Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim



Similar documents
Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F(

卒業論文

% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr

Stata 11 Stata VAR VEC whitepaper mwp 4 mwp-084 var VAR 14 mwp-004 varbasic VAR 25 mwp-005 svar VAR 31 mwp-007 vec intro VEC 47 mwp-008 vec VEC 75 mwp

TS002

Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 s

第11回:線形回帰モデルのOLS推定

こんにちは由美子です

Stata 11 whitepaper mwp 4 mwp mwp-028 / 41 mwp mwp mwp-079 functions 72 mwp-076 insheet 89 mwp-030 recode 94 mwp-033 reshape wide

こんにちは由美子です

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0

²�ËÜËܤǻþ·ÏÎó²òÀÏÊÙ¶¯²ñ - Â裱¾Ï¤ÈÂ裲¾ÏÁ°È¾

最小2乗法

.. est table TwoSLS1 TwoSLS2 GMM het,b(%9.5f) se Variable TwoSLS1 TwoSLS2 GMM_het hi_empunion totchr

<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63>

第13回:交差項を含む回帰・弾力性の推定

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc

McCain & McCleary (1979) The Statistical Analysis of the Simple Interrupted Time-Series Quasi-Experiment

Microsoft Word - 計量研修テキスト_第5版).doc

seminar0220a.dvi

こんにちは由美子です

σ t σ t σt nikkei HP nikkei4csv H R nikkei4<-readcsv("h:=y=ynikkei4csv",header=t) (1) nikkei header=t nikkei4csv 4 4 nikkei nikkei4<-dataframe(n

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä

Microsoft Word - 計量研修テキスト_第5版).doc

03.Œk’ì

Microsoft Word - 計量研修テキスト_第5版).doc

µ i ν it IN(0, σ 2 ) 1 i ȳ i = β x i + µ i + ν i (2) 12 y it ȳ i = β(x it x i ) + (ν it ν i ) (3) 3 β 1 µ i µ i = ȳ i β x i (4) (least square d


kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :

第85 回日本感染症学会総会学術集会後抄録(I)

arma dvi

受賞講演要旨2012cs3

2301/1     目次・広告


<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

オーストラリア研究紀要 36号(P)☆/3.橋本


統計的仮説検定とExcelによるt検定

1 15 R Part : website:

II (2011 ) ( ) α β û i R

-- o C inter Arctic Oscillation Index Sapporo Air-Temp Matlab randn (red n


一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation :

24.15章.微分方程式

1 I EViews View Proc Freeze

z.prn(Gray)

第86回日本感染症学会総会学術集会後抄録(II)

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model

Risk Simulator 2012 User Manual (Japanese)


!!! 2!

チュートリアル:ノンパラメトリックベイズ

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i

Vol.65 No.2 大阪大学経済学 September 2015 東日本大震災が大阪市の住宅価格に与えた影響について : 中古マンション価格を例にとって 保元大輔 谷﨑久志 要旨 JELR 1. はじめに Stata,, %.,

tnbp59-17_Web:プO1/ky079888509610003201

LA-VAR Toda- Yamamoto(1995) VAR (Lag Augmented vector autoregressive model LA-VAR ) 2 2 Nordhaus(1975) 3 1 (D2)

201711grade2.pdf

: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99

21世紀の統計科学 <Vol. III>

第2回:データの加工・整理

Transcription:

TS001

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls DF-GLS 62 mwp-053 dfuller ADF 67 mwp-052 pperron P-P 73 mwp-054 tsset 77 mwp-002 / 83 mwp-001 StataCorp c 2011 Math c 2011 StataCorp LP Math web: www.math-koubou.jp email: master@math-koubou.jp

mwp-083 Stata arima, arch / whitepaper mwp-003, mwp-051, whitepaper VAR/VEC mwp-084 1. 2. 3. 4. 5. 6. ARCH 7. tsset 1. (1) y 1, y 2,..., y T (stochastic process) {y t } = {..., y 1, y 0, y 1,...} (1) {y t } 3 {y t} (stationary) (weakly stationary) (covariance stationary) (i) E(y t ) t (ii) V (y t ) t (iii) Cov(y t, y t s ) t s(s > 0) c Copyright Math c Copyright StataCorp LP (used with permission) 3

(2) (white noise) {u t } E(u t ) = 0 (2a) V (u t ) = σ 2 (2b) Cov(u t, u s ) = 0, t s (2c) 0 (σ 2 ) 2. (1) AR(p) p (autoregressive process) *1 y t = ϕ 1 y t 1 + ϕ 2 y t 2 + + ϕ p y t p + ϵ t, ϵ t WN(whitenoise) (3) (2) MA(q) q (moving average process) y t = ϵ t + θ 1 ϵ t 1 + + θ q ϵ t q, ϵ t WN (4) (3) ARMA(p, q) (p, q) (autoregressive-moving average process) AR(p) MA(q) y t = ϕ 1 y t 1 + ϕ 2 y t 2 + + ϕ p y t p + ϵ t + θ 1 ϵ t 1 + + θ q ϵ t q, ϵ t WN (5) L ϕ(l) = (1 ϕ 1 L ϕ 2 L 2 ϕ p L p ) θ(l) = (1 + θ 1 L + θ 2 L 2 + + φ q L q ) (6a) (6b) AR(p), MA(q), ARMA(p, q) AR(p) ϕ(l)y t = ϵ t (7a) MA(q) y t = θ(l)ϵ t (7b) ARMA(p, q) ϕ(l)y t = θ(l)ϵ t (7c) *1 [TS] arima p54 ϕ ρ 4

