1. Γ, R 2,, M R. M R. M M Map(M, M) 3, Aut R (M). ρ : Γ Aut R (M) Γ. M R n, R, R ρ : Γ Aut R (M) GL n (R) := {g M n (R) det(g) R } 4. ρ Γ R R M.,,.,,

Similar documents
非可換Lubin-Tate理論の一般化に向けて

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

wiles05.dvi

16 B

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

( ),, ( [Ka93b],[FK06]).,. p Galois L, Langlands p p Galois (, ) p., Breuil, Colmez([Co10]), Q p Galois G Qp 2 p ( ) GL 2 (Q p ) p Banach ( ) (GL 2 (Q

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

1

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p

2 Riemann Im(s) > 0 ζ(s) s R(s) = 2 Riemann [Riemann]) ζ(s) ζ(2) = π2 6 *3 Kummer s = 2n, n N ζ( 2) = 2 2, ζ( 4) =.3 2 3, ζ( 6) = ζ( 8)

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

On a branched Zp-cover of Q-homology 3-spheres

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

.5.1. G K O E, O E T, G K Aut OE (T ) (T, ρ). ρ, (T, ρ) T. Aut OE (T ), En OE (F ) p..5.. G K E, E V, G K GL E (V ) (V, ρ). ρ, (V, ρ) V. GL E (V ), En

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

D 24 D D D

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) R = T, Fermat Wiles, Taylor-Wiles R = T.,,.,. 1. Fermat Fermat,. Fermat, 17

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

17 Θ Hodge Θ Hodge Kummer Hodge Hodge

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

newmain.dvi

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

TOP URL 1

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

,2,4

Îã³°·¿¤Î¥·¥å¡¼¥Ù¥ë¥È¥«¥êto=1=¡á=1=¥ë¥�¥å¥é¥¹

第5章 偏微分方程式の境界値問題

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

数学Ⅱ演習(足助・09夏)


I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k


1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

等質空間の幾何学入門

( ) (, ) ( )


平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

入試の軌跡

2011de.dvi

ii

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

ver Web

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

日本数学会・2011年度年会(早稲田大学)・総合講演


Part () () Γ Part ,

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

meiji_resume_1.PDF

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

keisoku01.dvi

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2


July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

A Brief Introduction to Modular Forms Computation

1 α X (path) α I = [0, 1] X α(0) = α(1) = p α p (base point) loop α(1) = β(0) X α, β α β : I X (α β)(s) = ( )α β { α(2s) (0 s 1 2 ) β(2s 1) ( 1 2 s 1)

, = = 7 6 = 42, =

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

TOP URL 1


4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

: , 2.0, 3.0, 2.0, (%) ( 2.

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


I , : ~/math/functional-analysis/functional-analysis-1.tex

(1) (2) (3) (4) 1

December 28, 2018

?

Armstrong culture Web

Dynkin Serre Weyl

I

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (


2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

main.dvi

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T


Transcription:

I ( ) (i) l, l, l (ii) (Q p ) l, l, l (iii) Artin (iv). (i),(ii). (iii) 1. (iv),.. [9]. [4] L-,.. Contents 1. 2 2. 4 2.1. 4 2.2. l 5 2.3. l 9 2.4. l 10 2.5. 12 2.6. Artin 13 3. 15 3.1. l, l, l 15 3.2. Weil-Deligne 18 4. 21 5. 24 6. 27 References 27 1 Artin,,.,, Artin l. 1

1. Γ, R 2,, M R. M R. M M Map(M, M) 3, Aut R (M). ρ : Γ Aut R (M) Γ. M R n, R, R ρ : Γ Aut R (M) GL n (R) := {g M n (R) det(g) R } 4. ρ Γ R R M.,,.,, Γ K G K := Gal(K sep /K)., K,, R l Q l, l Z l, F l (Z l /l n Z l, Z l [[X]],...) Banach. G K... 1-1.. ρ 1, ρ 2 : Γ Aut R (M) Γ., ρ 1 ρ 2 (equivalent) t Aut R (M), ρ 1 (g) = tρ 2 (g)t 1, g Γ., ρ 1 ρ 2. R M, : trρ i : Γ ρ i tr Aut R (M) GL n (R) R, i = 1, 2. M R. ρ 1, ρ 2,, ( 2-2-6 2-4-1 ). 2,. X, X 1. 3 X, Y, Map(X, Y ) X Y. X A Y B, W (A, B) := {f Map(X, Y ) f(a) B}. W (A, B) Map(X, Y ). 4 GL n, M, Aut R (M) Aut R (M, ) = {f Aut R (M) f } G. G, GSp 2n, GO(n), GU(n, m)., 2004 ([17]). 2

