pc (SMBH) X TeV( 12 ev) CANGAROO(Collaboration of Australia and Nippon for a GAmma-Ray Observatory in the Outback) TeV CANGAROO-III m 3 3 ( 1 TeV 2%)

Size: px
Start display at page:

Download "pc (SMBH) X TeV( 12 ev) CANGAROO(Collaboration of Australia and Nippon for a GAmma-Ray Observatory in the Outback) TeV CANGAROO-III m 3 3 ( 1 TeV 2%)"

Transcription

1 CANGAROO-III TeV

2 pc (SMBH) X TeV( 12 ev) CANGAROO(Collaboration of Australia and Nippon for a GAmma-Ray Observatory in the Outback) TeV CANGAROO-III m 3 3 ( 1 TeV 2%) (.18 ) TeV CANGAROO-III TeV / 3 2 RXJ H.E.S.S. 1 CANGAROO-II CANGAROO-III / RX J σ CANGAROO-III (.23 ) 65 GeV 17 % ( ) E 2.7±.6stat ±.4 sys (4.8 ± 1.6 stat ±.9 sys ) 12 photons cm 2 sec 1 TeV 1 1 TeV CANGAROO-III 5σ

3 Contents Chapter RX J TeV TeV Chapter Chapter 3 CANGAROO-III DAQ : Chapter 4 ( ) /

4 Chapter Chapter 6 RX J T RX J TDC Chapter Chapter Appendix A 138 A A Appendix B 142 Appendix C / 144 Appendix D -MC 145 3

5 Appendix E RX J Appendix F 149 Appendix G 15 4

6 1 TeV 2 3 CANGAROO-III / / TeV / CANGAROO-III / CANGAROO-III CANGAROO-III RX J RX J

7 Chapter 1 X X X 197 SAS II COS B kev 3 GeV 4 (BATSE OSSE COMPTEL EGRET) NASA CGRO(Compton Gamma Ray Observatory) 3 [3] TeV TeV 27 TeV 1.1: EGRET [3] 71 ( 1.2) ( 1.3) X Uhuru 197 Uhuru X TeV 2

8 CTA(Cherenkov Telescope Array) AGIS(The Advanced Gamma-ray Imaging System ) TeV 1.2: TeV [4] CTA [5] 1.3: ( ) X MeV/GeV TeV ( ) CTA 5 5 σ [5]( ) TeV 3

9 1.2 RX J Section 1.1 kev ( 1.4) 2 ev TeV (1912 ) 1 (1eV / cc) % 1.4: 2.5 knee ankle TeV 4

10 ( ) 3 4 π ( 18 ev ) e B R R = pc zeb (1.1) p E px R = E GeV 1 z 6 G B 3 13 cm (1.2) 1TeV µ Gauss R 3 pc AUGER ( ) EGRAT ( 1.1) EGRET MeV GeV erg 5

11 (Appendix A) % 15 ev 1.5: Cassiopea A X ( ) [?]( ) (SMBH) (BH) SMBH SMBH 6

12 1.6: (AGN) TeV Marakarian51 Marakarian421 8 M X 1.7: Barnard 68[?]( ) CenA [?]( ) 2 7

13 Section 1.2 TeV (Inverse Compton Scattering) (β 1) P IC P IC = 4 3 σ T cγ 2 β 2 U ph (1.3) σ T U ph β 1 E E γ 2 E (γe m e c 2 ) (1.4) E m e γ γe m e c 2 σ = 3 8 σ T x 1 (ln 2x ) (1.5) x = γe m e c 2 1 (1.6) 1/γE E γm e c 2 (γe m e c 2 ) (1.7) 2.7 K E = ev (T = 2.728K) γe m e c 2 T ev (1.4) TeV 2.7 K 1 TeV (Synchrotron Emission) (β 1) 8

14 P syn = 4 3 σ T cγ 2 β 2 U B (1.8) U B = B 2 /8π, γ, β ( B ( Gauss)) p (p 1)/2 p 2.5 E syn B E syn = 2( µ Gauss )( E e ) sin θ[kev ] (1.9) T ev E e θ SSC (Synchrotron Self-Compton) VHE SSC SSC SSC TeV (curvature radiation) q m B Gauss R = γmc 2 /qb ρ K = hc 4πρ γ3 (1.) mc 2 dγ dt = de dt = 2 q 2 c 3 ρ 2 γ4 (1.11) t γ (1.) K t = t = T K() K(T ) 1 K(T ) 1 K() = 8π2 q 2 ct hc mc 2 πρ 9 1 K ct πρ (1.12)

15 K = (mc 2 ) hc/(8π 2 q 2 ) 5.5MeV GeV K(T ) = K K() K + K() ct πρ (1.13) ρ ct = πρ ct/(πρ) 1 K() K ct/(πρ) = 1 K() K(T ) = K MeV MeV GeV GeV ϵ max [46] ϵ max = [ ] 3E3 p 2m 3 R.2 B 3/4 4 T ev (1.14) Gauss 1 TeV B 5 Gauss (Bremsstrahlung) Maxwell - π π 7 MeV 7 MeV 7MeV π ([19][2]) e γ π γ.85 [ α 2Z N π 1 ( α α α )][ ϕ e ϕ N ] (1.15) Z N π p-p π spectrum-weighted moment ϕ e (E e ) E α,ϕ N (E N ) E α α π (Neutral pion decay) π, π +, π π γ π sec(π

16 π ) π 2γ 2 E γ π log e (E γ ) m π /2 7MeV π 7 MeV π E γ π Eπ min Eπ min = E γ + m 2 π/4e γ E γ (E γ m 2 π ) (1.16) 1 TeV 1 TeV π Drury et al. (1994) Naito & Takahara (1994) Drury et al. (1994) π TeV F π ( E) 9 11 E θ( 1T ev ) 1.1 ( E SN 51 erg )( d n 1kpc ) 2 ( 1cm 3 )cm2 s 1 (1.17) θ E SN d n 2.1 π + π VHE - (photo-meson effect) - π p + γ LE p + π or n + π + (1.18) π π E p (2m pm π + m 2 π )c 4 4E γ, LE (E p m p c 2 ) (1.19) E γ, LE X (E γ, X 1keV ) π 14 ev WMAP [6] 27% 4% ( 1.8) 11

17 1.8: [6] Weakly Interacting Massive Particles (WIMPs) WIMPs 1. WIMPs 2. WINPs ( ) 3. WMAP WIMPs WIMPs (Minimal Super-symmetric extension of the standard model(mssm)) (Lightest Supersymmetric Particle(LSP)) χ 1 LSP R-parity LSP R LSP LSP [7][8] χ 1 + χ 1 f + f χ 1 + χ 1 γ + γ 12

18 χ 1 + χ 1 Z + γ f f ( 1.9) 1.9: V Z [9] LSP 2 Z γ E γ = m χ 1 c 2 (if χ 1 + χ 1 γ + γ) (1.2) E γ = m χ 1 c 2 (1 m2 Z 4m 2 ) (if χ 1 + χ 1 Z + γ) (1.21) χ 1 m χ 1 m Z Z m χ 1 TeV TeV Section 1.3 RX J RX J ROSAT ( 1.( )) ASCA [33] CANGAROO-I TeV [34] CANGAROO-II 2 21 σ ( 1.( )) ( 1.11( ) [36]) π 1kpc X [33] 1.11( ) 6.3kpc 3EG J H.E.S.S. TeV 13

19 EGRET radio 2-2 CANGAROO ASCA -1 E df/de or E F(>E) (ev cm s ) でいることがわかった [31] このことは ガンマ線を放射した親粒子は TeV 以上のエネルギー を持っていることを意味し 粒子が高エネルギーまで加速されていることを示唆する結果である それとは別に モルフォロジーは X 線衛星 ASCA で観測された強度マップと良く一致すること から 電子起源の可能性も捨てきれなくなった また H.E.S.S. のスペクトルは CANGAROO-II で得られていたものとフラックスの冪の点で若干異なり その点でも電子起源を有意に排除する ことは難しい GLAST の観測結果によって陽子起源か電子起源かはっきりすると考えられてい る (図 1.12 [38]) -5 5 Photon energy, E (ev) 図 1.: (左)ROSAT による RX J の発見 [32] (右)RX J の多波長スペク トル 実線 シンクロトロン放射モデル 点線 逆コンプトンモデル 破線 制動放射モデル 破 点線 パイオン崩壊モデル CANGAROO-II のデータは陽子起源のガンマ線を示唆している [35] 図 1.11: (左)CO(J= 1-) の放射強度が紫色のコントアで示されている 白で示されているのは XMM-Newton のソフトバンドイメージである CO の分布は CO のスペクトル中でドップラー シフトで計算して -11kms 1-3kms 1 に対応する速度帯のものを取り出している 距離に換 算すれば 1kpc 程度 黄色で示されたのは CANGAROO-II の結果である [36] (右) 同じく CO(J= 1-) の放射の強度マップ CO の分布は CO のスペクトル中でドップラーシフトで計算し て -5kms 1-8kms 1 に対応する速度帯のものを取り出している 距離に換算すれば 6.3kpc 程度 黒のコントアは ROSAT 赤のコントアは CANGAROO-II の結果 白のコントアが 3EG を示している [37] 14

