p03.dvi

Similar documents
main.dvi

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

(5 B m e i 2π T mt m m B m e i 2π T mt m m B m e i 2π T mt B m (m < 0 C m m (6 (7 (5 g(t C 0 + m C m e i 2π T mt (7 C m e i 2π T mt + m m C m e i 2π T

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

main.dvi

main.dvi



, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

Part () () Γ Part ,

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x


I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10


2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h


18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

Note.tex 2008/09/19( )

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )


36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (


1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z


[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

- II

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

untitled

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n


Microsoft Word - 信号処理3.doc

入試の軌跡

Z: Q: R: C: sin 6 5 ζ a, b

2 2 L 5 2. L L L L k.....

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

1

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

ft. ft τfτdτ = e t.5.. fx = x [ π, π] n sinnx n n=. π a π a, x [ π, π] x = a n cosnx cosna + 4 n=. 3, x [ π, π] x 3 π x = n sinnx. n=.6 f, t gt n 3 n

chap1.dvi

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

untitled

i





微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

数値計算:フーリエ変換

2011de.dvi

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

untitled

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

main.dvi

B

TOP URL 1

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

6. Euler x

Microsoft Word - 章末問題

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =


1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

Gmech08.dvi




A

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

構造と連続体の力学基礎

2


III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

IA

振動と波動

Transcription:

3 : 1

( ). (.. ), : 2

(1, 2 ),,, etc... 1, III ( ) ( ). : 3

,., III. : 4

,Weierstrass : Rudin, Principles of Mathematical Analysis, 3/e, McGraw-Hil, 1976.. Weierstrass (Stone-Weierstrass, ),,. : 5

2π f 0. f 0 (0) = f 0 (2π). f(e jθ ) = f 0 (θ), f (0 θ < 2π). e jθ = z (f(e jθ ) = f(z)),, Stone-Weierstrass : 6

f p(z) = a 0 z N +a 1 z N=1 + +a N 1 z+a N p ( ),. z = e jθ, p(e jθ ) = a 0 e jnθ + a 1 e j(n 1)θ + +a N 1 e jθ +a N.. : 7

e jθ = cosθ +jsinθ, p(e jθ ) = N A m cos(mθ)+ m=0 N B m sin(mθ) m=1. {A m } 0 m N {B m } 1 m N : ( ). : 8

, (Weierstrass ) Stone-Weierstrass, ( ). A m B m,. : 9

t, t, f(t) N m=0 A mcos(mt) + N m=1 B msin(mt)., 2π 0 f(t)dt = c 0 2πA 0 = 2πA 0, A 0 = (1/2π) 2π 0 f(t)dt; 2π 0 f(t)cosmt = 2π 0 A m cos 2 (mt)dt = πa m, A m = (1/π) 2π 0 f(t) cos(mt)dt 2π 0 f(t)sinmt = 2π 0 A m sin 2 (mt)dt = πb m, B m = (1/π) 2π 0 f(t) sin(mt)dt. : 10

, 2π N f(t) A m cos(mt)+ B m sin(mt) A 0 = 1 2π A m = 1 π B m = 1 π m=0 2π 0 2π 0 2π 0 f(t)dt m=1 f(t)cos(mt)dt (1 m < ) f(t)sin(mt)dt (1 m < ) : 11

T, 2π T f(t) A 0 = 1 T A m = 2 T B m = 2 T m=0 T ( 2πm A m cos T t 0 T 0 T 0 ) N + m=1 ( ) 2πm B m sin T t f(t)dt ( ) 2πm f(t)cos T t dt (1 m < ) ( ) 2πm f(t)sin T t dt (1 m < ) : 12

e j 2πm T t f(t) m Z C m = 1 T C m e j 2πm T t T 0 f(t)e 2πm T t dt, m Z, ( ). Euler, m Z. p. 27 3.1 Ω 0, Ω 0 = 2π/T. : 13