1-2. Γ ρ : Γ Aut R (M) H Γ, M H M H := {m M h H, ρ(h)m = m} Γ/H R. ρ H : ρ H :.Γ/H Aut R (M H )., H M/M H Γ/H ρ H. 1-3.(1) ρ : Γ Aut R (M) Γ., R R, ρ R ρ R. m r M R R,., M R R, ρ R (m r ) = ρ(m) r (2) ρ : Γ Aut R (M) Γ. ρ, ρ M 0 M Γ R. (3) K, V K. ρ : Γ Aut K (V ) Γ. ρ, K L, ρ L. 1-4. (1) Γ ρ : Γ Aut R (M), R M m M, M, Sym r RM, r R M, r r r ρ, m ρ, Sym m ρ, r ρ., M R n, detρ := n ρ ρ., Aut R (M) GL n (R), ρ 1 Γ ρ Aut R (M) GL n (R) det R., det., M M := Hom R (M, R) ρ, (contragredient representation)., φ M, γ Γ,. γφ(m) := φ(γ 1 m), m M 1 χ : Γ R χ n, n Z ρ ρ χ n ρ χ n. (2) Γ ρ i : Γ Aut R (M i ), i = 1, 2, M 1 R M 2, M 1 R M 2 ρ 1 ρ 2, ρ 1 ρ 2., Γ ρ : Γ Aut R (M), End R (M) = M R M, adρ := ρ ρ, ρ (adjoint representation)., φ End R (M), γ Γ, γφ(m) := γφ(γ 1 m), m M 3

. 2. 2.1.. K, p l. Σ K K. L K ( ), O L. Gal(L/K), Krull (cf. [9]). v K, v L w., D L,v = {σ Gal(L/K) σ(w) = w} v. D L,v w, Gal(L/K)., D L,v Gal(F w /F v ), σ σ mod w., F w := O L /w w. I L,v, v : 1 I L,v D L,v Gal(F w /F v ) 1. Gal(F w /F v ) Frob v (x) = x F v, x F w Frob v, ( ) 5. D L,v Frob v., I L,v = {1} L v,, L v. L v Frob v. S K, K S S Σ K K (S ). L = K S, v S, v K S, Frob v D KS,v., D KS,v G KS, v K S w, Frob v w. 2-1-1. R, M R 6. v K, I v := I K,v. G K ρ : G K Aut R (M) v, ρ(i v ) = {1},, ρ v. I v (, w ). ρ K K Sρ := K Kerρ, K Sρ S ρ ρ. 6 {id M } Aut R (M), Kerρ., ( ) ([9] 1.12 ), G K /Kerρ Gal(K Sρ /K). 5. 6, Hausdorff., Aut R (M) Hausdorff (cf. [21] p.170 30.2 -(2)),, Aut R (M). 4

, ρ : G K π ρ Aut R (M) eρ Gal(K Sρ /K), π σ σ KS ρ. v S ρ, Frob v D KS ρ,v ρ(frob v ). Frob v Gal(K Sρ /K), G K., ρ, ρ(frob v ) ρ(frob v )., ρ(frob v ) v K Sρ w. w, g G K, gfrob v g 1. ρ ( ρ ), ρ(gfrob v g 1 ) = ρ(g)ρ(frob v )ρ(g) 1 ρ(frob v )., ρ(frob v ) w. ρ. 2.2. l. E Q l, O E, V E. V 0 V O E 7, V., ρ : G K Aut E (V ) l., Aut E (V ) V Map(V, V ). V Aut E (V ) GL n (E), (n = dim E V ), GL n (E) E,. E Q l, ρ Q l ( 2.2.8)., l E V Q l. l. 2-2-1. 1 l µ l n(k) := {x K x ln = 1} Z/l n Z {µ l n+1(k) l µ l n(k)} n Z l (1) := lim l µ l n(k) Z l. G K µ l n(k) (l ), G K Z l (1). χ l : G K Aut Zl (Z l (1)) Z l l. ( 2-3-2 ). χ l Q l χ l. i, Z l, G K χ i l Z l (i) i Tate (i-th Tate Twist)., 7 V O E T, T OE E = V. 5

Q l (i) := Z l (i) Zl Q l. Frob p, p l Z l (i) Q l (i) p i., χ i l (Frob p) = p i. i l (ρ, V ), V (i) V, G K ρ χ i l, V i Tate., µ l 1 (Q l ) Z l., Z l µ l 1 (1 + lz l ), l χ l χ l = ω l χ l,1, ω l : G K µ l 1, χ l,1 : G K 1 + lz l. ω l Teichmüller. l Teichmüller lift. 2-2-2. log l : (1 + lz l ) lz l, x (1 x) n l., n n 1 ( ) 1 log ρ : G K GL 2 (Q l ), g ρ(g) = l χ l,1 (g) 0 1.,. 2-2-3. K, E P 2 K [x : y : z] Weierstrass zy 2 + a 1 xyz + a 3 z 2 y = x 3 + a 2 zx 2 + a 4 z 2 x + a 6 z 3, a 1, a 3, a 2, a 4, a 6 K, K. O K. K L, E(L) := {[x : y : z] P 2 (L) zy 2 + a 1 xyz + a 3 z 2 y = x 3 + a 2 zx 2 + a 4 z 2 x + a 6 z 3 } O E := [0 : 1 : 0] ( [16] )., l n - E[l n ](K) = {P E(K) l n P = O} (Z/l n Z) 2 {E[l n+1 ](K) l E[l n ](K)} n T l (E) := lim E[l n ](K) Z 2 l l l (l-adic Tate module). V l (E) = T l (E) Zl Q l, l ( l-adic rational Tate module). V l (E) Q l 2. l K, G K E[l n ] G K., G K T l (E) V l (E)., ρ E,l : G K Aut Ql (V l (E)) GL 2 (Q l ). V l (E) G K T l (E) ( 2-3-2 ). g A l Tate V l (A), Q l 2g. p l K v, F v. v E D E ( O K ) ρ E,l v (cf. [16] 5.1)., ρ E,l (Frob v ), ( ) 6