3. 4. 5. 6. ARCH 7. tsset 5

mwp-051 arch - ARCH arch ARCH, GARCH ARCH (volatility) 1. ARCH 2. ARCH/GARCH 3. ARCH/GARCH ARMA 4. EGARCH 5. PGARCH 6. 1. ARCH ARCH (autoregressive conditional heteroskedasticity) [TS] arch p12 (1) y t (conditional mean equation) σt 2 (conditional variance equation) A B ARCH, GARCH [TS] arch p12-13 (2) (3) arch 20 2. ARCH/GARCH Example wpi1.dta ARCH/GARCH. use http://www.stata-press.com/data/r11/wpi1 * 1 (wholesale price index) 1960q1 1990q4 ln wpi ln(wpi) c Copyright Math c Copyright StataCorp LP (used with permission) *1 File Example Datasets Stata 11 manual datasets Time-Series Reference Manual [TS] arch 6

. list if n <= 4 n >= ( N - 3), separator(4) * 2 wpi t ln_wpi 1. 30.7 1960q1 3.424263 2. 30.8 1960q2 3.427515 3. 30.7 1960q3 3.424263 4. 30.7 1960q4 3.424263 121. 111 1990q1 4.70953 122. 110.8 1990q2 4.707727 123. 112.8 1990q3 4.725616 124. 116.2 1990q4 4.755313 D.ln wpi ln wpi 1. twoway (line D.ln wpi t), yline(0) * 3 postestimation estat archlm [R] regress postestimation time series Engle LM (Lagrange Multiplier test) ARCH D.ln wpi *2 Data Describe data List data *3 Graphics Twoway graph (scatter, line, etc.) 7

. regress D.ln wpi * 4. regress D.ln_wpi Source SS df MS Number of obs = 123 F( 0, 122) = 0.00 Model 0 0. Prob > F =. Residual.02521709 122.000206697 R squared = 0.0000 Adj R squared = 0.0000 Total.02521709 122.000206697 Root MSE =.01438 D.ln_wpi Coef. Std. Err. t P> t [95% Conf. Interval] _cons.0108215.0012963 8.35 0.000.0082553.0133878 estat estat archlm Statistics Postestimation Reports and statistics estat : Reports and statistics: Test for ARCH effects in the residuals (archlm) Specify a list of lag orders to be tested: 1 1 estat archlm. estat archlm, lags(1) LM test for autoregressive conditional heteroskedasticity (ARCH) lags(p) chi2 df Prob > chi2 1 8.366 1 0.0038 H0: no ARCH effects vs. H1: ARCH(p) disturbance p 0.0038 ARCH *4 Statistics Linear models and related Linear regression 8

ARCH GARCH(1, 1) D.ln wpi y t ARCH(1) { yt = x t β + ϵ t (M1) σt 2 = γ 0 + γ 1 ϵ 2 t 1 GARCH(1, 1) { yt = x t β + ϵ t σ 2 t = γ 0 + γ 1 ϵ 2 t 1 + δ 1 σ 2 t 1 (M2) GARCH(1, 1) ARCH GARCH [TS] arch p24-25 Statistics Time series ARCH/GARCH ARCH and GARCH models Model : Dependent variable: D.ln wpi Specify maximum lags: ARCH maximum lag: 1 GARCH maximum lag: 1 2 arch - Model 9

. arch D.ln_wpi, arch(1/1) garch(1/1) (setting optimization to BHHH) Iteration 0: log likelihood = 355.2346 Iteration 1: log likelihood = 365.64589 Iteration 2: log likelihood = 366.89266 Iteration 3: log likelihood = 369.652 Iteration 4: log likelihood = 370.42566 (switching optimization to BFGS) Iteration 5: log likelihood = 372.41702 Iteration 6: log likelihood = 373.11099 Iteration 7: log likelihood = 373.18939 Iteration 8: log likelihood = 373.23277 Iteration 9: log likelihood = 373.23394 Iteration 10: log likelihood = 373.23397 ARCH family regression Sample: 1960q2 1990q4 Number of obs = 123 Distribution: Gaussian Wald chi2(.) =. Log likelihood = 373.234 Prob > chi2 =. OPG D.ln_wpi Coef. Std. Err. z P> z [95% Conf. Interval] ln_wpi ARCH _cons.0061167.0010616 5.76 0.000.0040361.0081974 arch L1..4364123.2437428 1.79 0.073.0413147.9141394 garch L1..4544606.1866605 2.43 0.015.0886126.8203085 _cons.0000269.0000122 2.20 0.028 2.97e 06.0000508 arch (M2) β 0 = 0.0061 γ 0 = 0.000 γ 1 = 0.436 δ 1 = 0.454 γ 1 p 0.073 0 10

