1 M = E x 2 ϵ m (x) M m=1 (14.8) 0 E x [ϵ m (x)] = 0 E x [ϵ m (x)ϵ l (x)] = 0 (14.9) E COM = 1 M E AV (14.10) 14.3 t 1,, t N x 1,, x N y(x) { 1, 1} AdaBoost 1. n = 1,, N {w n } w (1) n 2. m = 1,, M (a) y m (x) J m = = 1/N w (m) n I(y m (x n ) t n ) (14.11) I(y m (x n ) t n ) y m (x n ) t n 1 0 (b) N ϵ m = w(m) n I(y m (x n ) t n ) N w(m) n { } 1 ϵm α m = ln ϵ m (14.12) (c) w (m+1) n = w (m) n exp{α n I(y m (x n ) t n )} (14.13) 3. M Y M (x) = sign α m y m (x) (14.14) m=1 110

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

renshumondai-kaito.dvi

renshumondai-kaito.dvi 3 1 13 14 1.1 1 44.5 39.5 49.5 2 0.10 2 0.10 54.5 49.5 59.5 5 0.25 7 0.35 64.5 59.5 69.5 8 0.40 15 0.75 74.5 69.5 79.5 3 0.15 18 0.90 84.5 79.5 89.5 2 0.10 20 1.00 20 1.00 2 1.2 1 16.5 20.5 12.5 2 0.10

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt 3.4.7 [.] =e j(t+/4), =5e j(t+/3), 3 =3e j(t+/6) ~ = ~ + ~ + ~ 3 = e j(t+φ) =(e 4 j +5e 3 j +3e 6 j )e jt = e jφ e jt cos φ =cos 4 +5cos 3 +3cos 6 =.69 sin φ =sin 4 +5sin 3 +3sin 6 =.9 =.69 +.9 =7.74 [.]

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n [ ]. A = IC X n 3 expx = E + expta t : n! n=. fx π x π. { π x < fx = x π fx F k F k = π 9 s9 fxe ikx dx, i =. F k. { x x fx = x >.3 ft = cosωt F s = s4 e st ftdt., e, s. s = c + iφ., i, c, φ., Gφ = lim

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

kou05.dvi

kou05.dvi 2 C () 25 1 3 1.1........................................ 3 1.2..................................... 4 1.3..................................... 7 1.3.1................................ 7 1.3.2.................................

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

Microsoft Word - 表紙.docx

Microsoft Word - 表紙.docx 黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information