.,, det(ρ E,l (Frob v )) = χ l (Frob v ) = F v, tr(ρ E,l (Frob v )) = F v + 1 Ẽ(F v) ([16] )., Ẽ E v. l. 4 ([7]). 2-2-4. l G K., G K,, l., K, G K l. Grothendieck ( [7] )., l, ( 2-2-2)., l. 2-2-5. E V G K., V E[G K ] V 0 = V V 1 V t = {0} V i /V i+1, i = 0,..., t 1 E[G K ] ( - ). {V i /V i+1 } t 1 i=0., E[G K ] t 1 V ss := V i /V i+1 i=0 V. l (ρ, V ) ρ ss., ρ v, trρ(frob v ) = trρ ss (Frob v ), detρ(frob v ) = detρ ss (Frob v )., ρ ρ ss = ρ.,. [4] Chebotarev. 2-2-6. ρ : G K Aut E (V ) S ρ., ρ ρ ss trρ(frob v ), v Σ K \ S ρ.. ρ, ρ : G K Aut E (V ) tr(ρ(frob v )) = tr(ρ (Frob v )), v Σ K \ S, S := S ρ S ρ 7

, ρ ρ., ( ) trρ(g) = trρ (g), g G K. H = G K /(Kerρ Kerρ ), ρ, ρ H., : F := {h H v Σ K \ S such that h = Frob v } {h H trρ(h) = trρ (h)} H H 8. H S, H Chebotarev, F H,, ( ). A = E[G K ] M = V, ρ ρ. 2-2-7 k p 0, A k-, M, M k A. p > 0, p > max{dim k (M), dim k (M )}., tr M (a) = tr M (a), a A, M M A., tr M (a) k M a.. (5 ). 2-2-7-1 2-2-6 S ρ... S ρ 0... ( [4] 1., [20] ). 2-2-8. ρ : G K Aut Ql (V ) Aut E (V E )., E Q l V E G K V E dim E V E = dim Ql V.., V {e i }, Aut Ql (V ) GL n (Q l ). Imρ = Imρ GL n (E ) E /Q l :, Imρ GL n (E ),., Imρ,., (Baire category theorem) 9 E, Imρ GL n (E )., H := Imρ GL n (E ). G K /ρ 1 (H), 8 H E E, h (trρ(h), trρ (h)) E = {(x, x) E E}. 9 X X X. ( ),,,. 8

{g i } r i=1, ρ(g i), 1 i r E E E Q l., Imρ GL n (E). V E = i Ee i. 2.3. l. E Q l, O E, π O. T O n, O 0 T, T., ρ : G K Aut O (T ) l., Aut O (T ) Map(T, T )., O GL n (O)( M n (O) O n2 ). 2-3-1. G K E- V, V G K -,, O T T O E V.. {e λ } λ V, T 0 = λ Oe λ. T 0 V., G K -. ρ : G K Aut E (V ) G K V. V Aut O (T 0 ) Aut E (V )., ρ T 0 H = {g G K ρ(g)t 0 = T 0 } G K, [G K : H]. G K /H {γ i } t i=1. T := t i=1 γ it 0,., G K = t i=1 γ ih, g G K γ i, 1 i t, gγ i = γ ki h, h H, 1 k i t ({k 1,..., k t } = {1,..., t})., ρ(g)t = t ρ(gγ i )T 0 = i=1 t ρ(γ ki )ρ(h)t 0 = i=1 t ρ(γ ki )T 0 = T. i=1, l. 2-3-2. V E-, ρ : G K Aut E (V )., ρ, l V G K -.. 2-3-1., G K - T. ρ : G K Aut OE (T ), ρ OE E = ρ, Imρ Imρ, Imρ Aut OE (T ). π O E, n 1 mod πn U n := Ker(Aut OE (T ) Aut OE /π n O E (T/π n T )). U n Aut OE (T ), 1 = id T., G K /ρ 1 (U n ) Aut OE (T )/U n,., G K ( ) ρ 1 (U n ) G K. Aut OE (T ) gu n, g Aut OE (T ), n 1,., ρ. 2-3-1. 9

2-3-3. Rep E (G K ) G K E, Rep O (G K ) G K O., Rep O (G K ) Rep E (G K ), T T Zl Q l (essentially surjective) 10. 2-3-4. E/K, T l (E) l (cf. 2-2-3)., ρ l : G K Aut Zl (T l (E)) GL 2 (Z l ) l. 2-2-1 l χ l : G K Z l. ( ) l 2-3-5. X/K K., T l := H í et(x K, Z l )/(torsion) (0 i 2dimX) Z l (cf. ). G K T l l. 2.4. l. F l F l (F F l ). F. V F n., ρ : G K Aut F (V ) l. Aut F (V ),., Aut F (V ) GL n (F),. l, l l. ρ : G K Aut E (V ) l., 2-3-1, V G K O E T., ρ : G K ρ Aut OE (T ) mod m E Aut OE /m E (T/m E T ) l. ρ ρ. ρ V ρ ss ( 2-4-1 ). l ρ : G K Aut O (T ), O m, {ρ n : G K Aut O/m n(v n )} n., V n = V O O/m n,. n = 1, l 10, Rep E (G K ) Rep O (G K ). 10

