Macintosh_HD:Users:toshi:myDocuments:classes:過去の非常勤:東工大非常勤2007(情報):Markov_chain:note.dvi

Size: px
Start display at page:

Download "Macintosh_HD:Users:toshi:myDocuments:classes:過去の非常勤:東工大非常勤2007(情報):Markov_chain:note.dvi"

Transcription

1 HMC HMC HMC HMC CTMC CTMC CTMC

2 1 1.1 T t T X t {X t,t T} (stocastic process) (Ω, F,P) ω Ω {X t (ω), t T} (sample pat) {X t } F (x 1,x 2,..., x n ; t 1,t 2,..., t n )=P(X t1 x 1,X t2 x 2,..., X tn x n ) (1.1) 1.2 (stationary process) F (x 1,x 2,..., x n ; t 1,t 2,..., t n )=F(x 1,x 2,..., x n ; t 1 +, t 2 +,..., t n + ) (1.2) p i = P (X t = i) p =(p i ) lim t P (X t = i) 1.3 t 0 Y (t) =X(t 0 t) {Y (t)} {X(t)} t F (x 1,x 2,..., x n ; t 1,t 2,..., t n )=F(x 1,x 2,..., x n ; t t 1,t t 2,..., t t n ) (1.3) 1 2

3 2 S S = {0, 1,...} T = {0, 1,...} {X n } X k {X n } k k {X n } (coupling) 2.1 (irreducibility) (periodicity) {X n } (discrete-time Markov cain) n 0, i 0,..., i n+1 S, P (X n+1 = i n+1 X n = i n,x n 1 = i n 1,X 0 = i 0 )=P(X n+1 = i n+1 X n = i n ) (Markov property) O e 1 P P O Pe = e (stocastic matrix) a a 0 ae =1 (stocastic vector) {X n } p (m, n) =P (X m+n = j X m = i) m i j n (transition probability) P (m, n) = (p (m, n)) m n (transition probability matrix) P (m, 0) = I m, n 0, P (m, n) =P (0,n)=P (n) =(p (n) ) (time-omogeneous Markov cain: HMC) HMC ; Capman-Kolmogorov equation n, k 0, P (n+k) = P (n) P (k) p (n+k) = l S p(n) il p(k) lj (2.1) P =(p )=P (1) P (n) = P n HMC P HMC a =(a i ),a i = P (X 0 = i) (initial distribution) a(n) =(a i (n)), a i (n) = P (X n = i) a(n) =ap (n) n HMC 2 A 3 3

4 2.1 HMC HMC a P a P P = HMC S {Z n } S i.i.d. X 0 {Z n } S f S S S X n+1 = f(x n,z n+1 ),n 0 {X n } HMC 4 Brémaud(1998) HMC S = Z 2 P (Z n =(1, 0)) = q 1, P (Z n =(0, 1)) = q 2, P (Z n =( 1, 0)) = q 3, P (Z n =(0, 1)) = q 4 =1 (q 1 + q 2 + q 3 ) X n+1 = X n + Z n+1 Z 2 {X n } HMC HMC 2.3 n 0 p (n) > 0 j i (reacable) i j i j j i i j (mutually reacable or communicate) i j p (0) ii =1 p (n) > 0 i 1,i 2,..., i n 1 S s.t. p ii1 p i1i 2...p in 1j > 0 S (class) HMC HMC 2.4 C S (1) i, j C, i j, (2) i C, j C p =1 4 U n {U n} U n+1 X n X n+1 f X n+1 = f(x n, U n+1 ),n 0 {X n} HMC HMC 4

5 C (irreducible set) (2) C (closed set) (absorbing state) 2.5 HMC (irreducible Markov cain) (reducible) 2.2 HMC S S S 1 = {0, 1, 2}, S 2 = {3, 4, 5, 6}, S 3 = {7}, S 4 = {8, 9} S 1,S 2,S HMC d 1 d HMC i S d i = g.c.d.{n 1 p (n) ii > 0} i (period) n 0 p (n) ii =0 d i = d i > 1 i (periodic) d i =1 (aperiodic) 2.3 i j d i = d j i j n, m 0 s.t. p (n) > 0, p (m) ji > 0 n, m p (n+m) ii p (n) p(m) ji > 0 n + m > 0 n + k + m d i d i p (k) jj > 0 k 1 p (n+k+m) ii p (n) p(k) jj p(m) ji k d i d j k d i d i d j d i = d j HMC i, j S n 0 n n 0 n p (n) > n d 1 P i, j S, m, n 0 0 s.t. p (m+nd) > 0 for all n n 0. (2.2) i = j A = {k 1 p (k) jj > 0} A d A A d n 0 0 s.t. p (nd) jj > 0 for all n n 0. i j i j m 0 s.t. p (m) > 0 p (m+nd) p (m) p (nd) jj > 0 for all n n 0. P n 0 0 s.t. P (n) > O for all n n 0. 5