f(t)? :. : Stone-Weierstrass, f,.,. III. : 14

,. F(ν) = f(t)? = f(t)e j2πνt dt F(w)e j2πνt dν : 15

f g(ν) = f(t)e j2πνt dt g,f,f[f] (g = F[f]). g h(t) = g(ν)e j2πνt dν h, f, F 1 [g] (h = F[f]). : 16

f Fourier, (F 1 [F[f]] = f)., f F[f].., Ω = 2πν : 17

g(ω) (= g(ω/(2π))) = h(t) = 1 2π g(ω)e jωt dω f(t)e jωt dt. :

g g h(t) = 1 g(ω/(2π))e jωt dω, Ω = 2π 2πν, h(t) =. g(ν)e j2πνt dν, 2π, ( ),. : 19

(Fourier Series, FS) (Fourier Transofrm, FT) (Discrete-Time Fourier Transform, DTFT) (Discrete-Time Fourier Series, DTFS) (Discrete Fourier Transform, DFT) :

( ). 4. 5 ( ),.,. : 21

. x N ( ). Ω = 2π/N. : 22

x : N 1 X[m] = x[k]e jωmk (0 m < N). k=0 : 23

x (X[0],...,X[n 1]) ( ) x[n] = 1 N 1 X[m]e jωmn (0 n < N). N m=0. : 24

( p.29). X[m] = N 1 k=0 x[k]e jωmk (0 m < N) x[n] = 1 N 1 X[m]e jωmn (0 n < N) N m=0 : 25

x (X[0],...,X[n 1]), (X[0],...,X[n 1]) x,., (x[0],...,x[n 1]) (X[0],...,X[N 1]), x ( x )., 5 ( 3.1, 5 ),. : 26

X[m] 0 m < N,, m Z, X[m] = N 1 k=0 x[k]e jωmk X[m]. X. Ω = 2π/N, p Z, X[m + pn] = N 1 k=0 x[k]e jω(m+pn)k = N 1 k=0 x[k]e jωmk e j 2π N }{{ pkn } = N 1 k=0 x[k]e jωmk = X[m], X N., X (X[0],...,X[N 1]). =1 : 27

x F = (x[0],...,x[n 1]), X F = (X[0],...,X[N 1]),, (...,x F,x F,x F,...) (...,X F,X F,X F,...), x F X F,. x X (Analysis), x (Synthesis). : 28

N 1 x[n] = 1 N m=0 X[m]ejΩmn ( ), N = 1 ( ), N > 1,, N = 1. (N = 1 ). N > 1,. : 29

N 1 0 n < N n, z[n] = 1 N 1 X[m]e jωmn (0 n < N) N m=0. n z[n] = x[n]. X[m], z[n] = 1 N 1 N 1 x[k]e jωmk e jωmn = 1 N 1 N 1 N N. m=0 k=0 m=0 k=0 x[k]e jωm(n k) : 30

, k = n k n, ( z[n] = 1 N 1 ) N 1 x[n]+ x[k]e jωm(n k) N m=0 m=0 k n., 1 m, 2, ( z[n] = 1 Nx[n]+ ) N 1 x[k]e jωm(n k) N k n m=0 ( ) = x[n]+ 1 N 1 x[k] e jωm(n k) N. k n m=0 : 31

, 0 n,k < N, n k < N, Ω = 2π/N, e jω(n k) = e j2πn k N 1., 2, Ω = 2π/N, N 1 N 1 e j 2π N m(n k) = m=0 m=0 (e j 2π N (n k) ) m = 1 (e j 2π N (n k)) N 1 e j 2π(n k) N ( ), (e j 2π N (n k)) N = e j2π(n k) = 1,, z[n] = x[n]. : 32

N = 1 N = 1, x x[0]., X[0], X[m] = N 1 k=0 x[k]e jωmk m = 0 N = 1, X[0] = x[0]. N > 1 z[n], z[n] = 1 N 1 N m=0 X[m]ejΩmn, 0 n < N, N = 1 X[0] = x[0], z[0] = x[0]. : 33