ρ = ρ 1 : G K Aut F (V 1 ) : ρ G K ρ n ρ:=ρ 1 Aut O (T ) mod m n Aut O/m n(v n ) mod m Aut F (V 1 ), F := O/m., {ρ n : G K Aut O/m n(v n )} n, l., l : { } { } l ρ : G K Aut O (V ) {(ρ n, V n )} n ρ = lim n ρ n {ρ O O/m n } n = {ρ n } n. l [20]. l. 2-4-1. l ρ : G K Aut F (V ) S. S., ρ ρ ss tr i ρ(frob v ), v Σ K \ S, i = 1,..., n., ρ l > dim F (V ), ρ.. ρ, ρ l, tr i ρ(frob v ) = tr i ρ (Frob v ), v Σ K \ S ρ S ρ, i = 1,..., n, Chebotarev, G K.,. 2-4-2. k p > 0, A k-, M, M k A. dim k (M) = dim k (M ) =: n., tr i M(a) = tr i M (a), a A, i = 1,..., n ( a A ), M M A.. (5 ). 2-4-3. G K µ l (K) Z/lZ = F l 1 l χ l : G K Aut Z/lZ (µ l (K)) F l l. l χ l. 11

2-4-4. 2-2-3 G K E l E[l](K). ρ E,l : G K Aut Z/lZ (E[l](K)) GL 2 (F l ) l, 2-3-4 l. 2-4-5. K., 1 ρ : G K F l l ( : G K Imρ,, ρ (Z/NZ). N = l t M, l M. l t = 1 ). 2.5.. h Z p Λ = Z p [[T 1,..., T h ]]. Λ (p, T 1,..., T h ). Λ.. S K, G K,S K S. p ρ : G K,S GL n (F p ). F p (A, m A ) ρ : G K,S GL n (A) (ρ, A), ρ (lift) : ρ G K,S GLn (A) ρ mod m A GL n (F p ) A ρ, R(ρ), ρ univ., A ρ, ι R(ρ) A, : ρ univ GL n (R(ρ)) G K,S ρ ρ ι GL n (A) mod m A GL n (F p ) Mazur ( ), Mazur., ρ. Λ/I (I Λ ), Krull h ρ.,. [10]. 12

. R(ρ) (rigid analytic space)x, E X(E), (E Q p ) ρ E p. p ρ X,.,. 2.6. Artin. K Q, V C., ρ : G K Aut C (V ) Artin.,., V, Aut C (V ) GL n (C) M n (C) C n2., Aut C (V ) C n2,.,, ρ(c), (c )., 2 Artin ρ : Gal(Q/Q) GL 2 (C)., ρ (odd),, det(ρ(c)) = 1, 1, Neben-type 11. 2-6-1.., ρ : G K Aut C (V ).. G K., G K. V, Aut C (V ) GL n (C). GL n (C) B I n ( ), 1 2., ρ 1 (B ),, G K H ρ(h) B., ρ(h) = {I n } ( [G : H]<, ). ρ(h) T I n. M n (C) = End(C n ), GL n (C).. T 1, Jordan, T N I n > 1 N., T 2 α, α N 1 > 1 2 N., T N B. Artin,. 2-6-2. ρ : G K Aut C (V )., ρ K. 2-6-3. ρ : G K Aut C (V ) S ρ ( 2-6-2 S ρ < )., ρ trρ(frob v ), v Σ K \ S ρ., trρ(frob v ) ρ(frob v ). 11 K = Q, ρ : G Q GL 2 (C) Artin Khare Wintenberger Serre,. 13

. ρ, ρ : G K Aut C (V ) tr(ρ(frob v )) = tr(ρ (Frob v )), v Σ K \ S ρ S ρ, ρ ρ. ρ, ρ K L, L/K S := S ρ S ρ. L/K Chebotarev, σ Gal(L/K), v Σ K \ S, Frob v = σ., tr(ρ(σ)) = tr(ρ (σ)), σ Gal(L/K), (cf. [13], p.17 3), ρ ρ. 2-6-3. L F (x) = x 3 + ax + b, a, b Q, 3 S 3 = σ, τ σ 3 = τ 2 = 1, τστ = σ 1. ι : S 3 GL 2 (C) ( ) ( ) ζ 3 0 0 1 ι(σ) =, ι(τ) = 0 ζ3 1 1 0., ζ 3 = e 2π 1 3., ρ : G Q L Gal(L/Q) S 3 ι GL 2 (C) 2 ( )Artin. F (x), detρ(c) = detι(τ) = 1. F (x), ρ Maass (Maass form) (cf. [18]). 2-6-4. K = Q( 47) Hilbert H. (1) K 5,, H F (x) = x 5 x 4 + x 3 + x 2 2x + 1 K F ( ) ([22] ( ). ), Gal(H/Q) ( ) D 5. 1 1 3 1 2 1 2 2 2 (2) A =, B =, C = 1 1 1 12 4 6 2 2 2 θ A, θ B, θ C : θ A (τ) = q m2 +mn+12n 2, θ B (τ) = q 3m2 +mn+4n 2, θ C (τ) = m,n Z q 2m2 +mn+6n 2., m,n Z ( 1 + 5 ) f(τ) := θ A (τ) θ B (τ) 2 ( 1 5 2 m,n Z ) θ C (τ) S 1 (Γ 0 (47), χ), χ = ( 47 )., f Hecke ( [11] 6 Hecke [1] p.204 ). ( ) ζ (3) D 5 = σ, τ σ 5 = τ 2 = 1, τστ = σ 1 5 0, σ, τ 0 ζ5 1 ( ) 0 1 2-6-3 Gal(H/Q) Artin ρ. ρ 1 0 f ρ f (cf. [4], [5]), F p f p. 14