6 2.2 d 1 HMC S d C 0,C 1,..., C d 1 0 k d 1, i C k, p =1 j C k+1 C d = C m 0 m d 1 i C k = {j S ; n 0 s.t. p (k+nd) > 0}, k=0, 1,..., d 1, HMC C 0 C 1... C d 1 C 0... d P d S 1 = {0, 1, 2}, S 2 = {3, 4, 5, 6}, S 3 = {7}, S 4 = {8, 9} S 1,S 3,S 4 1 S 2 2 S 2 {3, 4} {5, 6} Brémaud(1998) 2.5 S Z S a S = {ka k Z} c S 0 =c c S c =0 c S S a {ka k Z} S c S k Z c = ka+r, 0 r<a r >0 r = c ka S a r =0 S {ka k Z} 2.6 a 1,..., a k d n 1,..., n k Z s.t. d = k i=1 n ia i S = { k i=1 n ia i n 1,..., n k Z} S 2.5 a = k i=1 n ia i S = {ka k Z} a 1,..., a k d a d a d a i S a a 1,..., a k d a d = a = k i=1 n ia i 2.7 A = {a n n 1} d = g.c.d. A A d d >1 d d =1 1 A a 1,..., a k n 1,..., n k Zs.t. 1 = k i=1 n ia i 1 =M P, M, P A n P (P 1) n n = mp + r, 0 r<p m P 1 1 =M P m r 0 M, P A n = kp + r(m P )=(m r)p + rm A 2.2 HMC 5 d n = g.c.d.{a 1,..., a n} d n d n 1 1 a 1 a 1,..., a k 6

7 2.2.1 HMC π P P HMC π P 2.7 P πp = π π π P HMC (stationary distribution) xp = x xe =1 xp = x π 1 =( π 2 =( ), ), π 3 = ( ) π = q 1 π 1 + q 2 π 2 + q 3 π 3,q 1,q 2,q 3 0, q 1 + q 2 + q 3 =1 2.3 HMC HMC {X n } S τ τ = τ = n X 0,X 1,..., X n 1 {τ =n} X 0,X 1,..., X n {X n } (stopping time) 2.4 {X n } S HMC P =(p ) τ {X n } (strong Markov property) i, j S, P (X τ +1 = j X τ = i, X k, 0 k<τ)=p (X τ +1 = j X τ = i) =p 7

8 P (X τ +1 = j X τ = i, X k, 0 k<τ)= P (X τ +1 = j, X τ = i, X k, 0 k<τ) P (X τ = i, X k, 0 k<τ) = r 0 P (τ = r, X r+1 = j, X r = i, X k, 0 k<r) = r 0 P (X r+1 = j X r = i, τ = r, X k, 0 k<r)p (τ = r, X r = i, X k, 0 k<r) {τ = r} {X k, 0 k r} P (X r+1 = j X r = i, τ = r, X k, 0 k<r)=p (X r+1 = j X r = i) =p i S X τ = i (i) τ τ (ii) τ P HMC 2 Brémaud(1998) T j = inf{n 1 X n = j} j (first passage time) n 1, X n j T j = X 0 = j T j j (recurrence time) {T j = n} = {X n = j, X k j, 1 k n 1} i T j f (n) = P (T j = n X 0 = i) =P (X n = j, X k j, 1 k n 1 X 0 = i), n 1, f (0) =0 i j f = P (T j < X 0 = i) = n=1 f (n) f =1 i T j μ =E[T j X 0 = i] = n=1 nf (n) f < 1 μ = f μ 2.10 f ii =1 i (recurrent or persistent) f ii < 1 i (transient) i μ ii < (positive recurrent) μ ii = (null recurrent) n i j k i j j j k 2.8 n n p (n) = f (k) p(n k) jj,n 1 k=1 (2.3) 8

9 k >n P (X n = j, T j = k X 0 = i) =0 n p (n) = P (X n = j X 0 = i) = P (X n = j, T j = k X 0 = i) k=1 {T j = k} = {X k = j, X m j, 1 m k 1} P (X n = j, T j = k X 0 = i) =P (T j = k X 0 = i)p (X n = j T j = k, X 0 = i) = P (T j = k X 0 = i)p (X n = j X k = j) =f (k) p(n k) jj 2.5 j < p (n) n=0 p (n) jj n P (z) = z < 1 (2.3) p (0) P (z) =δ + F (z)p jj (z) n=0 zn p (n) (n) f = δ n F (z) = n=0 zn f (n) δ i = j 1 i j 0 i = j 1 P jj (z) = (2.4) 1 F jj (z) lim z 1 P jj (z) = n=0 p(n) jj, lim z 1 F jj (z) = n=1 f (n) jj = f jj j f jj < 1 n=0 p(n) jj < F jj (z) =1 1 P jj (z) n=0 p(n) jj < f jj < 1 j j = n=0 n=0 n=0 p (n) jj 6 [ p (n) jj = P (X n = j X 0 = j) = E[1 {Xn=j} X 0 = j] =E n=0 n=0 1 {Xn=j} ] X 0 = j. N j = n=0 1 {X n=j} j 2.5 N j j P (N j = ) =1 Brémaud(1998) 2.6 S P j S i S lim n p(n) =0 (2.3) n p (n) = f (k) p(n k) jj = n=1 n=1 k=1 k=1 n=k 6 A n A lim n E[A n] = E[lim n A n]=e[a]. f (k) p(n k) jj = f n=0 p (n) jj. 9