, x, X (p. 30 3.2 )., ( ). : 34

: x : X[m] = 1 N 1 x[k]e jωmk (0 m < N). N k=0 x X : N 1 x[n] = X[m]e jωmn (0 n < N). m=0 1/N,. : 35

( 5 ),.,, 5, x X, X = F DFT [x], x = F 1 DFT [X].,,, F 1 DFT [F DFT[x]] = x. : 36

,,, F DFT [F 1 DFT [X]] = X?, F DFT F 1 DFT. e jωnk e jωnk, 1/N F DFT F 1 DFT, F DFT [F 1 DFT [X]] = X., F DFT F 1 DFT., F DFT F 1 DFT. : 37

F DFT [ ] F 1 DFT [ ],, F DFT F 1 DFT = I, F 1 DFT F DFT = I (I, ). X = F DFT [x] x = F 1 DFT [X], x = F 1 DFT [X] X = F DFT[X]. : 38

pp. 29 31, x, x 1, x 2 N. x, x 1, x 2 X, X 1, X 2., X, X 1, X 2, N. : 39

( 3.1 1 ) a 1 x 1 +a 2 x 2 N 1 k=0 (a 1x 1 [k]+a 2 x 2 [k])e jωmk, F DFT [a 1 x 1 +a 2 x 2 ] = a 1 X 1 +a 2 X 2. F 1 DFT [ ], a 1 x 1 +a 2 x 2 = F 1 DFT [a 1X 1 +a 2 X 2 ]. : 40

, 3.2 2,. x N, Ω = 2π/N. c,k Z, X[c,k] = c+n 1 m=c x[m]e jωmk. X[c,k] = N 1 m=0 x[m]e jωmk = X[k]., p Z, c = pn +c 1, 0 c 1 < N., m 1 = m pn, m = m 1 +pn, X[c,k] = c1+n 1 x[m m1=c1 1 + pn]e jω(m1+pn)k, x[m 1 + pn] = x[m 1 ], e jω(m1+pn)k = e jωm1k e jωpnk = e jωm1k (Ω = 2π/N ), X[c,k] = c1+n 1 x[m m1=c1 1 ]e jωm1k. c 1 = 0, c 1 0., X[c,k] = N 1 x[m m1=c1 1]e jωm1k + c1+n 1 m1=n x[m 1]e jωm1k, m 2 = m 1 N, 2 c1 1 m2=0 x[m 2 + N]e jω(m2+n)k = c1 1 m2=0 x[m 2]e jωm2k ( x Ω = 2π/N ). m 2 m 1 1, X[c,k] = N 1 x[m m1=c1 1]e jωm1k + c1 1 m1=0 x[m 1]e jωm1k = N 1 m1=0 x[m 1]e jωm1k, m 1 m,. : 41

, c Z X[k] = c+n 1 m=c x[m]e jωmk,, N x,. : 42

m ( 3.2 2 ) τ m m, Z = F DFT [τ m x], N 1 N 1 Z[n] = (τ m x[k])e jωnk = (x[k m])e jωnk k=0 k=0 N 1 = (x[k m])e jωn(k m) e jωnm = e jωnm X[n] k=0 : 43

m ( 3.2 3 ) τ m m, z = F 1 DFT [τ mx], N 1 N 1 z[n] = (τ m X[k])e jωnk = (X[k m])e jωnk k=0 k=0 N 1 = (X[k m])e jωn(k m) e jωnm = e jωnm x[n] k=0 : 44

( 3.2 4,5 ) x 2 x 2 ( ) X 1 X 2 ( ). N 1 (x 1 x 2 )[n] = x 1 [m]x 2 [n m], m=0 N 1 (X 1 X 2 )[n] = X 1 [m]x 2 [n m] m=0 : 45