20 s -1 ) -2 dn/de (ev cm 2 E EGRET 1 Inverse Compton π - decay GLAST - hadronic 5 years GLAST - leptonic 5 years H.E.S.S Energy (ev) 1.12: GLAST RX J [38] RX J H.E.S.S. TeV ( 1.13 [3]) TeV / 66% TeV / RX J RX J TeV TeV 2 [36] d = 6kpc 2 RX J RX J [39] 15

21 1.13: H.E.S.S. RX J TeV 3 5σ σ 15σ [3] 1kpc 6kpc [3 ](pc) AD 393 No 16 > Sedov (cm 3 ) <.1.3 (km/s) (M ) < 1 35 (erg) 48 5 (SNR 51 ).1% % 1.1: RX J Section kpc OB % Sgr A East Sgr A 6 M (super-massive black hole(smbh)) 1.14 VLA 9cm 16

22 図 1.14: 銀河中心領域 VLA 9cm 銀河中心領域の中心である約.2 度の領域は Sgr A complex と呼ばれる領域である この 領域内にある天体は VHE ガンマ線を生成すると考えられている [] この領域を観測すること で 領域内の VHE ガンマ線放射を解明することが期待されている この領域の VHE ガンマ線の放射源としては 分子雲 この領域には二つの分子雲 (M と M ) が存在している 宇 宙線がそれら分子雲に衝突することでガンマ線を生成すると考えられる Sgr A East Sgr A East は非熱的な電波源であり 広がった放射領域を形成している (7pc 9pc 3 4 ) また 超大質量ブラックホールである Sgr A からは 5 (2pc) 離れ ていると考えられている シェル構造を示し そのシェルは分子雲 M と衝突し ている この超新星のシェルは 密度の濃い星間物質と相互作用して VHE ガンマ線を生 成するであろう Sgr A West Srg A West IRS16 この領域は星形成領域であると考えられ 周囲にあ る多数の若く質量の重い星からの輻射でイオン化されている これら 質量の大きな星から の星風が周囲の物質と相互作用することにより また 物質が銀河中心の超大質量ブラック ホールに落ち込むことで ガンマ線を生成するであろう この領域は Sgr A から 2 ほど しか離れていない 中心の電波源 (超大質量ブラックホール) Sgr A は H II 領域に囲まれており 電波の観 測から 超大質量ブラックホールであろうと考えられている 物質の運動学から 超大質量 17

23 (3 4) 6 M R s.6au LSP X X TeV X SMBH X X X 5 36 erg/s (Advection Dominated Accretion Flows(ADAF)) [11] SarA 1999 X Chandra 2-keV ADAF 2 Chandra X X SgrA X XMM-Newton 2 2 [12] X R s X X SgrA ( pc) Chandra 2 X % SgrA Sgr A East Sgr A East X mixed morphology SNR Chandra Sgr A East Ia SNR 17 [13] SgrA X ( 18

24 X Sgr B2 [14]) X INTEGRAL 2-6keV ( 1.15) INTEGRAL SgrA INTEGRAL FWHM 13 SMBH IGR SgrA 1.1 Sag A East : 2-4 kev INTEGRAL/IBIS [15] XMM-Newton sub MeV X X INTEGRAL X INTEGRAL sub MeV GeV EGRET 3EG J GeV 1.3 GeV 8kpc erg/s 3EG J EGRET [16] SgrA 99% 19

25 ている [17] しかしながら これらの解析結果はどれも EGRET の観測チームが公式に行ったも のではなく 信頼の置けるものではない 現在 EGRET が検出したガンマ線源は INTEGRAL が検出したガンマ線源には対応していないのではないかと考えられている 銀河中心領域のチェレンコフ望遠鏡観測事例 銀河中心領域は現在までに 4 つの大気チェレンコフ望遠鏡で観測されている ここでは そ れら観測の歴史を振り返りながら TeV での放射の描像に迫ることにする CANGAROO-II による銀河中心からの TeV ガンマ線の発見 [44] 24 年 CANGAROO-II m 望遠鏡によって 銀河中心からの sub-tev ガンマ線放射が 検出された Whipple グループの結果はマージナルな結果であり significance としても弱く 銀 河中心からの TeV 放射を発見したとはいえない 一方 CANGAROO-II のこの時の観測では 21 年と 22 年の 2 年間に 66 時間の観測をし 25GeV 以上のエネルギーで significance とし て 9.8 σ という優位なガンマ線信号を検出した これらのこの結果により 歴史的には銀河中心 からの TeV ガンマ線の発見は CANGAROO-II のこの論文に帰せられる 銀河中心での TeV 放 射の微分フラックスが求められ そのスペクトルは冪型で 冪は 4.6 ±.5 と求められた 非常 にソフトな冪をしている この非常にソフトな冪を説明するために 論文では π 放射のカット オフの部分が見えている という可能性が議論されている 冪は 別の論文 [45] で修正されてお り となっている 1TeV 以上の積分フラックスは 約 % Crab となる 信号の中心は SgrA の位置と一致し 点源とおもわれる (図 1.16) Whipple による銀河中心の TeV ガンマ線観測結果 (マージナルな検出) [43] 24 年 Whipple グループは 1995 年から 23 年まで 26 時間に亘る銀河中心の観測によ りマージナルに 3.7 σ という優位度で信号を検出した 2.8 TeV 以上の積分フラックスとして 4% Crab 程度となる 95% の確度での信号領域は 検出器自体の確度分解能の悪さもあって.25 度 に広がっている この領域内に SgrA と SgrAEast 共に含まれる 放射は点源に見え 時間変 動は見られない 図 1.16: Whipple グループによるエクセスマップ [43](左) および CANGAROO-II 観測による significance マップ [44](右) 2

26 H.E.S.S [46] 24 H.E.S.S. TeV SgrA 1 23 H.E.S.S h 6.2σ h 9.2σ 165GeV stat.15 syst ( 1.22) 165GeV ( ) 7 m 2 s 1 5% Crab 1TeV 12% Crab CANGAROO-II SgrA SgrAEast H.E.S.S. TeV [47] H.E.S.S Data set N tel Live time [hour] Threshold [GeV] Excess Significance [σ] TeV ( 1.17) σ 15% : H.E.S.S. 1TeV [47]( ) MAGIC 1TeV [55]( ) MAGIC [55] 24 Whipple CANGAROO-II H.E.S.S. TeV MAGIC significance σ 3 1TeV H.E.S.S (2.9.6) 21

27 12 (E/T ev ) cm 2 s 1 T ev 1 ( 1.17) MAGIC H.E.S.S. TeV SgrA SgrAEast 1.18: Magic [55]( ) H.E.S.S. ( ) ( ) [18]( ) H.E.S.S. [18] ( 1.18) G TeV EGRET 3EG J RMS.28 l <.8 b <.3 Γ = stat.2 sys 1 SgrB SgrA 1.19( ) CO [49] ( ) π TeV TeV 2 SgrA SgrAEast 22

28 < l < < l < < l < Cor. Excess Counts < l < < l < < l <.35 < l < < l <.65 < l < 1.55 s -1 sr -1 ) dn/de (TeV -1 cm GC Region - Diffuse Model Sgr B Region HESS J Galactic Latitude (degrees) Cor. Excess Counts 2 2 G HESS J Galactic Longitude (degrees) Energy (TeV) 1.19: [18] ( ) CO b <.2 ( ) Diffuse model Diffuse model 1 TeV 4 H.E.S.S. TeV [5] significance 38σ 16 GeV 3 TeV Γ = stat. sys TeV DM TeV DM % DM NFW (Navarro Frenk and White distribution[51]) DM < σv >(velocity-weighted annihilation cross section) cm 3 s 1 26 cm 3 s 1 DM < σv > DM NFW DM compressed NFW < σv > < σv > 26 H.E.S.S. TeV [52] CCD 23

29 6 2 TeV HESS J l = (stat) b = (stat) ( 1.2) SgrA (stat.) 8.5 (sys.) TeV G SgrA 8.7 TeV 2 SgrA G TeV SgrAEast -.2 Sgr A* G HESS J (24) HESS J (25/6) preliminary : H.E.S.S. pc VLA 9cm [52] H.E.S.S. Chandra X [53] SgrA X TeV HESS J SgrA X X TeV 2 H.E.S.S. Chandra X H.E.S.S. X TeV ( 1.21) TeV TeV 2 99% TeV SgrA 24

30 1.21: Chandra 1-keV [54]( ) H.E.S.S. X ( )Chandra 4 ( )15 TeV [53]( ) TeV 1TeV / 12% ( 1.22) 1 TeV [18] TeV Sgr A G Sgr A East [52] TeV TeV X 2R s [53] TeV % [5] ( ) 25

31 differential flux [photons/cm2/s/tev] differential flux Crab (HEGRA) CANGAROO-II MAGIC H.E.S.S. Whipple energy [TeV] 1.22: Whipple CANGAROO-II H.E.S.S. MAGIC TeV SMBH SMBH VHE SgrA VHE TeV X O( 4 )sec O( 2 3 )sec X SMBH VHE SMBH VHE TeV SMBH TeV [58] [ ] SMBH VHE 3 1. SMBH SMBH ( 6 Gauss ) 26