10 2.5 n=0 p(n) jj < n=0 p(n) < π =(π i ) j S π j > HMC {X n } k 0 P (X k = j) = π i p (k) p (k) <π j π j > 0 π j =0 2.9 i j i j i j n, m 0 p (n) n, m p (n+k+m) ii p (n) p(k) jj p(m) ji P (z) = n=0 zn p (n) 0 <z<1 for all k 0 p (n) > 0, p (m) ji > 0 n P ii (z) p (n) zn+m P jj (z)p (m) ji. (2.5) 2.5 i lim z 1 P ii (z) = n=0 p(n) ii < p (n) > 0, p (m) ji > 0 lim z 1 P jj (z) = n=0 p(n) jj < j j i i, j l S G l (z) = n=1 z n m=1 n=1 m=n f (m) ll lim z 1 G i (z) =G i (1) = μ ii, lim z 1 G j (z) =G j (1) = μ jj (2.4) m G i (z) = z n f (m) ii = z(1 F ii(z)) z = 1 z (1 z)p ii (z). G j (z) z G j (z) = (1 z)p jj (z). (2.5) p (n) zn+m G i (z)p (m) ji G j (z) j >μ jj = G j (1) p (n) G i(1)p (m) ji = p (n) μ iip (m) ji μ ii < i i j C S i C j/ C p > 0 i, j p (n) ji = 0 for all n 0 i j j / C f ji =0 i f ii f ii = p ii + p ik f ki p ii + p ik =1 p < 1 k i k i,j i C 10

11 2.3 C S C P =( p ) P P π =( π j ) S π =(π j ) j C π j = π j, j/ C π j =0 π πp = π HMC HMC 1 HMC S P =(p ) S x =(x i )(x 0) i S x i [0, ) x i = j S x j p ji x P (invariant measure) 2.10 S HMC {X n } P =(p ) i S 0 0 i x i T 0 0 [ T0 ] [ ] x i = E X 0 =0 = E X 0 =0. (2.7) n=1 1 {Xn=i} n=1 1 {Xn=i}1 {n T0} x =(x i ) i S, x i (0, ) (2.6) n = T 0 X n =0 x 0 = P (T 0 < X 0 =0)=1 0p (n) 0i =E[1 {Xn=i}1 {n T0} X 0 =0]=P (X 1 0,..., X n 1 0,X n = i X 0 = 0) (2.8) x i = n=1 0p (n) 0i 0 p (n) 0i n =1 0 p (1) 0i = p 0i n 2 n 1 0p (n) 0i = 0p (n 1) 0j p ji j 0 n 1 x i = p 0i + j 0 x j p ji (2.6) 11

12 x 0 =1 (2.6) x i > 0 (2.6) x = xp n x 0 =1 n x i = p (n) 0i + x j p (n) ji j 0 i 0 x i =0 n 1, p (n) 0i =0 i S, x i > 0 x i < x i > 0 1=x 0 = j S x j p (n) j0 j S n 0 p (n) j0 j S, x j < > 0 x j = HMC 0 1 {Xn=i}1 {n T0} = 1 {n T0} = T 0 n=1 n=1 [ ] E X 0 =0 =E[T 0 X 0 =0]=μ 00. (2.9) n=1 1 {Xn=i}1 {n T0} x i = HMC HMC 2.11 HMC P =(p ) y =(y i ) 2.10 x =(x i ) i S x = 1 y i y y =(y i ) y k > 0 y k x x i > 0 i S, y i > 0 Q =(q ) q = y j p ji y i Q n q (n) = y j p (n) ji y i P Q 2.5 P Q 0p (n) 0i P 2.10 g (n) 0p (n+1) 0i = 0p (n) 0j p ji. j 0 Q 0 p (n) 0i g (n+1) i0 = q g (n) j0 j 0 y 00 p (n) 0i y i g (n) i0 n 1 (y 00 p (n+1) 0i )= (y 00 p (n) 0j )p ji, j 0 (y i g (n+1) i0 )= (y j g (n) j0 )p ji. j 0 12

13 y 00 p (1) 0i = y 0 p 0i = y i q i0 = y i g (1) i0 n 1 0p (n) 0i = y i g (n) i0 y 0 Q x i = n=1 0p (n) 0i = y i y 0 n=1 g (n) i0 = y i y x > 0 7 HMC 2.12 S HMC {X n } P x =(x i ) {X n } x i < (2.9) x i = μ HMC HMC 2.7 HMC π π > x =(x i ) x i < 1 π = x x i π π =(π i ) i S, n 0, π i = π jp (n) ji 2.6 lim n p (n) ji =0 i S π i = lim π j p (n) n ji = lim π jp (n) n ji =0 HMC HMC π > P 2.10 π > 0 (finite Markov cain) 2.13 HMC HMC S = {0, 1,..., M} 2.6 M 1 = lim p (n) =0 n j=0 7 HMC Z + P (X 1 = i +1 X 0 = i) >P(X 1 = i 1 X 0 = i) =1 q 13