3. l,. K. p v Σ K K K v., G Kv := Gal(K v /K v ) G K, σ σ K. G K G Kv G K v D K,v (cf. 2.1 )., G K., G K l ρ : G K Aut E (V ), G Kv ρ GK, v.,. v l. v l [8] p Hodge. 3.1. l, l, l. l, p l., K Q p, E Q l. K F. 2-1 G K G F I K : 1 I K G K G F 1 [9] I K = Gal(K/K ur ), K ur = K(ζ n )., p n ζ n K 1 n., G K I K,. K π, K tm := K ur (π 1 n ) K p n (maximal tamely ramified extension ), K K ur K tm K G K I K P K {1}. I K p P K := Gal(K/K tm ) (wild inertia), I t := I K /P K = Gal(K tm /K ur ) (tame inertia group). ( ): 1 I K G K G F 1, 1 I t G K /I P = Gal(K tm /K) G F 1 I t = lim Gal(K ur (π 1 n )/K ur ) lim Z/nZ(1) = p n p n r p Z r (1), I t τ G F G K /P K σ στσ 1 = τ χ l(τ) (G K /P K ). 15

,. G K ρ : G K = Gal(Q l /K) Aut E (V ) l. l l. [7], l V X (, 2-2-3), V X. Grothendieck SGA 7-I K A l ρ : G K Aut Ql (V l (A)). l ρ Ip.. [15] Appendix.,, SGA 7-I Deligne [2]. 3-1-1.(Grothendieck 12 ) v l, ρ(i K ) (quasi-unipotent matrix) 13.. O E E, π. D v, ρ Imρ., a 1,..., a r 0 x 1,..., x r GL n (E), Imρ = r i=1 (x i + π a i M n (O E )). GL n (O E ), K L, ρ GL GL n (O E ). k 1, I n + π k M n (O E ) GL n (O E ),, L M, g ρ(g M ) g I n mod π k., Imρ g g I n + π k M n (O E )., Imρ l., Imρ. P K I K p, ρ(p K ) = {I n }, ρ IK I t := I K /P K. F K, 1 I t = Gal(K tm /K ur ) Gal(K tm /K) Gal(K ur /K) = G F 1, G F t s Gal(K tm /K ur ) 14, Gal(K tm /K) l χ l : G F Z l, tst 1 = s χ l(t) (cf. [9])., ρ(tst 1 ) = ρ(s χ l(t) ) = ρ(s) χ l(t) ( ρ ). X = log ρ(s), X ρ(t)xρ(t) 1 = log ρ(s) χ l(t) = χ l (t)x. a i (X) X i, a i (X) = a i (χ l (t)x) = χ l (t) i a i (X) 12 Grothendieck. 13 A, m, n 1, (A m I) n = 0., I. 1. 14 G F = Gal(K ur /K) K ur Gal(K tm /K ur ). 16

. K F, χ l., i χ l (t) i 1 t., a i (X) = 0, i 0., X 0, X n = 0. k exp log ρ(s) = ρ(s) n 1 X j, ρ(s) = expx =,. j! j=0 3-1-2. p l, ρ(p K ).. G K, K L, Imρ GL l., ρ GL (P K G L ) p,. [G K, G L ]<, ρ(p K ). 3-1-3.(1) p = l,, ρ(p K ) (quasi-unipotent matrix)., ρ., P K Z p, Z p γ 1, log p ρ(γ a ) a log p ρ(γ a ), ρ Hodge-Tate ( log p χ p (γ a ) [8] ). (2) 3-1-1 l,, ( )., {X z } z D := {z C z < 1}, z D \ {0} 1. z = 0 X 0 ( ) π top 1 (D \ {0}, z) = γ 0 Z 1 H 1 (X z, Z) Z 2., γ 0 z, 0., z = 0 ( ) ρ top z : π top 1 (D \ {0}, z) Aut Z, (H 1 (X z, Z)) = SL 2 (Z).. γ 0 x = 0 (cf. [3] II 4 ). X 0 1,, X 0 ( ). ρ top z. E Qp Q p, E Q ur p Qur p p. E Q ur p C ). SpecZ ur p. Qur p. E SpecZ ur p SpecZur p Zur p. Néron E (cf. [16] Appendix {(p), (0)},, p 0 = SpecF p, p 1 = SpecQ ur p ( ), Spec Z ur p \ {p 0 } = {p 1 } E Q ur p π 1 (SpecZ ur p. p 0 \ {p 0 }) = π 1 (SpecQ ur p ) = Gal(Q p /Q ur p ) = I Qp 17