3. ARCH/GARCH ARMA 4. EGARCH 5. PGARCH 6. 11

mwp-003 arima - arima (ARMA: autoregressive moving-average) arima ARMA ARMAX 1. ARMA 2. arima 2.1 ARIMA(1,1,1) 2.2 2.3 2.4 ARMAX 1. ARMA ARMA [TS] arima Introduction p54 ARMA(1, 1) µ t ρµ t 1 θϵ t 1 t ϵ t 1 µ t, ϵ t ρ θ p q ARMA(p, q) ARMA(p, q) µ t = y t x t β (M1) µ t = ρ 1 µ t 1 + + ρ p µ t p + θ 1 ϵ t 1 + + θ q ϵ t q + ϵ t (M2) (M2) (M1) L c Copyright Math c Copyright StataCorp LP (used with permission) 12

ARMA x t ARMA(1, 1) ARMA(2, 2) (1) ARMA(1, 1) ARMA(p, q) (1 ρ 1 L)(y t β 0 ) = (1 + θ 1 L)ϵ t y t β 0 ρ 1 (y t 1 β 0 ) = ϵ t + θ 1 ϵ t 1 y t β 0 = ρ 1 (y t 1 β 0 ) + θ 1 ϵ t 1 + ϵ t (M3) ARMA(1, 1) (2) ARMA(2, 2) ARMA(2, 2) y t β 0 = ρ 1 (y t 1 β 0 ) + ρ 2 (y t 2 β 0 ) + θ 1 ϵ t 1 + θ 2 ϵ t 2 + ϵ t (M4) ARIMA(p, d, q) I integrated d ARMA(p, q) 2. arima 2.1 ARIMA(1,1,1) (wholesale price index) Example wpi1.dta. use http://www.stata-press.com/data/r11/wpi1 * 1 1960q1 1990q4. list wpi t if n <= 4 n >= ( N - 3), separator(4) * 2 *1 File Example Datasets Stata 11 manual datasets Time-Series Reference Manual [TS] arima *2 Data Describe data List data 13

wpi t 1. 30.7 1960q1 2. 30.8 1960q2 3. 30.7 1960q3 4. 30.7 1960q4 121. 111 1990q1 122. 110.8 1990q2 123. 112.8 1990q3 124. 116.2 1990q4 wpi D.wpi wpi 1. twoway (line wpi t), title(wpi) * 3. twoway (line D.wpi t), yline(0) title(d.wpi) wpi D.wpi ARMA arima arima(p,d,q) ar(), ma() 2 AR 1 p MA 1 q 1 4 numlist ar(), ma() arima(p,d,q) d arima(1,1,1) D.wpi wpi *3 Graphics Twoway graph (scatter, line, etc.) 14

arima(p,d,q) arima wpi Statistics Time series ARIMA and ARMAX models Model : Dependent variable: wpi ARIMA(p,d,q) specification: p = d = q = 1 1 arima Model. arima wpi, arima(1,1,1) (setting optimization to BHHH) Iteration 0: log likelihood = 139.80133 Iteration 1: log likelihood = 135.6278 Iteration 2: log likelihood = 135.41838 Iteration 3: log likelihood = 135.36691 Iteration 4: log likelihood = 135.35892 (switching optimization to BFGS) Iteration 5: log likelihood = 135.35471 Iteration 6: log likelihood = 135.35135 Iteration 7: log likelihood = 135.35132 Iteration 8: log likelihood = 135.35131 ARIMA regression Sample: 1960q2 1990q4 Number of obs = 123 Wald chi2(2) = 310.64 Log likelihood = 135.3513 Prob > chi2 = 0.0000 15

OPG D.wpi Coef. Std. Err. z P> z [95% Conf. Interval] wpi ARMA _cons.7498197.3340968 2.24 0.025.0950019 1.404637 ar L1..8742288.0545435 16.03 0.000.7673256.981132 ma L1..4120458.1000284 4.12 0.000.6080979.2159938 /sigma.7250436.0368065 19.70 0.000.6529042.7971829 (M3) wpi t 0.750 = 0.874 ( wpi t 1 0.750) 0.412 ϵ t 1 + ϵ t sigma 0.725 ϵ ar(), ma() arima D.wpi Statistics Time series ARIMA and ARMAX models Model : Dependent variable: D.wpi Supply list of ARMA lags: List of AR lags: 1 List of MA lags: 1 2 arima Model 16

. arima D.wpi, ar(1) ma(1) ARIMA(1, 1, 1) [TS] arima postestimation (mwp-055 ) 2.2 2.3 2.4 ARMAX 17