14 2.10 x =(x i ) > 0 M i=0 x i < HMC i S π i = 1. μ ii (2.10) 2.10 x xe < (2.9) π 0 = x 0 xe = 1 μ 00 0 i 2.4 P =(p ) S HMC {X n } a(n) =ap n 8 a(n) {X n } j S a 2.6 lim a j(n) = lim a i p (n) n n = a i lim n p(n) =0 {X n } {X n } a(n) {X n } r>1 2.2 S r {X n } 1 r (total variation distance) (coupling) HMC S a =(a i ) b =(b i ) (total variation distance) d(a, b) d(a, b) = 1 a i b i (2.11) 2 (2.11) d (2.11) 1 2 d(a, b) =0 a = b (elementwise) 0 d(a, b) 1 d(a, b) =0 d(a, b) =1 a b 8 HMC 14

15 S X Y d(x, Y )= 1 P (X = i) P (Y = i). 2 9 d(x, Y )=0 X = d Y 2.15 S X Y sup A S P (X A) P (Y A) = sup{p (X A) P (Y A)} = d(x, Y ). A S A S B = A B = A C P (X A) P (Y A) = P (X B) P (Y B) P (X A) P (Y A) A S A = {i S P (X = i) >P(Y = i)} A P (X = i) P (Y = i) = {P (X = i) P (Y = i)} = P (X = i) P (Y = i) i A i (A ) C i (A ) C S = A (A ) C sup{p (X A) P (Y A)} = P (X = i) P (Y = i) = 1 P (X = i) P (Y = i) = d(x, Y ) A S 2 i A S {X n (1) } {X n (2) } (coupling) 1 τ τ X n (1) = X n (2),n τ, τ (coupling) 2.16 τ {X n (1) } {X n (2) } d(x (1) n,x(2) n ) P (τ >n), n 0 (2.12) n 0, A S τ P (X (1) n A) P (X(2) n A) = P (X n (1) A, n < τ)+p (X n (1) A, n τ) {P (X n (2) A, n < τ)+p (X n (2) A, n τ)} = P (X (1) n A, n < τ) P (X(2) n A, n < τ) P (X n (1) A, n < τ) P (n <τ) 2.15 (2.12) 9 X = d Y X Y 15

16 2.4.3 HMC 2.14 HMC HMC (ergodic) HMC {X n } HMC {X n } {X n} {X n } HMC 2.17 S P =(p ) P a, b HMC {X n (1) } {X n (2) } {X n (3) } τ = inf{n 0 X (1) n = X(2) n }, X(3) { (2) X n = n X (1) n if n τ if n τ τ 1 {X n (1) } {X n (3) } τ {X n (3) } P b HMC {X n (2) } {X n (3) } S 2 2 {Z n }, Z n =(X (1) n,x (2) n ), n 0, τ {Z n } {Z n } HMC S S 2 {Z n } {X n (1) } {X n (2) } HMC {Z n } HMC P (Z n+1 =(j, l) Z n =(i, k)) = p p kl, (i, k), (j, l) S 2 (2.13) P 2.4 (i, j), (k, l) S 2 m 1 p (n) p(n) kl > 0, n m, 2.4 m HMC {Z n } P P π =(π i ) (2.13) (π i π j, (i, j) S 2 ) {Z n } {Z n } 2.7 τ {Z n } A = {(i, i) i S} {Z n } P (τ < ) =1 A 1 (0, 0) τ {Z n } {Z n } τ HMC τ {X n (1) } {X n (3) } P HMC {X n (3) } b HMC HMC 2.8 HMC P S π =(π i ) a =(a i ), b =(b i ) lim d(a(n), b(n)) = lim d(ap n, bp n )=0 n n a(n) b(n) π i, j S lim n p(n) = π j. (2.14) 16

17 P a, b HMC {X n (1) } {X n (2) } 2.17 {X n (1) } P b HMC {X n (3) } τ lim n d(x(1) n,x(2) n ) = lim d(a(n), b(n)) = lim d(ap n, bp n ) = lim n n n d(x(1) n,x(3) n ) lim P (τ >n)=0 n a, b b = π lim d(ap n, π) =0 n a i =1,a k =0,k i, (2.14) P n π lim P n = eπ. n HMC HMC 2.9 HMC S P =(p ) i, j S lim n p(n) =0. (2.15) {Z n } P a, b HMC {X n (1) } {X n (2) } S 2 2 {Z n } Z n =(X n (1),X n (2) ), n 0, 2.17 P {Z n } HMC P {Z n } {Z n } i, j S (i, i) (j, j) n (p (n) )2 (j, j) 2.6 lim n (p(n) )2 =0 {Z n } lim n p(n) =0 i, j S lim k p(n k) = x j > 0 and lim il = x l [0, 1], l j, {n k } {Z n } k p(n k) 2.8 i HMC 1 HMC lim k p(n k) il p (n k+1) il =0 p (n k+1) il = s S p(n k) is p sl x l = x s p sl s S x =(x l,l S) P n 0 l S p(n) il 1 l S x l P 17