,,. : F DFT [x 1 x 2 ] = X 1 X 2,FDFT[ 1 1 X ] N 1 X 2 = x1 x 2 3.2 4, 5,. : 46

N 1 (F DFT [x 1 x 2 ])[n] = (x 1 x 2 )[k]e jωnk k=0 N 1 N 1 = x 1 [m]x 2 [k m]e jωnk k=0 m=0 N 1 N 1 = x 1 [m]e jωnm x 2 [k m]e jωn(k m) k=0 m=0 N 1 N 1 = x 1 [m]e jωnm x 2 [k m]e jωn(k m) m=0 k=0 = X 1 [n]x 2 [n] : 47

( [ ]) 1 F 1 DFT N X 1 X 2 [n] = 1 N 1 ( 1 N N X 1 X 2 )[k]e jωnk = 1 N 2 = 1 N 2 N 1 N 1 k=0 X 1 [m]x 2 [k m]e jωnk k=0 m=0 N 1 N 1 X 1 [m]e jωnm X 2 [k m]e jωn(k m) k=0 m=0 N 1 = 1 X 1 [m]e jωnm 1 N 1 X 2 [k m]e jωn(k m) N N m=0 = x 1 [n]x 2 [n] k=0 : 48

, ( 3.2 6 8 ), N. x[n],, x x, x[n]. x n x[n]. x, n x[n] = x[n],,. 6 7. : 49

N 1 X[ n] = X[ n] = x[m]e jωm( n) = = N 1 m=0 m=0 x[n]e jωmn = (F DFT [ x])[n] N 1 x[m]e jωmn m=0 x[ n] = x[ n] = 1 N 1 X[m]e N jωm( n = 1 N 1 X[m]e jωmn N = 1 N N 1 m=0 m=0 X[m]e jωmn = ( F 1 DFT [ X] ) [n] m=0 : 50

x N 1 X[ n] = X[ n] = m=0 x[m]e jωm( n) N 1 = x[m]e jωmn = X[n]. m=0 3.2 8. : 51

(Discretetime Fourier Transform, DTFT) ( ),. : 52

( T) f(t) m Z C m = 1 T C m e j 2πm T t T 0 f(t)e 2πm T t dt, m Z T = 2π ( )., m n. : 53

( 2π) f(t) C n e jnt n Z C m = 1 2π f(t)e nt dt, n Z 2π 0, e jnt e jnt, (e jnt ) n Z,. : 54

( 2π), f(t) n Z C n = 1 2π C n e jnt 2π 0 f(t)e nt dt, n Z : t f C n ω X x[n]. : 55

X(ω) x[n]e jnω n Z x[n] = 1 2π X(ω)e nω dω, n Z 2π 0 X( f) x( C n )., x X., x. : 56

x x l 1 (x l 1 x[n] <. n= x, [0,2π) ( ; X(e jω ) ). X(ω) = n Z x[n]e jnω : 57

t < 0 t 2π, f 2π. x[n] (n Z) X.. x[n] = 1 2π X(ω)e nω dω. 2π 0 : 58

,. X(ω) = x[n]e jnω n Z x[n] = 1 2π X(ω)e nω dω, n Z 2π 0,. : 59

Logz, Y(z) = (X Log)(z), Y(e jω ) = X(Log(e jω )) = X(ω), X(ω) Y(e jω ), Y(e jω ) = n Z x[n]e jnω, x[n] = 1 2π Y(e jω )e nω dω (n Z). 2π 0,.,. : 60

, x l 1, x, l 1 2π., l 2 (l 1 l 2 ),.. : 61

( ),, MATLAB,, 2000.,, 1993.,, 2010. A. V. Oppenheim and R. W. Schafter, Discrete-Time Signal Processing, International Ed., Pearson, 2010. M. Mandal and A. Asif, Continuous and Discrete Time Signals and Systems, Cambridge University Press, 2007. K. B. Howell, Principles of Fourier Analysis, 2/e, CRC Press, 2017.,.. : 62