32 1.23: Zylka et al.(1995) Genzel et al.(23) Chandra X Baganoff et al.(21,23) XMM-Newton Porquet et al.(23) X INTEGRAL INTEGRAL X SgrA (Belanger et al.24) EGRET (Mayer- Hasselwander et al.1998) GeV 1 Whipple (kosack et al.24) CANGAROO-II(Tsuchiya et al.24) H.E.S.S.(Aharonian et al.24) CANGAROO-III MAGIC H.E.S.S. [46] TeV TeV 6 Gauss 1TeV radiation length TeV 2. photo-meson effect 18 ev mm 2 1/ 2 TeV photo-meson effect 3. - π B 4 Gauss (few R s ) 27

33 photo-meson effct π SMBH VHE - R/v r 3 4 sec - t pp (n/ 8 cm 3 ) 1 sec TeV - (O( 39 ) erg/s) 1 O( 4 ) erg/s - X flux TeV flux X π 2 TeV X - TeV TeV [ ] SMBH VHE 1. (CRIC) SMBH VHE 2 1 VHE TeV ε vurv 2 8 (E e / 14 ev) 3 ev GeV E γ E e 14 ev TeV 3 M /yr [59] GeV-TeV [59] 4 GeV GLAST kev X 3µGauss 28

34 SMBH [6] SMBH π flux (live time) live time flux exponential live time - ev pc 6 TeV TeV - TeV 5 - TeV 2 - INTEGRAL (stochastic) [61] stochastic( ) mm mm stochastic TeV stochastic π - SMBH 3 TeV 1-1 /cc O( 15 )sec TeV - 2 TeV MeV π MeV GeV GLAST 29

35 SgrAEast SgrAEast TeV H.E.S.S. IACTs RXJ SgrAEast π TeV [62] TeV SgrAEast π H.E.S.S. SgrAEast SgrA [52] cm 3 s -1 ) -26 <σ v> ( pmssm limits pmssm contours (1) KK B limits pmssm pmssm + WMAP (1) KK B (1) KK B + WMAP m DM (TeV) 1.24: H.E.S.S. NFW pmssm KK WMAP pmssm KK [63] DM DM 2 H.E.S.S. IACTs < ρv > m DM DM ( 1.24) 3

36 TeV DM DM H.E.S.S. TeV DM TeV % ( 1.25) [5] IACTs TeV s -1 ) dn/de (TeV cm 2 E (H.E.S.S.) 23 (H.E.S.S.) MSSM KK 7% bb, 3% τ + τ - 1 Energy (TeV) 1.25: H.E.S.S σ MSSM 14 TeV DM KK 5 TeV DM TeV DM τ + τ 3% b b 7% [5] 31

37 Chapter 2 GeV GeV TeV Section (EAS:Extensive Air Shower) ( 2.1) 84MeV GeV km primary γ E E/2 first interaction e + e - x= x=r E/4 γ e + γ e - x=2r E/8 e + e - γ e + e + e - γ e - x=3r E/16 γ e + e - γ e + e - γ e + γ e + e - γ e + e - γ e - x=4r 2.1: 32

38 1 - (p,n) ( p, n) π (π π ± ) π ( sec) π 2γ (2.1) ( GeV) π ± ( sec) π ± π + µ + + ν µ (2.2) π µ + ν µ (2.3) µ primary cosmic-ray π π + p N γ e - e + e - e + γ ν µ µ + p n n n N p ν µ e + ν e p p n electromagnetic component strong meson component strong nucleonic component 2.2: 33

39 π π π + π π : ( )GeV ( )3GeV Section 2.2 c = c/n v βcosθ c = 1 n β = v c (2.4) (2.5) (β 1) θ c = cos 1 (1/n) ( 2.4) 1GeV 34

40 n n T [K] ( n = x 3g cm 2 ) ( ) T 1 (2.6) 273.2K x T x T = x[K] [22] 1atm n 1.27 θ c = cos 1 (1/n) 1.3 TeV θ c 3 v<c/n v>c/n A v t θ c n t 9 o C (a) (b) (c) B wave front 2.4: (a) (b) (c) [21] z de/dx[ergs/cm] ν de dx = z2 e 2 c 2 βn 1 ( 1 1 β 2 n 2 ) νdν. (2.7) l λ 1 λ 2 N N = 1 λ2 ω λ 1 l ( de ) dx (2.8) dx = 2παlz 2 ( 1 λ 1 1 λ 2 ) ( 1 1 n 2 β 2 ). (2.9) α α = e 2 / c 1/137 l = 1 m 35 55nm 27 β ( 2.9) 3 3 E = 12 ev 35

41 3 7 km m 2 m 2 3 light pool r c r c θ c ( 2.5) r c = ( ) θ c (2.) km r c 3 m nsec π 2 nsec r 2 c 4 5 m 2 7 km 2 km m ( 2.6(b)) ( 2.6(c)) A Shower maximum height B C θc Camera FOV B A C Telescope r c 2.5: 36

42 2.6: (a) (b) (c) Section 2.3 TeV / 1TeV 11 photons cm 2 sec 1 4 CANGAROO-III 9 photons cm 2 sec 1 2 TeV / Whipple ( ) 37

43 2.7: CANGAROO-III ( )1 TeV ( )3 TeV 2.8: α ( 2.9) ( (Appendix B) ) Width ( ) Length ( ) Distance 38

44 Alpha Alpha Alpha Alpha= major axis LENGTH DISTANCE 2-1 WIDTH source position : ADC Section 2.4 CANGAROO-III ( ) 39

45 camera A camera B shower image shower orientaion angle shower impact position telescope A telescope B 2.: 2 ( ) ( ) shower impact position shower orientaion angle camera A camera B telescope A telescope B 2.11: 3 4

46 Section 2.5 S/N π ( ) sec µ + e + + ν e + ν µ (2.11) µ e + ν e + ν µ (2.12) 99.97% 2 1TeV r b µ θc 2r/tanθc θc 2.12: r/tanθ c 41

47 r=m θ c 1.3 2r/tanθ c 88m β 1m h 2r/tanθ c S S = (h tanθ c ) 2 π ((h 2r tanθ c ) tanθ c ) 2 π (2.13) h km S = m 2 1 m 2 m 2 2 h 1km 1km 2 3m CANGAROO-III m ( 3.3) 1 1 ( 2.13) Air shower Gamma ray or Hadron muon ~1 Cherenkov pool ~km ~1km ~25m ~12m 2.13: Section 2.6 CANGAROO 4 H.E.S.S.( High Energy Stereoscopic System) MAGIC( The Major Atmospheric Gamma ray Imaging Cherenkov Telescope ) VERITAS( Very Energetic Radiation Imaging Telescope Array System) ( 2.1) m GeV 42

48 Location mirror shape f f/d FOV System VERITAS 31.7N, 1.9W, 23 m asl. Davies-cotton m HESS 23.3S, 16.5E, 18 m asl. Davies-cotton 15 m MAGIC 28.8N, 17.8W, 2225 m asl. Parabola 17 m single 2 CANGAROO 31.1S, 136.8E, 16 m asl. Parabola 8 m (3) 2.1: MAGIC VERITAS H.E.S.S. CANGAROO ( 2.14) 18 o -15 o -12 o -9 o -6 o -3 o o 3 o 6 o 9 o 12 o 15 o 18 o 6 o 3 o MAGIC o -3 o VERITAS -6 o H.E.S.S. CANGAROO-III 2.14: MAGIC 17m 2 phase-ii H.E.S.S. 4 24m 1 H.E.S.S. Phase II CTA

49 1 CTA 2.15: CTA 23-28m m 6-8 GeV 5-m Location Energy range Anguler resolution Sensitivity some GeV TeV.2.2 few mcrab(e>3gev) ( 5σ) few 1mCrab(E>2GeV) (5 5σ) some GeV 1TeV.2.5 few mcrab(e>3gev) ( 5σ) few 4mCrab(E>GeV) (5 5σ) 44

50 Chapter 3 CANGAROO-III 望遠鏡 CANGAROO(Collaboration of Australia and Nippon for GAmma-Ray Observatory in the Outback) は名前の通り 天体ガンマ線観測のための日豪共同の国際協力実験であり オースト ラリア南オーストラリア州ウーメラで 解像型大気チェレンコフ望遠鏡を用いて 南天の観測を 行っている CANGAROO-III は口径 m の望遠鏡 4 台による観測を行い 4GeV 以上に 感度を持つ 27 年現在 CANGAROO プロジェクトは第三段階にある (CANGAROO-III) CANGAROO 実験は 1995 年に口径 3.8 m の鏡と 25 本の光電子増倍管からなるカメラを持つ望 遠鏡 1 台による観測から始まった (CANGAROO-I) 1999 年に口径 7 m の鏡と 3. 度の視野を 持つカメラからなる望遠鏡 1 号機が完成した (CANGAROO-II) 反射鏡は 一年後に口径 m まで拡張されいくつかの系内の天体からのガンマ線を発見した 22 年から 24 年にかけてさ らに 3 台の望遠鏡に改良を加えながら建設し 望遠鏡 2 号機 (以下 T2) 3 号機 (同 T3) 4 号機 (T4) がそれぞれ 22 年 12 月 23 年 7 月 24 年 3 月に観測を開始した 現在 観測では 1 号機は用いられておらず T2 T3 T4 の 3 台で観測が行われている この章では CANGAROO-III 望遠鏡の構成とハードウェア関係を説明する 図 3.1: CANGAROO 観測サイトの位置 図 3.2: (左)CANGAROO-I と (右)CANGAROO-II 望遠鏡 45