18 2.4.5 HMC S 2 = {3, 4, 5, 6} r =2 P ( ) QC1 P = , Q = P 2 O = = O QC P C 1 = {3, 4} C 2 = {5, 6} Q P π π =( x C1 x C2 )=( ) x C1 x C2 2 π C1 =( ), π C 2 =( ) Q C1 Q C2 Q C1 P C k P C k HMC 2.18 HMC S r>1 P =(p ) π =(π i ), C k,k=0, 1,..., r 1, Q =(q )=P r Q Ck Q C k Q Ck C k Q π Ck Q Ck x Ck π k C k π Ck = r x Ck 2.2 l {0, 1,..., r 1}, n 0 { some nonnegative value if i p (nr+l) Ck and j C (k+l) mod r for some k {0, 1,..., r 1} = (2.17) 0 oterwise n =1,l { =0 some nonnegative value if i, j q = p (r) Ck for some k {0, 1,..., r 1} = (2.18) 0 oterwise (2.17) k {0, 1,..., r 1} i, j C k i j n n = mr p (mr) = q (m),m 0 i, j C k P i j Q i j 2.4 i C k m 0 m m 0 q (m) ii = p (rm) ii > 0 i Q C k C k,k=0, 1,..., r 1 Q Q Ck (2.17) k {0, 1,..., r 1} π j = π i p = π i p = π i p = π i j C k+1 j C k+1 j C k+1 i C k i C k j C k+1 i C k C r = C 0 x Ck+1 e = x Ck e r 1 k=0 x C k e = πe =1 (2.16) x Ck e = 1 r π P Q (2.18) k {0, 1,..., r 1}, j C k π j = π i q = π i q i C k 18

19 x Ck = x Ck QCk x Ck Q Ck π Ck = r x Ck Q Ck Q Ck P r 2.10 HMC S r>1 P =(p ) π =(π i ) C S x C π C a =(a i ) i C a i =1 lim d(ap rn,rx C )=0 (2.19) n i, j C lim n p(rn) = rπ j (2.20) Q = P d Q C Q C 2.18 a C ã C x C C x C Q C π C π C = r x C 2.8 lim d(ã C Q n C,r x C )=0 n a i =1,a l = 0, l i 19

20 3 S S = {0, 1,...} T =[0, ) {X(t)} P (t) =(p (t)), p (t) = P (X(t) =j X(0) = i) {X(t)} S {X(t)} t 0 (continuous-time Markov cain k 0, i, j, i 1,..., i k S, s, t 0, s 1,..., s k [0, )(0 s 1 <... < s k <s), P (X(t + s) =j X(s) =i, X(s k )=i k,..., X(s 1 )=i 1 )=P(X(s + t) =j X(s) =i) (3.1) (Markov property) s (time omogenous) (3.1) i, j S, P (X(t + s) =j X(s) =i, X(u), 0 u<s)=p (X(s + t) =j X(s) =i) p (t) =P (X(t) =j X(0) = i) CTMC p (t) P (t) =(p (t)), P (0) = I a =(a i ), a i = P (X(0) = i) a(t) =(a i (t)), a i (t) =P (X(t) =i) a(t) = ap (t) t CTMC a {P (t)} t 0 CTMC {P (t)} t 0 CTMC {P (t)} 3.1 ; Capman-Kolmogorov equation s, t 0, P (s + t) =P (s)p (t) p (s + t) = l S p il(s)p lj (t) CTMC CTMC (1) 3.2 N(s, t] (s, t] N(t) =N(0,t] {N(t)} t 0 (inteinsity) λ>0 (Poisson process) (i) k 2 0 t 1 t 2... t k N(t i,t i+1 ],i=1,..., k 1 ( (ii) (s, t] N(s, t] λ(t s) CTMC 20

21 3.1 λ>0 {N(t)} t 0 N + CTMC { e λt (λt) j i (j i)! if j i p (t) =P (N(t) =j i) = 0 if j<i λ(t) (ii) t s λ(u)du (2) 3.3 CTMC (3) 3.4 S { ˆX n } n 0 S DTMC K =(k ) {N(t)} t 0 { ˆX n } λ>0 {X(t)} t 0 (uniform Markov cain) X(t) = ˆX N(t),t S CTMC λt (λt)n P (t) = e K n,t 0 n! n=0 DTMC N(t) M/M/ 3.2 CTMC CTMC {P (t)} t 0 {P (t)} P (t) Q = lim 0 (P () I)/ P (t) (d/dt)p (t) = QP (t) =P (t)q P (t) = exp(qt) p (t) 3.5 lim P () =I 0 21

22 3.3 P (t) t 0 P (t) p ii () p () q i = lim [0, ], i S, q = lim [0, ), i,j S, j i. (3.2) 0 0 lim 0 1 p ii() P (t) = [ P ( t n )] n p ii (t) [ p ii ( t n )] n pii (0) = 1 n p ii ( t n ) > 0 t 0, p ii (t) > 0 f i (t) = log p ii (t) f i (t) lim 0 f i () =0 p ii (t + s) p ii (t) p ii (s) f i (t + s) f i (t)+f i (s) f i q i = sup t>0 f i (t)/t lim 0 f i ()/ = q i 1 p ii () 1 exp( f i ()) f i () lim = lim = q i (3.3) 0 0 f i () p lim () 0 c ( 1 2, 1) δ>0 t [0,δ] p ii (t) >c p jj (t) >c n < δ n, P () DTMC {X n } = {X(n)} p (n) i j n 1 p (n) P (X r = i, X k j, 1 k r 1 X 0 = i)p ()P (X n = j X r+1 = j) r=0 P (X n = j X r+1 = j) =p jj ((n r 1)) >c p () P (X r = i, X k j, 1 k r 1 X 0 = i) P (X r = i X 0 = i) P (X r 1 = j X 0 = i)p (X r = i X r 1 = j) c (1 c) =2c 1 1 c(2c 1) p (n) n t <δ <δ n = t lim sup 0 p () 1 p (n) 1 p (t) lim sup = < c(2c 1) 0 n c(2c 1) t p lim () 0 t lim inf t 0 c 1 lim sup 0 p () lim inf t 0 p (t) t q i = q i = j S, j i q ) 3.6 q i =0 i (absorbing) q i = i (instantaneous) 0 <q i < i (stable) P () I 3.7 q ii = q i, Q =(q ) = lim 0 matrix) (infinitesimal generator) (transition rate 22