T l (E p1 ) = T l (E Q ur p ) : ρ l : I Qp Aut Ql (T l (E Q ur p ))., ρ l Q ur p I Q p l Z l (1), γ. D = {z C z < 1} SpecZ ur p 0 p 0 = SpecF p π top 1 (D \ {0}, z) Z γ 0 π 1 (SpecZ ur p \ {p 0 }) l Z l (1) γ {X z } z D E Spec Z ur p H 1 (X z, Z) Z 2 T l (E p1 ) = T l (E Q ur p Z 2 l 3.2. Weil-Deligne. Grothendieck, Weil Weil-Deligne. Langlands. Langlands.. l p, K/Q p, E/Q l. F K, q := F., 1 I K G K ι G F 1. Frob q G F Ẑ, Z-span FrobZ q = {Frob n q n Z} ι W K, K Weil : 1 I K W K ι Frob Z q Z 1. Z G F Ẑ, W K G K. 1 Z W K Φ, Weil W K W K = n Z Φn I K. I K G K, (W K I K )W K. E V, l ρ : G K Aut(V ) W K., t l : I K Q l. I K c Q l, c t l (I K ) = Z l., Imt l l, P K K p, p l t l I t := I K /P K., I K /P K r p Z r (1) ([9]), t l l Z l (1), t l Hom cont (Z l (1), Q l ) = Q l.. 18

, t l : I K Q l, c Q l c t l (I K ) = Z l 15., γ c I K 1 Z l = c t l (I K ). p l., Grothendieck ( 3-1-1) P K ρ ( 3-1-2), I K I ρ(i ) l., ρ I I K /P K l σ I σ = γ c tl(σ)., γ c tl(γ) = γ 1 = γ., ρ(σ) = ρ(γ c tl(σ) ) = ρ(γ) c tl(σ) = exp(t l (σ)n), N = c log(ρ(γ)). 3-1, N., W K Φ n σ, n Z, σ I K., ρ, W K r r(φ n σ) := ρ(φ n σ) exp( t l (σ)n). σ I, r(σ) = ρ(σ) exp( t l (σ)n) = ρ(σ) exp( log ρ(γ) ctl(σ) ) = ρ(σ) exp( log ρ(σ)) = 1, r(i). g W K, σ I K, gσg 1 = σ χl(g) mod P K, t l (gσg 1 ) = χ l (g)t l (σ). g W K, ρ(g)nρ(g) 1 = ρ(g)(c log(ρ(γ)))ρ(g) 1 = log(ρ(gγ c g 1 ))) = log ρ(γ ct l(gγ c g 1) ) = log ρ(γ cχl(g) ) = χ l (g)n., r(g)nr(g) 1 = χ l (g)n, g W K., r Φ t l. 3-2-1.K/Q p, q. Ω 0, V Ω., Weil-Deligne /Ω K Weil W K r : W K g = Φ n σ, n Z, σ I K 17. Aut Ω (V ) 16 N End Ω (V ), r(g)nr(g) 1 = q n N 15 K π, π l n {π 1 l n } n I t σ σ(π l 1 n ), π l 1 n I t Z l (1) Z l. t l. 16 V v, {σ W K r(σ)v = v} W K. 17 Frob geom q : x x 1 q, r(g)nr(g) 1 = q n N q. 19

3-2-2. l p, : { } { Weil W K /Q l 1:1 Weil-Deligne /Q l ρ : W K Aut Ql (V ) (r, N) }. σ W K, ρ(σ) = r(σ)exp(t l (σ)n). 3-2-1 ρ. 3-2-3.(1) Ω 0. n Z, ω n (Φ) = q n, ω n (I K ) = 1 ω n : W K Ω 1 Weil. (2) Ω 0. V = Ω n {e i } n 1 i=0., r(φ)e i = ω i (Φ)e i, Ne i = e i+1, i = 0,..., n 2, Ne n 1 = 0, Φ n σ, σ I K, r(φ n σ) = r(φ n )exp(t l (σ)n) r sp(n), (special representation). Weil-Deligne (r, N) Im(r) I K Φ., Im r., ι : Q l Ω, { } { } 1:1 Weil-Deligne /Q l Weil-Deligne /Ω, V V ι Ω. 3-2-4.(1) W K G K { } { } l /Q l Weil W K /Q l, ρ ρ WK 1:1. W K r G K r(φ) l. (2) W K 18,., W K r., ω s, r ωs 1., ω s ω s (I K ) = 1, ω s (Φ) = q s, s C W K (q s C, Q l ). (3) l = p 3-2-2 Fontaine D pst, (cf. [6]). 1:1. 18. 20

3-2-5. Weil-Deligne (r, N) L L(r, s) := det(1 q s ρ(φ) (KerN) I K ) 1., s., L(ω n, s) = (1 q (s+n) ) 1, L(sp(n), s) = (1 q (s+n 1) ) 1. 3-2-6. (r, N) W K Weil-Deligne., r (Frobenius semisimplification) r ss : r(φ), r(φ) T U., g = Φ n σ W K, σ I K, n Z, r ss (g) := T n r(σ). r = r ss, r. 3-2-7.(1) Weil-Deligne (r, N), N = 0, r, K L, r WL. (2) l Weil-Deligne., 2-2-3 l, Weil-Deligne. [7]. 4. K, Σ K K. l ρ v Σ K, P v,ρ (T ) := det(1 ρ(frob v )T ). 4-1. l ρ (rational), Σ K S, : (i) ρ Σ K \ S (ii) v S ( ), P v,ρ (T ) Q, (ii) P v,ρ (T ) Z, ρ (integral). 4-2. l, l, ρ : G K Aut Ql (V ) ρ : G K Aut (V Ql ) l, l,., ρ, ρ (compatible) S Σ K, ρ, ρ S P v,ρ (T ) = P v,ρ (T ), v Σ K \ S. 21