51 Section 3.1 CANGAROO-III m 114 8m 427 1µsec GPS PC Ethernet PC msec PC PC OS KURT 1 3.3: CANGAROO 4 Section 3.2 m CANGAROO-III 8cm ( 3.4) GFRP(Glass Fiber Reinforced Plastic) 5kg GFRP 6-8% FWHM.2 46

52 ( 3.5) [41] 3.4: ( )GFRP ( ) 8cm 5kg ( ) 3.5: CCD 4 X radial Lorentzian Section ns 47

53 2. シャワーからのチェレンコフ光の広がりは 1 度以内に収まる 3. チェレンコフ光のスペクトルは 青から紫外にピークを持つのに対し バックグラウンドと なる夜光はそれより長い波長領域にピークを持つ チェレンコフ望遠鏡のカメラに要求されるのは 広い視野 ( 4 度) 小さなピクセルサイズ (.1 度) 早い応答 ( ナノ秒) そして光子に対する高いゲインである 広い視野は広がった天体の観 測 及びサーベイに必要であり 小さなピクセルサイズは シャワーの詳細な発達の様子を捉える ために必要である そして バックグラウンドである夜光の影響を少なくするために 早い応答 時間が必要となる これらの要求を満たすものとして 現時点で最適なのは光電子増倍管 (PMT) である CANGAROO-III で現在稼働中の最新の 3 台の望遠鏡 (T2 T3 T4) のカメラは直径 3/4 イ ンチの PMT を使用している PMT 前面のカソード面には 6 角形のライトガイドが取り付けら れ それを六方最密構造になるように 427 本敷き詰めている (図 3.6 図 3.7) 視野は 4. 度 ピ クセルサイズは.168 度である 重量は全体で 12kg であり サイズは 8cm ϕ cm である この重量は カメラを支えるステイが歪まない為の重量制限を越えないように設計されている 図 3.6: (左)CANGAROO-III のカメラの前面部 (右) 横から見たカメラの構造 図 3.7: (左) 浜松ホトニクス R3479 (右) ライトガイド 左の四角形のものは T1 用 48

54 PMT R3479 3/4 PMT UV 3.8 PMT PMT (Maxim MAX47) 28m PMT PMT 1% 2 p.e. 25p.e. % 3 p.e..94 ns 19mm 15mm (short) 185mm (logn) 65mm (perk) 42mm quantum efficiency (%) UV wave length (nm) 3.8: ( ) R3479 ( )R3479 CAEN SY527,A392 PMT CAENET VME CAEN V288 PC Section DAQ CANGAROO-III Data Acquision System(DAQ) m VME-9U Discriminator Scalor Module(DSM) ( 3.) DSM 1 16 ADC TDC 49

55 DSM 2 (CLC4) 4 1 ADC ( ) ADC VME9U nsec delay line delay nsec Gate 2 DSM 16 Analogue Sum(ASUM) 2 updating discriminator non-updating discriminator 2 discriminator VME updating discriminator TDC TDC VME-6U AMT-VME( ) nsec leading edge trailing edge non-updating discriminator PMT 12 bit 16 non-updating discriminator PMT Logic Sum(LSUM) HV unit PMTs X 427ch Weather monitor Cloud monitor RS232C Telescope position Target position Analog line 28m VME bus DSM(x432ch) HV controller PCI-VME bridge Base Ethernet line Data flow linux PC1 for Monitor data VME bus PatternTrigger Module TDC (x432ch) ADC (x432ch) Scaler GPS Interrupt Register Pentium III CPU board PC2 for telescope control HUB HUB Central electronics hut linux PC3 for diskless server, data storage linux PC4 for Quick analysis, NTP server 3.9: Data Acquision System(DAQ) 5

56 camera inverter fast shaping amplifier external trigger updating discriminator threshold set VME bus One-shot (us~1ms) non-updating discriminator threshold set VME bus (ECL) Scaler Enable/ Disable VME bus (LVTTL) X16 X16 X16 Charge- ADC TDC VMEbus Patterntriggermodule LSUM ASUM 3.: Discriminator Scalor Module(DSM) : PMT GeV CANGAROO-III PMT nsec 8 p.e./pmt DC Jelly 2-3p.e. CANGAROO ASUM LSUM DSM LSUM non-updating discriminator(caen v895) 1 LSUM 1 DSM PMT discriminator 1 PMT NHIT LSUM 5 6 p.e. NHIT PMT 4 ASUM DSM ASUM DSM PMT DSM 27 DSM NBOX ADC nsec TDC GPS CPU DAQ

57 3.11: Lsum (NSB) LSUM ASUM Discriminator Discriminator Discriminator GPS receiver 1pps out PMT Trigger DAQ Trigger 3.12: 3.13: CANGAROO-III ( 3.14) 52

58 1 2 3m ( 2.13) m CANGAROO-III Night sky background log(trigger rate(hz)) Stereo trigger system hardware threshold Muon event Local trigger system hardware threshold Hadron and gamma rays Hardware threshold 3.14: ( 3.15) 6.p.e p.e. 3 (3.16) 3.15: ( ) arclength/size ( )arclength/size.3deg/p.e. 53

59 3.16: NHIT=3 4 ( ) 2 3 LSUM nsec ( 5 nsec) 3 2 ( any2 ) ( ) CPU VETO 5 sec 3.17: 54

60 local trigger event number global trigger local trigger VETO gate & fan out ADC gate TDC stop GPS time Digital to Optical delay NAND ADC clear VETO clear Optical to Data event number AND 16/32 bit VME Optical to Digital latch TDC trigger interrupt 3.18: 3.19: CANGAROO-III ADC TDC CAN- GAROO LED 2 55

61 ADC ADC LED PMT LED ( 3.2) LED PMT PMT PMT LED 2 nsec 14Hz PMT 5 p.e. DAQ LED ADC ADC channel LED PMT σ p.e. µ p.e. = µ p.e. = µp.e. µ p.e. = σ ADC µ ADC (3.1) ( µadc σ ADC ) 2 (3.2) σ ADC µ ADC ADC channel σ p.e. µ p.e. 95±5 [ADC channel/p.e.] 3.2: ADC LED [42] TDC TDC LED nsec 1 nsec PMT discriminator TDC 56

62 ( 3.21) LED LED 1 3 p.e. LED LED PMT ADC TDC PMT PMT TDC 2 = a log(adc pedestal) + b (3.3) 3.22( ) TDC corrected = TDC raw a log(adc pedestal) + b (3.4) TDC 3.22( ) 3.21: TDC Raw TDC distribution number of event number of events 8 h9999 Entries Mean RMS TDC hit time [nsec] Calibrated TDC 12 8 h99991 Entries Mean RMS TDC hit time [nsec] 3.22: ( ) ADC TDC 2 ( ) PMT 3nsec 57

63 Chapter 4 ( ) / Whipple H.E.S.S. σ TeV ( 4.1) / / 2 T2 ADC 2 2nsec 2 2 CANGAROO-III Fisher Discriminant Likelihood CANGAROO-III cm 2 s 1 ) 1 dn/de (TeV Whipple CAT HEGRA H.E.S.S Fit Residuals ( F/F) Energy (TeV) 4.1: ( ) / GeV [23] ( ) / TeV [24] 58

64 Section 4.1 / / T2 T3 T4 3 T1 / Wobble ON OFF ON OFF ON ON OFF ON OFF (Long ON/OFF ) ON OFF OFF ON/OFF ON OFF ON OFF CANGAROO-III C ON/OFF ON OFF OFF Wobble ( 4.3) Wobble 2 ±.5 2 Offset ±.5 ON OFF Wobble Long ON/OFF 2 OFF 4.2: / CANGAROO-III 53 ( 4.2) 55 km 17 km cos( 59

65 ) 2 / livetime livetime 3fold 72.7% 2 (T2-T3 T3-T4) 84.7% 83.4% (hours) 3fold livetime(hours) T3-T4 livetime(hours) T3-T4 livetime(hours) Camera center Bg region Signal region Camera center Declination-source declination[deg] 4.3: Wobble.5 Section

66 PMT 4.4: ( ) ( ) 3 PMT ( 4.4) 5 (Threshold 5 adjacent : T5a) PMT / 3 ( 4.5).2 PMT PMT PMT CANGAROO-III 7 µsec LSUM PMT PMT ( 4.6) CANGAROO-III 4 PMT % PMT PMT FEM 61

67 4.5: ( ) / 3 ( ) HV 3 PMT HV FEMscaler/ch 3 45 scaler3 Entries Mean 23 RMS : T3 PMT PMT FEM FEM PMT PMT PMT PMT 4.7 T3 FEM PMT FEM 25 T3 95.5%(2σ) FEM %(3σ) FEM 312 T3 2σ 3σ FEM T2 T3 T4 2σ FEM σ FEM