23 3.2.2 P (t) 3.8 i S, q i < Q (stable) i S, q i = j S, j i q Q (conservative) j S p 1 p ii () p () () =1 q i = lim = lim 0 0 j S, j i q i j S, j i q P (X(t + ) =i X(t) =i) =1 q i + o() (3.4) P (X(t + ) =j X(t) =i) =q + o() Qe = 0 CTMC 3.9 (uniformizable) sup q ii < (3.5) 3.5 Q =(q ) CTMC {X (1) (t)} λ sup q ii λ< λ N(t) K = I + 1 λ Q DTMC { ˆX n } {X (2) (t)} = { ˆX N(t) } {X (1) (t)} (uniformization) λ CTMC 3.10 N + CTMC Q =(q ) (birt-and-deat process) μ i if i 1, j= i 1 λ i if i 0, j= i +1 q = λ i if i = j =0 (3.6) (λ i + μ i ) if i 1, j= i 0 oterwise 0 λ i < 0 μ i < i 1, μ i =0 M/M/1 M/M/ 23

24 3.2.3 P (t + ) P (t) = P () I P (t) =P (t) P () I P (t) 3.2 P Q d P (t) =QP (t) (3.7) dt p (t + ) p (t) = p ii() 1 p (t)+ p ik () p kj(t) (3.8) k S, k i k S, k i 2 p ik () N p p ik () kj(t) p kj(t) k=0,k i lim inf 0 N p ik () lim inf 0 p kj(t) q ik p kj (t) k S, k i k S, k i N >i p ik () N p p ik () kj(t) p kj(t)+ p ik () k S, k i k=0,k i k>n N p ik () = p kj(t)+ 1 p ii() k=0,k i N k=0,k i p ik () lim sup 0 N p ik () lim sup 0 p kj(t) q ik p kj (t)+q i q ik = q ik p kj (t) k S, k i p ik () lim 0 p kj(t) = k S, k i k S, k i k S, k i q ik p kj (t) k S, k i k S, k i (3.8) 0 p (t + ) p (t) lim = q i p (t)+ q ik p kj (t) (3.9) 0 k S, k i p (t) k S, k i q ik = q i < p (t) (3.9) 3.3 P Q i S, t 0, p ik (t)q k < (3.10) k S d P (t) =P (t)q dt p (t + ) p (t) = p ik (t) p kj() δ kj k S (3.11) (3.12) (3.3) 1 p ii () = 1 exp( f i()) f i () f i() f i (t) sup = q i f i () t>0 t 24

25 p kj () 1 p kk() q k (3.10) (3.12) lim 0 k S p ik(t)q kj p (t) (3.10) (3.10) (3.10) a(t) =(a i (t)) 3.4 P (t) Q t 0, a i (t)q i < d a(t) =a(t)q dt (3.13) (3.14) d dt a i(t) = a j (t)q ji a i (t)q i (3.15) j S, j i i a i (t) i i P (0) = I (tq) n P (t) = exp(tq) = (3.16) n! n=0 (3.16) (3.16) 3.3 S CTMC {X(t)} t 0 P (t) CTMC τ n n X n = X(τ n ),n 0, {X n } DTMC τ n+1 τ n X n

26 3.2 (regularity) s 0 {X(t)} t 0 [0,s] 1 τ 0 =0<τ 1 <τ 2 <... (0, ) (= n< ) k 1, τ n+k = τ = lim n τ n τ = τ n 3.3 τ n i j X(τ n )=j {X(t)} λ n =2 n DTMC CTMC [1] τ n 3.11 {X(t)} t 0 S τ τ = τ = t {X(s), s [0,t]} 1 {τ =t} {X(s), s [0,t]} {X(t)} (stopping time) τ n 3.5 (strong Markov property) S CTMC {X(t)} t 0 P (t) {X(t)} τ {X(t)} (i) X(τ) =k τ τ (ii) X(τ) =k τ CTMC P (t) [2] S CTMC {X(t)} t 0 P (t) {X(t)} {τ n } n 0 {X(t)} {X n } n 0 X n = X(τ n ),n 0 {X n } S DTMC τ n+1 τ n X n P =(p ), p = P (X 1 = j X 0 = i) i S 0 λ i < P (X n+1 = j, τ n+1 τ n >t X 0,..., X n 1,X n = i, τ 1 τ 0,..., τ n τ n 1 )=p e λit (3.17) f i (t) =P (τ 1 >t X(0) = i) =P (X(u) =i, 0 u t X(0) = i) 26