4-3. l (ρ l ) l (compatible system) 2 l, l, ρ l, ρ l., S Σ K, (ρ l ) l (strictly compatible system) : (i) v Σ K \ S {v Σ K v l}, ρ l v P v,ρl (T ). (ii) l, l, P v,ρl (T ) = P v,ρl (T ), v Σ K \ S {v Σ K v ll } (i),(ii) S (ρ l ) l (exceptional set). 4-4. (a) l (χ l ) l,. (b) 2-2-3 (ρ E,l ) l. E. Neron-Ogg- Shafarevich (cf. [16] 7.1 ).. (c) X Q p. X, SpecZ p X, X (generic fiber) X Spec Zp SpecQ p X, X (special fiber) X Spec Zp SpecF p F p, X l (good reduction). X Q. X p X Qp := X Spec Q SpecQ p. X/Q, SpecZ X/SpecZ X., SpecZ ( ) U X U U (cf. [7] 3.26)., 0 i 2 dim X, V i := H í et (X Q, Q l), G Q Q l., ρ i,l : G Q Aut Ql (V i ),, (ρ i,l ) l. Weil (cf. [7])., SpecZ \ U.. V i GQ p Hí et (X Q p, Q l ) H í et (X F p, Q l ) (cf. [7] 3.25 ). 4-5. (a) [19]. Weil (A 0 ) G ab K l (A 0 )., Weil, [19] Math.review Weil At this point the author takes a step involving what is perhaps the most original idea of the whole paper; he considers any system (M l ) of l-adic representations of g, all of the same degree (l ranging over all 22

primes) satisfying the same set of conditions.. Weil, Weil. (b) l ρ (ρ l ) l., ρ l ρ. l l., Wiles (, ). ( l. 1, 1 ) 4-6. H = = Q 1 + Q i + Q j + Q ij, i 2 = j 2 = 1, ij = ji 2 Q Q 4. H l := H Q Q l l = 2,, M 2 (Q l ). G = {±1, ±i, ±j, ±ij} 4 (quaternion group). K = Q( (2 + 2)(3 + 3)), Gal(K/Q) G. Dedekind., l > 2 ρ l : G Q K Gal(K/Q) G H (H Q Q l ) GL 2 (Q l ) l (. Q l C, ρ l C, Artin., ). 2 ρ 2 : G Q GL 2 (Q 2 ), {ρ l } l. 2 ρ 2, ρ 2 ρ l (l 2). Q 2 C, Q l C, ρ 2, ρ l C ρ 2,C, ρ l,c. Artin. ρ 2 ρ l, 2-6-3 ρ 2,C ρ l,c., G,, r : G Imρ 2 GL 2 (Q 2 ). r M 2 (Q 2 ), r Q 2 Q 2 [G] M 2 (Q 2 ) Q 2 r. r Q 2., r H Q Q 2, M 2 (Q 2 ) Q 2, H Q Q 2 M 2 (Q 2 )., H 2. ρ l, l > 2. Artin ( 4-5 (b) ). 4-7. ([14] I-12 3) 4-6, l ρ l, ρ l l ρ l (l l) ( l. [12] 5.1 ). 23

5. 2-2-7 2-4-2. 3(p.136).. A, A M, End(M) M, End A (M) M A-., B M = {f End(M) fg = gf, g End A (M)} 19. A M A-, A B M. A M,, a A a M. 5-1. A, F i, i I A, (F i F j, i, j I). M = i F i, i, F = F i.,. B M B F, b b F.., well-defined. F M, F p : M M,, p A-., b B M,, bp = pb, b F (F ) = bp(m) = pb(m) p(m) = F, b F End(F ). f End A (F ),g : M M g F = f, 0, x F, b F f(x) = bg(x) = gb(x) = fb F (x)., b F B F., j I, f j : F F j M. b B F, b j = f j b f 1 j,. B Fj., g End A (F j ) g = f i gf 1 j, g End A (F ) b j g = (f j b f 1 j )(f i gf 1 j ) = f j b gf 1 j = f j gb f 1 j = f j gf 1 j f i b f 1 j = g b j, b End(M) b(x) = b j (x), x F j, b., b B M. c End A (M), 1 M End A (M) F j p j, 1 M = p j. j, x F k, x k = f k (y) y k F, cb(x) = cb k (x) = cb k f k (y) = cf k b (y), b = b 1 M = j b j p j, bc(x) = j b j p j cf k (y) = j f j b f 1 j p j cf k (y) 19 B M M. 24