68 25 PMT 2 3 % PMT FEMscaler 5 scaler_all3 Entries Mean 2.88 RMS : T3 PMT ADC ADC ADC 2 3 p.e. 5 p.e. TDC TDC TDC TDC ( 4.8) ( nsec) TDC 3 nsec PMT TDCstart(raw4) tdcraw4 Entries e+7 Mean RMS TDCstart(cut2_4) tdccut2_4 Entries Mean.1177 RMS : TDC ( )TDC ( )TDC TDC ( )TDC TDC T5a 63

69 ( 2 ) Hz event rate [Hz] Nov 25 2 Dec 25 event rate [Hz] elapsed time [min] elapsed time [min] 4.9: 3 PMT 3 DAQ livetime No < 6 degree T5a(Threshold 5 adjacent) FEM < 25 ADC 5p.e. TDC 3nsec 3nsec T5a > 5Hz 64

70 Section 4.3 ( ) ( 4.) 4.: 1 layer PMT ( ) 1layer PMT PMT 1 layer bright PMT 2 layer ( 4.11) bright PMT 65

71 7 6 5 Survived / Generated NO edge cut 1layer edge cut 2layer edge cut : GeV (%) ( ) 1layer ( ) 2layer ( ) 1layer Energy Resolution [%] Energy Resolution Energy[TeV] ] 2 Anguler Resolution Energy[TeV] 4.12: ( ) ( ) ( ) ( ) ( ) 1layer 4.12 µ σ ( ) = σ [%] (4.1) µ ( 4.13) 4.12( ) 68 % 4.12( ) 66

72 Event sum p.e. distribution Sum p.e. 4.13: ( 6 GeV ) bright PMT 1 layer 1 layer a ADC count d b c 4.14: bright PMT (15 ) 15 PMT (c) (d) (b) 67

73 PMT PMT ( 4.3) bright PMT bright PMT PMT (NHIT) 4.15 PMT 15 1 layer PMT 15 bright PMT 15 2 ( 4.16) ( 4.17) NHIT Ratio ; Edge Cut / no Edge Cut NHIT 4.15: PMT NHIT=15 Acceptance Acceptance [%] Energy[TeV] Acceptance Acceptance 5 Acceptance Energy[TeV] Energy[TeV] 9 Energy[TeV] Acceptance [%] Acceptance Acceptance [%] [%] 4.16: ( ) ( ) 15 ( ) 2 ( ) bright PMT 1layer 15 5 TeV 27 ( ) 16 ( ) 45 ( ) 1layer ( ) 15 ( ) 1layer TeV 68

74 2 Energy Resolution [%] Energy Resolution Energy[TeV] Angular resolution [degree ] No care 1-Layer PMTs 15 PMTs 2 PMTs Energy [TeV] 4.17: ( )britht PMT ( ) bright PMT ( ) 15 bright PMT ( ) 2 bright PMT ( ) ( ) ( ) ( ) bright PMT 1layer / 15 bright PMT Section opening angle ( 4.18) x IP = x mn sinθ mn (4.2) y IP = tele=m,n tele=m,n y mn sinθ mn (4.3) (x IP, y IP ) opening angle ( 4.19) 69

75 θ23 θ31 3 θ : opening angle sine 4.19: IP-Fit (WIDTH ) WIDTH IP-Fit χ 2 χ 2 = (χ 2 W idth ) (4.4) tele=2,3,4 tele=2,3,4 χ 2 W idth χ 2 W idth = ( (p.e.)) w tele 2 (4.5) ( 4.2) WIDTH WIDTH Hillas WIDTH 7

76 major axis D ip assumed point center of gravity θ w' 2 =(Wcosθ) 2 +(Lsin 2 θ) 2 4.2: IP-Fit w 2 D ip χ 2 ( (4.4)) IP-Fit (WIDTH DISTANCE) WIDTH DISTANCE IP-Fit χ 2 χ 2 = tele=2,3,4 (χ 2 W idth + χ2 Distance) (4.6) 1 WIDTH IP-Fit 2 χ 2 Distance = WIDTH 2 ( DISTANCE f( LENGTH σ Distance WIDTH ) ) 2 (4.7) σ Distance.24 LENGTH ( ) LENGTH WIDTH 1 f = (4.8) WIDTH LENGTH.95 WIDTH 1.95 DISTANCE WIDTH LENGTH ( 4.21) WIDTH DISTANCE WIDTH DIS- TANCE (4.7) 4.22 T3-T

77 Distance DIS vs length/width Length / Width ang-resolution 68% event include(angular resolution) coefficient 4.21: DISTANCE 4.22: LENGTH/WIDTH f(l/w) / T3-T4 2 IP-Fit θ WIDTH thetasq 8 IP-FIT(WIDTH) IP-FIT(WIDTH+DISTANCE) 6 Degree weight theta square[rad] 4.23: (.17 degree 2 ) WIDTH IP-Fit (.13 degree 2 ) WIDTH DISTANCE IP-Fit (.8 degree 2 ) 68% 72

78 [25] gamma-ray (a) gamma-ray (c) camera plane (b) ground telescope-1 telescope : (a) (b) (c) 4.24 ( ) IP-Fit IPdistance D ip Distance 4.25 Distance = D ip Distance D ip Distance D ip IP-Fit (WIDTH DISTANCE) Distance D ip 4.27 IP-Fit : IPdistance IPdistance Distance 73

79 DISTANCE [deg] DISTANCE [deg] number of events 6 4 Small zenith angles Large zenith angles D IP [deg] D IP [deg] θ [deg] 4.26: ( )( ) D ip Distance D ip Distance ( ) θ 2 DISTANCE [deg] D IP [deg] : 54.7 IP-Fit (WIDTH DISTANCE) D ip Distance Distance = D ip 4.26 WIDTH DISTANCE D ip Distance WIDTH DISTANCE IP-Fit Section 4.5 (Hillas ) OFF Wobble 74

80 Geant 3 Wobble.5 / 4.28 event(per min) vs zenith 8 7 minvsze Entries 235 Mean RMS event(per min) vs zenith 3 minvsze Entries 3 Mean RMS : ( ) ( ) 6GeV 3TeV -2.59(HEGRA ) offset.5 T2 T3 T / 2 2 Section 4.6 Fisher Discriminant 75

81 Fisher-fit Fisher Discriminant Fisher Discriminant 1 X X 1 X 2 X P = ( ), (4.9) F < T2Width > < T2Length > P = < T3Width > < T3Length > < T4Width > < T4Length > (4.) F = α P (4.11) F Fisher Discriminant ( F ) α F F α α = µ signal µ BG E signal + E BG. (4.12) signal BG µ P E Error Matrix E ij E ij =< P P T > < P >< P T > OFF θ 2 < < θ 2 < α 1 F Fisher Discriminant [68] B-factory [67] Width Length 76

82 width[2] Entries Mean x Mean y.48 RMS x.77 RMS y.2467 length[2] Entries Mean x Mean y.1621 RMS x.77 RMS y.3361 width[3] Entries Mean x 5.49 Mean y.1214 RMS x.7279 RMS y.1828 length[3] Entries Mean x 5.49 Mean y.1864 RMS x.7279 RMS y.3838 width[4] Entries Mean x Mean y.1184 RMS x.7266 RMS y.1855 length[4] Entries Mean x Mean y.183 RMS x.7266 RMS y.3647 CANGAROO-III Width Length Width Length log( ) log( ) Width Length ( 4.29) Width Length : Width Length subtracted T2width sub2w Entries Mean.3886 subtracted T3width sub3w Entries Mean.2226 subtracted T4width sub4w Entries Mean RMS.1367 RMS.116 RMS subtracted T2length sub2l Entries Mean.152 subtracted T3length sub3l Entries Mean e-5 subtracted T4length sub4l Entries Mean e-5 RMS RMS.3326 RMS : Width Length Width Length α 77

83 < T2Width > 1.63 < T2Length > 2.34 α = < T3Width > < T3Length > = < T4Width > < T4Length > (4.13) α F i ( µ signal µ BG ) i α i i α T 2W idth ( µ signal µ BG ) T 2W idth.17 α T 2Length ( µ signal µ BG ) T 2Length.121 α i ( µ signal µ BG ) i = α T 3W idth ( µ signal µ BG ) T 3W idth α T 3Length ( µ signal µ BG ) =.12 T 3Length.171 α T 4W idth ( µ signal µ BG ) T 4W idth.143 α T 4Length ( µ signal µ BG ) T 4Length.35 (4.14) T4 Length Fisher Discriminant F Fisher-fit Fisher-fit Fisher-fit CANGAROO-III F F ON θ 2 OFF θ 2 F F Fisher-fit Fisher-fit ON F F F ON N F i bin n i f(x i ) = αs i + βb i = αs i + (N α)b i (4.15) n i s i n i F i bin ( 4.31) α β ON α + β = N χ 2 = i ( ni f(x i ) ni ) 2 (4.16) α dχ 2 dα = (4.17) 78

84 i (b i s i ) α = ( ) 1 N b i n i σ 2 α = i ( ( ) α 2 n i ) 2 i = n i (b i s i ) 2 (4.18) i n i ( si b i n i i ) 2 ( ) 2 αsi +(N α)b ni i ( (bi s i ) 2 ) 2 (4.19) n i F of gamma & BG F value 4.31: ( ) ( ) F 2 ON F Fisher-fit 8 6 ON BG MC gamma subtracted Fisher 4.32: Wobble.2 < θ 2 < : Fisher-fit ( ) ON ( ) ( ) ON 79