27 f i (t + s) = P (X(u) =i, 0 u t + s X(0) = i) = P (X(u) =i, s u t + s X(s) =i) P (X(u) =i, 0 u s X(0) = i) =f i (t)f i (s) lim 0 f i () =f i (0) = P (τ 1 > 0 X(0) = i) =1 f i (t) 0 λ i < f i (t) =e λit (3.17) (3.17) τ n CTMC {X(s), s<τ n,x(τ n )=i} (3.17) = P (X n+1 = j, τ n+1 τ n >t X(s), s<τ n,x(τ n )=i) = P (X n+1 = j, τ n+1 τ n >t X(τ n )=i) = P (X 1 = j, τ 1 >t X(0) = i) = P (τ 1 >t X(0) = i)p (X 1 = j τ 1 >t,x(0) = i) =e λit P (X 1 = j τ 1 >t,x(0) = i) P (X 1 = j τ 1 >t,x(0) = i) = P ({X(t + s)} s 0 j X(s) =i, s [0,t]) = P ({X(t + s)} s 0 j X(t) =i) = P ({X(s)} s 0 j X(0) = i) = P (X(τ 1 )=j X(0) = i) =p DTMC (embedded Markov cain: EMC) EMC P =(p ) ( i S, p ii =0) 3.6 EMC CTMC t i i λ i EMC CTMC 3.6 EMC Δ S {Δ} p Δ,Δ =1 q i =0 i p iδ =1 (q i > 0) p iδ =0 EMC i p ii =0 t N(t) = sup{n ; τ n t} lim t N(t) = N(t) X(t) =X N(t) CTMC EMC 3.6 P =(p ), λ i, Q =(q ) [2] 3.7 CTMC CTMC {X t } t 0 Q =(q ) λ i = q i,, p = q,i,j S (3.18) q i q i =0 p =0 3.1 λ N(t) (0,t] 3.2 i.i.d. 27

28 {N(t)} i λ p i,i+1 =1 i +1 CTMC 3.2 ; M/M/1 λ μ L(t) t {L(t)} S = {0, 1,...} CTMC i>0 λ + μ 10 p i,i+1 = λ λ+μ i +1 p i,i 1 = μ λ+μ i 1 λ λ 0 0 μ (λ + μ) λ 0. Q = 0 μ (λ + μ) λ μ (λ + μ) {P (t)} t 0 t 0 πp(t) =π π π {P (t)} CTMC (stationary distribution) DTMC CTMC P (t) π =(π i ) Q =(q ) 3.4 π iq i < π πq = 0 λ DTMC K DTMC 3.14 t 0 s.t. p (t) > 0 j i (reacable) i j i j j i i j (mutually reacable or communicate) i j CTMC (irreducible Markov cain) CTMC q i =0 i i S, q i > 0 CTMC EMC 3.15 i T i = inf{t 0 X(t) i} t 0, X(t) =i T i = i (return time) R i = inf{t 0 t>t i,x(t) =i} T i = t T i,x(t) i R i = 10 T, H λ, μ min{t,h} λ + μ min{t,h} = T λ min{t,h} = H μ λ+μ λ+μ 28

29 T i, R i 3.16 P (R i < X(0) = i) =1 i (recurrent) P (R i < X(0) = i) < 1 i (transient) i E[R i X(0) = i] < (positive recurrent) E[R i X(0) = i] = (null recurrent) μ ii =E[R i X(0) = i] i q i > 0 i EMC i i i ν =(ν i )(ν 0) t 0 νp(t) =ν ν {P (t)} (invariant measure) 3.8 CTMC {X(t)} t 0 Q ν > 0 (i) 0 [ ] R0 ν i = E 1 {X(s)=i} ds X(0) = 0,. (3.19) 0 (ii) EMC x T 0 EMC 0 [ T0 ν i = x E i n=1 1 ] {X n=i} X(0) = 0 =,. (3.20) q i q i (iii) νq = 0. (3.21) [2] ν i =E[R 0 X(0)=0]=μ CTMC {X(t)} t 0 ν {X(t)} ν i <. (3.20) CTMC ν EMC x i S q i ν i = x i CTMC EMC CTMC 3.8 CTMC {X(t)} t 0 π π πq = 0 π π > 0 3.8, 3.9 π CTMC EMC lim t p (t) =0 lim t πp(t) =0 29

30 CTMC 3.9 CTMC π =(π i ) p (n) (t) =P (X(t) =j, t < τ n X(0) = i) t n p (1) (t) =δ e qit p (n) (t) =δ e qit + t (3.22) 0 k S, k j p(n 1) ik (u)q kj e qj(t u) du, n 2 (3.22) 2 1 t j 2 u (0,t] n j t j lim (t) =p (t), p (t) =1 n p(n) j S (3.22) 2 π i t π i p (n) (t) =π je qjt + e qj(t u) q kj π i p (n 1) ik (u)du 1 π j p (1) (t) =π je qjt π j 0 k S, k j π π i p (n) (t) π j,n 1 π i p (t) π j j 1 π t 0 πp(t) =π π > (3.22) xq = 0 xe =1 3.2 M/M/1 ρ = λ μ < 1 π n =(1 ρ)ρ n π i q i j 3.10 CTMC {X(t)} t 0 1 π i = q i E[R i X(0) = i] = 1 (3.23) q i μ ii (3.19) ν 0 = 1 q 0, ν i =E[R 0 X(0) = 0] π 0 =1/(q 0 E[R 0 X(0) = 0]) 0 CTMC EMC CTMC π =(π i ) EMC π =( π i ) π i q i i, j S, = π i π j q j π j 30