., f 1 j p j cf k End A (F ), b., bc(x) = j p j cf k b (y) = cf k b (y) = cb(x)., x M,, b B M. 5-2. A, M A, b B M., M x 1,..., x n, ax i = b(x i ), i = 1,..., n a A.. i, M M n M n i f i : M M n, M i. b B M, b i := f i bf 1 i B Mi., b End(M n ) b (x) = b i (x), x M i, 5-1, b B M n, M i b i,, b f i = f i b i. M A M n., x := (x i ) i = f i x i M n, Ax i M n. 5-1 1 5, Ax B M n., b (Ax) Ax, a A, ax = b (x), (ax i ) i = ax = b (x) = i b f i x i = i f i bx i = (bx i ) i., ax i = bx i, i = 1,..., n. 5-3. M A, End A (M), M., B M = A M.. b B M. End A (M) M x 1,..., x n, 5-2, a M A M, a M x i = b(x i ), i = 1,..., n., x M x = n i=1 g i(x i ), g i End A (M), a M, b B M, n n n n a M (x) = a M g i (x i ) = g i a M (x i ) = g i b(x i ) = b g i (x i ) = b(x). i=1 i=1, B M A M. i=1 i=1 5-4. M 1,..., M n A,. M = i M i, M i End A (M i )., A n a 1,..., a n, a A, a M Mi = (a i ) Mi 20. 20, (a i ) Mi A End A (M i ) a i A. 25

. M ((a i ) Mi ) i End A (M n ) 5-3. 2-2-7 2-4-2. 2-2-7., A k, M, M k A, k, char(k)> max{dim k (M), dim k (M )}., tr M (a) = tr M (a), a A, M M. S A (S ). S λ, M A λ (λ ) M λ, n λ Z 0. M, M λ, n λ., S H, M = n λ M λ, M = n λm λ λ H λ H. M(resp. M ) A, End A (M) (resp. End A (M ) ). λ H, A N λ., n λ 0 n λ 0, M λ N λ M λ,. c Nµ tr Mλ (a) = tr Nλ (a) = tr M λ (a), a A, 1 A λ H N λ, 5-4, c A c Nλ = 1 = 0, µ λ., tr M (c) = tr M (c), (n λ n λ)tr Nλ (1) = 0., N λ 0,, k 0, tr Nλ (1) = dim k (M λ ) = dim k (M λ ) k., n λ = n λ., k p,, p > d := max{dim k (M), dim k (M )}, tr Nλ (1) k., n λ n λ 0 mod p., 0 n λ n λ d, n λ n λ = 0. 2-4-2.., M, M M = L 1 M p 1, M = L 1 M 1 p., L 1, L 1, M 1, M 1 A, A L 1 L p 1. a A M1, M 1 p, F (a, T ) p, F 1(a, T ) p k[t ] 26

, F (a, T ) p = F 1(a, T ) p. k p,, F (a, T ) = F 1(a, T ). M 1 0, F (a, T ) = F 1(a, T ), a A, dim k (M 1 ) = dim k (M 1), M, M M = L r M pr r, M = L r M r p r, L r L r., M, M k, r, M r = 0, M r = 0.,. 6.,,.,,,,.. References [1] J. A. Antoniadis, Diedergruppe und Reziprozitatsgesetz, J. Reine Angew. Math. 377 (1987), 197 209. [2] P. Deligne, Résumé des premiers exposés de A. Grothendieck, Groupes de monodromie en geometrie algebrique. I. Seminaire de Geometrie Algebrique du Bois-Marie 1967 1969 (SGA 7 I). pp. 1 24. [3],,,,. [4], II,. [5] P. Deligne and J-P. Serre, Formes modulaires de poids 1. Annales scientifiques de l Ecole Normale Superieure, Ser. 4, 7 no. 4 (1974), p. 507-530. [6] J-M. Fontaine, Représentations l-adiques potentiellement semi-stables, Exposé VIII, Astérisque 1994, 224, périodes p-adiques, seminaire de Bures, 1988. [7],,. [8], p-,. [9], - -,. [10],,. [11] A. Ogg, Modular forms and Dirichlet series, 1969, Benjamin New York. [12] A. Pizer, An algorithm for computing modular forms on Γ 0 (N). J. Algebra 64 (1980), no. 2, 340 390. [13] J-P. Serre, Linear representations of finite groups. Translated from the second French edition by Leonard L. Scott. Graduate Texts in Mathematics, Vol. 42. Springer-Verlag, New York-Heidelberg. [14] J-P. Serre, Abelian l-adic representations and elliptic curves. With the collaboration of Willem Kuyk and John Labute. Second edition. Advanced Book Classics. Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989. xxiv+184 pp. [15] J-P. Serre and J. Tate, Good reduction of abelian varieties. Ann. of Math. (2) 88 1968 492 517. [16] J. Silverman, Arithmetic of Elliptic curves, GTM 106. [17] 12. [18] P. Sarnak, Maass cusp forms with integer coefficients. A panorama of number theory or the view from Baker s garden (Zurich, 1999), 121 127. [19] Y. Taniyama, L-functions of number fields and zeta functions of abelian varieties. J. Math. Soc. Japan 9 1957 330 366. [20], p,. 27

[21],,. [22], 2,,. [23] A. Weil, On a certain type of characters of the idele-class group of an algebraic number-field. Proceedings of the international symposium on algebraic number theory, Tokyo and Nikko, 1955, pp. 1-7. 28