85 CANGAROO-III Wobble < θ 2 <.5 2 IP-Fit IP-Fit ON ON 4.33 / Fisher-fit θ θ 2 < % 4.33 θ 2 <.43 2 F Wobble.2 < θ 2 <.5 2 F θ 2 <.1 2 F Fisher-fit Fisher-fit θ 2 < ±64 8.2σ / θ 2 θ 2 2 (θ 2 ) radial A θ 2 A 2 bin θ 2 bin Fit / θ bin Fit ( 4.34) Wobble.2 < θ 2 <.5 2 / θ / CANGAROO-III 8

86 Entries 312 Mean RMS Entries 286 Mean RMS.7471 Entries 2646 Mean RMS.7397 Entries 2558 Mean RMS.7686 Entries 2439 Mean RMS.7275 Entries 2982 Mean RMS.718 Mean RMS.7318 Entries 2584 Mean RMS.7361 Entries 2575 Mean RMS.7661 Entries 2335 Mean RMS.7682 Entries 299 Mean RMS.7444 Mean RMS.746 Entries 2578 Mean RMS.7414 Entries 2535 Mean RMS.7547 Entries 247 Mean RMS.7488 Entries 2913 Mean RMS.7164 Entries 2689 Mean RMS.7218 Entries 263 Mean RMS.7619 Entries 2559 Mean RMS.7662 Entries 2268 Mean RMS.7678 Entries 281 Mean RMS.752 Entries 2683 Mean RMS.7791 Entries 2527 Mean RMS.7391 Entries 2416 Mean RMS.7697 Entries 2369 Mean RMS.7984 real f distribution realf[] real f distribution realf[1] real f distribution realf[2] real f distribution realf[3] real f distribution realf[4] real f distribution 7 realf[5] real f distribution 7 realf[6] Entries 2727 real f distribution 7 realf[7] Entries 2714 real f distribution 7 realf[8] real f distribution 7 realf[9] real f distribution realf[] real f distribution realf[11] real f distribution realf[12] real f distribution realf[13] real f distribution realf[14] real f distribution realf[15] real f distribution realf[16] real f distribution realf[17] real f distribution realf[18] real f distribution realf[19] real f distribution realf[2] real f distribution realf[21] real f distribution realf[22] real f distribution realf[23] real f distribution realf[24] : θ 2 bin Fisher-fit θ 2 < bin.2 2 bin F ( ) F F 1 θ

87 Excess events θ distribution θ [degree ] 4.35: / θ 2 / Fisher-fit (4.16) χ 2 χ 2 = i [(n i Nb i ) α (s i b i )] 2 n i + (N α) 2 b i N 2 BG (4.2) χ 2 α α min α χ 2 χ 2 min 2 min+1 2 min min min min 4.36: χ 2 82

88 4.36 χ 2 min χ2 min + 1 α α α χ 2 min χ 2 min α α χ 2 χ 2 α min min χ 2 α min χ 2 min θ 2 ( 4.37) / / / livetime 1 Fit result : bin Fisher Discriminant < θ 2 <.5 2 IP-Fit θ 2 < WIDTH LENGTH ((.5 2 π.2 2 π)/(.43 2 π)) WIDTH LENGTH 4.38 ON 83

89 WIDTH LENGTH 25 T2 width 25 T3 width 25 T4 width T2 length 3 T3 length 3 T4 length : Hillas WIDTH LENGTH bin bin Section 4.7 ADC (x l, x u ) ADC ( 4.4) ADC ( 4.39) E l E u S(E l, E u ) = S A(E l, E u ) (4.21) S A(E l, E u ) E l E u α 84

90 E max df de = 1 ( ) E α (4.22) E max E max N tot Emax NMC tot = S T obs E min = S T obs 1 1 α MC df de (4.23) de { ( ) } 1 α Emin 1 (4.24) E max ADC (x l x u ) N MC N MC = N tot MC A (x l, x u ) (4.25) A (x l, x u ) ADC (x l x u ) (4.25) (4.24) (4.21) S A (x l, x u ) { N MC = T obs 1 ( ) } 1 α Emin 1 S A (x l, x u ) (4.26) 1 α E max Ē(x l, x u ) S A (x l, x u ) ADC (x l x u ) N signal Ē(x l, x u ) df de (x l, x u ) = N signal N MC = { df de } N signal Ē(x l,x u ) S A (x l, x u ) T obs (4.27) 1 α (E 1 α max E 1 α min )Ē α (x l, x u ) (4.28) MC energy mcenergy Entries 2 MC energy mcenergy Entries 2 MC energy mcenergy Entries 2 MC energy mcenergy Entries 2 number of accepted events Mean 146 RMS 1855 number of accepted events Mean 146 RMS 1855 number of accepted events Mean 146 RMS 1855 number of accepted events Mean 146 RMS Energy [TeV] Energy [TeV] Energy [TeV] Energy [TeV] MC energy mcenergy Entries 2 MC energy mcenergy Entries 2 MC energy mcenergy Entries 2 number of accepted events Mean 146 RMS 1855 number of accepted events Mean 146 RMS 1855 number of accepted events Mean 146 RMS Energy [TeV] Energy [TeV] Energy [TeV] 4.39: ADC ADC <ADC < <ADC <16 16<ADC <2 2<ADC <25 25<ADC < <ADC <4 4<ADC <8 85

91 Fit result FD distribution ON BG MC gamma subtracted Fit result FD distribution Fit result FD distribution ON BG MC gamma subtracted ON BG MC gamma subtracted Fit result FD distribution Fit result FD distribution ON BG MC gamma subtracted ON BG MC gamma subtracted Fit result FD distribution Fit result FD distribution ON BG MC gamma subtracted ON BG MC gamma subtracted : ADC bin θ 2 <ADC < <ADC <16 16<ADC <2 2<ADC <25 25<ADC < <ADC <4 4<ADC <8 ADC bin ( 3 ) ( 4.41( )) θ 2 <.43 2 E median E median ADC ADC ( ) E(Size) *Size (TeV) E median ADC E median = 4.4TeV E median ADC ADC median bin ADC median E median bin ADC E median ADC 4.41( ) ADC 1 86

92 number of accepted events MC energy size-energy energy [TeV] Energy [TeV] size [p.e.] 4.41: ( ) / 4.4 TeV ( ) ADC / 4.42 HEGRA differential flux differential flux [photons/cm2/s/tev] HEGRA MAGIC H.E.S.S. CANGAROO-III energy [TeV] 4.42: / HEGRA / CANGAROO-III 87

93 Section Wobble OFF 2 ON/OFF ON OFF Method 1 OFF 2 θ 2 <.5 2 OFF.2 < θ 2 <.5 2 F F OFF OFF ( 4.43( )) F F Fisher-fit Method 2 OFF 2 θ 2 <.5 2 OFF.2 < θ 2 <.5 2 F F Method1.2 < θ 2 <.4 2 θ 2 <.2 2 ( 4.43( )) F F Fisher-fit θ 2 < =.4 2 =.2 2 =.2 OFF 4.43: OFF ( )Method 1 ( )Method bin 88

94 4.44( ) CANGAROO-III 3 bin 4.44( ) / Method ( ) Method ( ) / Declination (J2, deg) Declination (J2, deg) Right Ascension (J2, deg) Right Ascension (J2, deg) Declination (J2, deg) Declination (J2, deg) PSF 21. PSF Right Ascension (J2, deg) Right Ascension (J2, deg) 4.44: / ( )Method 1 ( )Method 2 Wobble ( 4.45) OFF OFF Method 2 OFF OFF θ 2 <.2 2 Method 1 Method 2 / Method2 RX J

95 Target OFF 4.45: Method 1 OFF Section S/N 1 CANGAROO-III 3 DAQ PMT 3 2 T2 T3 T4 T2 T3 T / T2-T3 T3-T θ 2 T2-T T3-T4.8 2 T2-T E median 3 T2-T3 T3-T TeV T2-T3 T3-T4 T T2-T3 2 9

96 T2 3 ( ) number of accepted events MC energy fold mcenergy Entries 2 Mean 1462 RMS fold T2-T3 2fold T3-T Energy [GeV] 4.46: T2-T3 783±92 8.5σ T3-T4 1169±112.4σ ( 4.47) Fit result FD distribution ON BG MC gamma subtracted Fit result FD distribution ON BG MC gamma subtracted : CANGAROO-III 2 ( ) 2 3 ( )T2-T3 ( )T3-T

97 3 2 / T ( 2 ) E median (TeV) 2fold T2-T fold T3-T fold : / 3 2 T2-T3 T3-T differential flux differential flux [photons/cm2/s/tev] HEGRA dummy Entries H.E.S.S. Mean RMS CANGAROO-III 3fold CANGAROO-III T2-T3 CANGAROO-III T3-T4-15 energy [TeV] 4.48: / CANGAROO-III T2-T3 T3-T

98 Declination (J2, deg) Declination (J2, deg) PSF 21. PSF Right Ascension (J2, deg) Right Ascension (J2, deg) 4.49: 2 / ( ) T2-T3 ( ) T3-T