31 π π π π π i /q i π i q π i = j S π, π i = i j/q j j S π jq j CTMC CTMC (ergodic) 3.9 S CTMC {X(t)} P (t) =(p (t)) π =(π i ) i, j S, lim t p (t) =π j. (3.24) CTMC {X(n)} n 0 CTMC {X(n)} π {X(n)} {X(n)} 2.7 CTMC {X(n)} P (t) CTMC {X (1) (t)} {X (2) (t)} {X (1) (n)} n 0 {X (2) (n)} n 0 DTMC π τ X (1) (τ) =X (2) (τ) CTMC {X (1) (t)} {X (2) (t)} τ 2.17 {X (2) (t)} {X (1) (t)} CTMC {X (3) (t)} {X (1) (t)} {X (3) (t)} [1] D. P. Heyman and M. J. Sobel, Stocastic Models in Operations Researc Vol. I, McGraw-Hill (1982). [2] P. Brémaud, Markov Cains Gibbs Fields, Monte Carlo Simulation, and Queues, Springer (1999). 31

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/085221 このサンプルページの内容は, 初版 1 刷発行時のものです. i +α 3 1 2 4 5 1 2 ii 3 4 5 6 7 8 9 9.3 2014 6 iii 1 1 2 5 2.1 5 2.2 7

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

tokei01.dvi

tokei01.dvi 2. :,,,. :.... Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 3. (probability),, 1. : : n, α A, A a/n. :, p, p Apr. - Jul., 26FY Dept. of Mechanical Engineering, Saga Univ., JAPAN

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq 7 2003 6 26 ( ) 5 5.1 F K 0 (q 1,,q N,p 1,,p N ) (Q 1,,Q N,P 1,,P N ) Q i Q i (q, p). (1) P i P i (q, p), (2) (p i dq i P i dq i )df. (3) [ ] Q αq + βp, P γq + δp α, β, γ, δ [ ] PdQ pdq (γq + δp)(αdq +

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

OHP.dvi

OHP.dvi t 0, X X t x t 0 t u u = x X (1) t t 0 u X x O 1 1 t 0 =0 X X +dx t x(x,t) x(x +dx,t). dx dx = x(x +dx,t) x(x,t) (2) dx, dx = F dx (3). F (deformation gradient tensor) t F t 0 dx dx X x O 2 2 F. (det F

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

2

2 III 22 7 4 3....................................... 3.2 Kepler ( ).......................... 2 2 4 2.................................. 4 2.2......................................... 8 3 20 3..........................................

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

2011 ( ) ( ) ( ),,.,,.,, ,.. (. ), 1. ( ). ( ) ( ). : obata/,.,. ( )

2011 ( ) ( ) ( ),,.,,.,, ,.. (. ), 1. ( ). ( ) ( ). :   obata/,.,. ( ) 2011 () () (),,.,,.,,. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.,.. (. ), 1. ( ). ()(). : www.math.is.tohoku.ac.jp/ obata/,.,. () obata@math.is.tohoku.ac.jp http://www.dais.is.tohoku.ac.jp/ amf/, (! 22 10.6; 23 10.20;

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

ランダムウォークの境界条件・偏微分方程式の数値計算

ランダムウォークの境界条件・偏微分方程式の数値計算 B L06(2018-05-22 Tue) : Time-stamp: 2018-05-22 Tue 21:53 JST hig,, 2, multiply transf http://hig3.net L06 B(2018) 1 / 38 L05-Q1 Quiz : 1 M λ 1 = 1 u 1 ( ). M u 1 = u 1, u 1 = ( 3 4 ) s (s 0)., u 1 = 1

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

~nabe/lecture/index.html 2

~nabe/lecture/index.html 2 2001 12 13 1 http://www.sml.k.u-tokyo.ac.jp/ ~nabe/lecture/index.html nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/11 3. 10/18 1 4. 10/25 2 5. 11/ 1 6. 11/ 8 7. 11/15 8. 11/22 9. 11/29 10. 12/ 6 1 11. 12/13

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

III Kepler ( )

III Kepler ( ) III 9 8 3....................................... 3.2 Kepler ( ).......................... 0 2 3 2.................................. 3 2.2......................................... 7 3 9 3..........................................

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m .1 1nm (T = 73.15K, p = 101.35kP a (1atm( )), 1bar = 10 5 P a = 0.9863atm) 1 ( ).413968 10 3 m 3 1 37. 1/3 3.34.414 10 3 m 3 6.0 10 3 = 3.7 (109 ) 3 (nm) 3 10 6 = 3.7 10 1 (nm) 3 = (3.34nm) 3 ( P = nrt,

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information