99 Chapter 5 CANGAROO-III 26 Section 5.1 CANGAROO-III % ( 3.15) D D = Size[p.e.] arclength[deg] (5.1) D D 8 5.1(a) 5.1(a) 25 T2 T2 ADC 2 2nsec ADC 2 2 T2 25 DAQ ADC T ( [26][27] ) D 3.15 (x center y center ) 94

100 χ 2 χ 2 χ 2 = i 4 ADC i[p.e.] ((x i x center ) 2 + (y i y center ) 2 ) Size[p.e.] P IXELSIZE 2 (5.2) x i y i ADC i [p.e] PMT i x ADC (photo electron) Size PIXELSIZE (photo electron) χ 2 (x center y center ) r = i ADC i [p.e.] ((x i x center ) 2 + (y i y center ) 2 ) ADC i [p.e.] (5.3) T2 arclength[deg] 2.5 Size[p.e.]/arclength[deg] 1/r r χ 2 5.1(b) 24 May χ [27] 24 May χ June 4 χ 2 1 D May χ 2 1 T2 27 April (a) χ T2 25 χ 2 27 T2 25 χ 2 T3 T4 95

101 Muon factor T2 muon factor year Mirror cleaning T2 missing (a) May 25 June 26 May 27 April T2 T3 T4 counts (b) : (a) 25 T2 T2 25 T (b) T2 χ 2 Meanof 2 T Mirror cleaning T T year 5.2: χ 2 96

102 Section / FEM 45 % T2 5.3: [28] Section 5.3 PMT 97

103 T2 T3 T HESS J MSH CANGAROO-III CANGAROO-III 3GeV 2TeV offset TeV RX J bright PMT / θ % θ T2-T3 T3-T4 ( ) T2-T4 T2-T3 T3-T4 Photon Index foldT2T3 2foldT3T4.12 3fold.1 Photon Index foldT2T3 2foldT3T4.12 3fold.1 Photon Index foldT2T3 2foldT3T4.12 3fold zenith[degree] zenith[degree] zenith[degree] 5.4: ( ) 2.1 ( ) 2.4 ( ) T2-T3 2 T3-T4 2 θ 2 98

104 angular_resolution 3fold Photon Index 2.1 3fold Photon Index 2.4 3fold Photon Index zenith[degree] 5.5: θ 2 ( 5.6) ( 5.7) IP-Fit Zenith 5 Zenith 2 Zenith 4 1 2foldT2T3 2foldT3T4 3fold 1 2foldT2T3 2foldT3T4 3fold 1 2foldT2T3 2foldT3T4 3fold Energy [TeV] 1 Energy [TeV] -2 1 Energy [TeV] 5.6: ( ) 5 ( ) 2 ( ) 4 3 T2-T3 2 T3-T4 2 θ 2 99

105 1 angular_resolution Zenith 4 Zenith 2 Zenith Energy [TeV] 5.7: θ θ Energy resolution [%] Zenith foldT2T foldT3T4 3fold Energy resolution [%] Zenith foldT2T foldT3T4 3fold Energy resolution [%] Zenith 4 7 2foldT2T foldT3T4 3fold Energy [TeV] 1 Energy [TeV] 1 Energy [TeV] 5.8: ( ) 5 ( ) 2 ( ) 4 3 T2-T3 2 T3-T T3-T4 T2-T3 T2-T3 T3-T4

106 T3-T4 T2-T3 T2-T3 PMT T3-T4 T2-T3 T2-T3 5.9 T3 T4 T2 PMT 4 NHIT T2 3 4 NHIT T3 3 4 NHIT T : 5 5TeV PMT 15 bright PMT % 4 5GeV Energy resolution [%] Energy Resolution 3fold Zenith 4 3fold Zenith 2 3fold Zenith Energy [TeV] 5.:

107 5.3.3 / E median E median ADC median bin 5.11 T3-T4 T2-T3 T2-T Energy_threshold [TeV] Photon Index 2.1 2foldT2T3 2foldT3T4 3fold Energy_threshold [TeV] Photon Index 2.4 2foldT2T3 2foldT3T4 3fold Energy_threshold [TeV] Photon Index 2.9 2foldT2T3 2foldT3T4 3fold zenith [degreee] zenith [degreee] zenith [degreee] 5.11: ( ) 2.1 ( ) 2.4 ( ) T2-T3 2 T3-T4 2 Energy threshold Energy_threshold [TeV] photon index 2.1 photon index 2.4 photon index zenith [degreee] 5.12:

108 xaxis Entries 37 Mean RMS.8682 yaxis Entries 37 Mean RMS Long ON/OFF bin 8 bin X Y X Y Y X Y 5.14 θ 2 θ 2 = 1 T3-T4 1 6% T2-T3 3 5% 1.5 map 7 map smooth x slice y slice : 3 ( ) ( ) ( ) X= X ( ) Y= Y 3

109 acceptance Long ON/OFF 2foldT2T3 2foldT3T4 3fold theta square [degree^2] 5.14: θ 2 T2-T3 T3-T Wobble Wobble Wobble 5.15 ±.5 Wobble 2 ± ( 5.15( ) (x,y)=(,) ) θ Long ON/OFF 5.17 Wobble Y Long ON/OFF CANGAROO-III OFF Wobble θ =.7 Wobble Map smooth UP 6 Map smooth DOWN 6 Map smooth Wobble : ( ) Wobble.5 ( ) Wobble.5 ( )Wobble.5 4

110 acceptance Wobble 2foldT2T3 2foldT3T4 3fold theta square [degree^2] 5.16: Wobble ±.5 θ 2 x slice 45 Wobble 4 Long ON/OFF y slice Wobble Long ON/OFF : Wobble Long ON/OFF X Y. bin ( ) X= X ( ) Y= Y CANGAROO-III MSH15-52 [29] CANGAROO-III H.E.S.S. H.E.S.S. CANGAROO-III H.E.S.S. 5 CANGAROO-III CANGAROO-III 5 ( (4.26) ) 5

111 -9 ] -1 s -1 TeV differential flux [ph cm CANGAROO-III H.E.S.S energy [TeV] 5.18: MSH15-52 CANGAROO-III 26 [29] GeV 2TeV 5 36 GeV GeV 3GeV 26 1layer Effective Area 8 Effective Area muon factor 1. muon factor ~ Energy [TeV] 5.19:

112 rmax rmax 5.21 PMT layer PMT rmax PMT rmax 1 layer CANGAROO-III 4 1 PMT.17 1 layer rmax 1.75 rmax 1.75 CANGAROO-III 1layer ( CANGAROO-III 6 PMT ) H.E.S.S. 5 H.E.S.S. 1 layer rmax : ( ) PMT 427 CANGAROO-III 4 ( ) PMT

113 rmax 5.21: rmax PMT R 2.4 5GeV 3TeV Effective Area 11 Effective Area Wide FOV no cut Wide FOV rmax 3. Wide FOV rmax 2.25 Wide FOV rmax 2.5 Wide FOV rmax 2. Wide FOV rmax Energy [TeV] 5.22: rmax 1laeyr CANGAROO-III rmax

114 Chapter 6 RX J T2 T2 T2 3 T3 T ( 6.1) / 3 2 / 25 TDC RX J ( 6.1) RX J H.E.S.S. [3][31] (E 1T ev ) / 66% TDC 2 25 RX J T3-T4 2 May 25 June July Aug PSR RX J Galactic Center PKS H W44 6.1: 25 9

115 Section T2 25 T T T2 T Time valiation of the muon factor :: Telescope days from 1/1/24 6.2: T ADC DAQ DAQ T2 ADC 2 2nsec nsec 2 3 p.e. 4.7p.e. ADC 2 4 6p.e. 6.3 T3/T2 T4/T2 T 2 T 3 T T2 ADC 2 T2 ADC PMT 1

116 T T ADC 2 T2 6.3: T2 ADC 2 2 nsec [28] ADC(cut2_2) : ( ) PMT ( )T2.4 T2 2 2 T2 T3-T4 T2 T2 111

117 T2 DAQ T3-T4 Section 6.2 RX J RX J CANGAROO-III T2 T3 T T1 / (25 5 ) 7 15 (27 7 ) ( 6.1) 5 7 total (hours) X Wobble ( 6.5( )) 48.9 T2 Right ascension(deg) declination(deg) CANGAROO-III (X ) H.E.S.S. ( ) : ( ) RX J CANGAROO-III X ±.5 Wobble CANGAROO-III 1 ROSAT X H.E.S.S. ( ) CANGAROO-III 5 112

118 H.E.S.S. H.E.S.S. 3GeV 2TeV -2.1 offset.5 T2 T3 T T2 T3 T event(per min) vs zenith 4 minvsze Entries 2924 Mean RMS event(per min) vs zenith 3 5 minvsze Entries 418 Mean 17.2 RMS : ( ) ( ) Section 6.3 TDC 25 TDC PMT TDC PMT ch 1 TDC PMT TDC TDC 32ch TDC 2 1 TDC 113

119 2 TDC 1 16 TDC TDC : PMT TDC TDC TDC 1 1 TDC RX J (c55165 d55165.cdb.gz) TDC #A ( A 1 P MT Hz T DC ) = (1 #A T DC ) ( P MT ) (6 ) (6.1) Hit(sephitnm418:PMT) sephitnm418 Entries 1277 Mean RMS 3.33 Hit(sephitnm419:PMT) sephitnm419 Entries 1277 Mean RMS : T4 2 TDC ( ) ( )TDC #19 ( )TDC # TDC 1 #19 PMT PMT 1 Hz 114

120 1 Hz TDC TDC livetime TDC TDC TDC livetime 5% TDC Section 6.4 RX J H.E.S.S ON/OFF Wobble X Wobble.2 < θ 2 <.5 2 H.E.S.S. TeV ( 6.9)[3] H.E.S.S. CANGAROO-III Wobble 2.2 < θ 2 <.5 2 H.E.S.S..2 < θ 2 < % H.E.S.S..2 < θ 2 <.5 2 ( ) CANGAROO-III X θ 2 H.E.S.S. RX J /.2 < θ 2 <.5 2 ( Right ascension declination)=( ) θ =.65 CANGAROO-III 5% new BG normal BG F α 115

121 6.9: CANGAROO-III H.E.S.S. θ =.65 TeV new BG / θ ±6 11.3σ 1169±8.4σ 48.8% / RX J / 48.8% Fit result CANGAROO-III T3-T4 normal BG CANGAROO-III T3-T4 new BG FD distribution ON BG MC gamma subtracted : ( )normal BG new BG T3-T4 2 / θ 2 ( )new BG Fisher-fit 116

122 Declination (J2, deg) PSF differential flux [photons/cm2/s/tev] differential flux HEGRA H.E.S.S. CANGAROO-III 3fold CANGAROO-III T3-T4 normal BG CANGAROO-III T3-T4 new BG Right Ascension (J2, deg) energy [TeV] 6.11: ( )new BG ( )normal BG new BG T3-T4 2 / new BG BG H.E.S.S. CANGAROO-III (48.8%) X RX J < θ 2 <.8 2 H.E.S.S. X.5 H.E.S.S. θ=.65 θ 2 θ 2 =.4225 CANGAROO-III H.E.S.S < θ 2 <.5 2 CANGAROO-III 117

123 6.12: X RX J H.E.S.S..5 < θ 2 <.8 2 ( ) 2 (ADC TDC ) / / 15 bright PMT Section 6.5 θ σ IP-Fit g2 g2 g : σ.3.5 IP-Fit 118

124 .2 θ 2 bin θ 2 X θ 2 < ± σ Fit result FD distribution 4 3 Point Like Wide.1 Wide.2 Wide ON BG MC gamma subtracted : ( )new BG T3-T4 2 RX J θ 2 ( )new BG Fisher-fit H.E.S.S. fits [4] H.E.S.S. H.E.S.S. fits H.E.S.S..65 % θ % fits 6.15( ) % H.E.S.S. θ <.65 RX J π CANGAROO-III θ 2 H.E.S.S. θ ( ) θ 2 1 bin H.E.S.S. bin.2 < θ 2 <.5 2 θ 2 <.2 2 θ 2 < ( ) CANGAROO-III H.E.S.S. 119

125 Area Fit result % flux [H.E.S.S.unit] H.E.S.S. (smoothed) CANGAROO-III T3-T theta [degree] : H.E.S.S..65 % CANGAROO θ % ( )CANGAROO-III H.E.S.S. θ 2 H.E.S.S θ 2 <.2 2 H.E.S.S. 5% H.E.S.S. 5% CANGAROO-III X θ 2 <.2 2 CANGAROO- III RX J CANGAROO-III θ 2 < ( ) E 2.26±.37 (1.45 ±.29) 11 photons cm 2 sec 1 TeV 1 (6.2) 1 TeV H.E.S.S. RX J ( ) E 2.26±.2 (1.71 ±.5) 11 photons cm 2 sec 1 TeV 1 (6.3) 1 TeV [3] CANGAROO-III H.E.S.S. 5% CANGAROO-III 6GeV 3TeV H.E.S.S. ( ) E 1.89±.6 (2.5 ±.8) 11 photons cm 2 sec 1 TeV 1 (6.4) 1 TeV CANGAROO-III θ 2 <.2 2 H.E.S.S. CANGAROO-III H.E.S.S. 12

126 -39d s -1 ) -4d cm Flux(> 1 TeV) ( h15m 17hm Photon index Γ 6.16: H.E.S.S. 1 TeV [3] differential flux -8 Crab (HEGRA) differential flux [photons/cm2/s/tev] H.E.S.S. 5% H.E.S.S. CANGAROO-III T3-T4 new BG energy [TeV] 6.17: H.E.S.S. 5% mean E(TeV) flux(photon/cm 2 /s/t ev ) (σ) ADC (p.e.) ± σ ± σ ± σ ± σ ± σ ± σ ± σ : CANGAROO-III RX J X θ 2 <

127 CANGAROO-III RX J TeV H.E.S.S. CANGAROO-III θ <.5 new BG θ >.5.2 < θ 2 < Declination (J2, deg) PSF Right Ascension (J2, deg) 6.18: RX J CANGAROO-III H.E.S.S..65 H.E.S.S. Section 6.6 H.E.S.S. θ =.65 WIDTH LENGTH 6.19 ON θ =.65 OFF.5 < θ 2 <

128 T3 14 width 16 T4 14 width T3 length T4 length : 4.38 θ θ =.65 38± σ 1874±16 H.E.S.S. 5% CANGAROO-III H.E.S.S. θ 2 radial H.E.S.S Events/arcmin 2 H.E.S.S..5 CANGAROO-III radial H.E.S.S. Fit result FD distribution Point Like Wide.3 Wide.4 Wide ON BG MC gamma subtracted : ( )T3-T4 2 RX J θ 2 ( ) Fisher-fit 123

129 Fit result Events/arcmin^ CANGAROO-III T3-T4 data r [degree] 6.21: ( )H.E.S.S. Toy model RX J kpc 5.5pc pc ( )H.E.S.S. radial Toy model radial [3]( )CANGAROO-III radial 6.22 H.E.S.S. CANGAROO- III T3-T4 2 H.E.S.S. 2.34±.28 stat H.E.S.S. differential flux differential flux [photons/cm2/s/tev] CANGAROO-II H.E.S.S. CANGAROO-III T3-T energy [TeV] 6.22: H.E.S.S. T3-T4 2 H.E.S.S. CANGAROO-III T3-T4 2 T3-T4 2 12p.e. 12p.e. 1TeV 12p.e. θ 2 =.32 θ.18 12p.e

130 1/3 RX J OFF.5 < θ 2 <.8 2 F F 6.23( ) ( 6.23( )) 6.23( ) 6.24 CANGAROO-III H.E.S.S. CANGAROO TeV H.E.S.S. map map smooth map hosei : ( ) OFF.5 < θ 2 <.8 2 bin 1 bin.5 ( ) MC ( ) Declination (J2, deg) Declination (J2, deg) PSF -4.2 PSF Right Ascension (J2, deg) Right Ascension (J2, deg) 6.24: ( ) ( ) CANGAROO-III H.E.S.S. CANGAROO 125

131 Section 6.7 RX J new BG 48.8% / CANGAROO-III CANGAROO-III θ 2 < ± σ H.E.S.S. 5% CANGAROO-III θ 2 <.2 2 H.E.S.S. 5% H.E.S.S..5 < θ 2 <.8 2 θ ± σ CANGAROO-III 2 H.E.S.S. radial.3 1kpc 5pc H.E.S.S. H.E.S.S. H.E.S.S. RX J CANGAROO-III T3-T4 2 H.E.S.S. 2 / T3-T

132 Chapter RX J ( 6.1) Section (25 6 ) (25 7 ) (25 8 ) ( 6.1) 13 RX J TeV T2 RX J T3-T4 2 livetime h 16min 13h 18min 18h 52min 55h 26min Livetime 18h 34min 11h min 18h 58min 48h 42min 7.1: 2 livetime TDC livetime 88% Section T3-T4 T2 T3 T

133 5GeV 3TeV -2.2(Aharonian et al) 3 7 CANGAROO-III 7.2( ) / ( 4.38) (ADC TDC ) / event(per min) vs zenith minvsze Entries 344 Mean RMS event(per min) vs zenith 3 minvsze Entries Mean 13.4 RMS : ( ) 1 ( ) event(per min) vs azimuth minvsaz Entries 344 Mean RMS event(per min) vs azimuth 3 minvsaz Entries Mean RMS : ( ) 1 ( ) 128

134 T3 2 width 25 T4 width T3 length 2 T4 length : 4.38 / PMT / 25 PMT / 1layer FEMscaler/ch 3 12 scaler3 Entries Mean 228 RMS : / 3 θ ± σ ( 7.5) 7.6 F ON-OFF F 129

25 3 4

25 3 4 25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W

More information

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

24 10 10 1 2 1.1............................ 2 2 3 3 8 3.1............................ 8 3.2............................ 8 3.3.............................. 11 3.4........................ 12 3.5.........................

More information

2 X-ray 6 gamma-ray 7 1 17.1 0:38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru

2 X-ray 6 gamma-ray 7 1 17.1 0:38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru 1 17 object 1 observation 17.1 X electromagnetic wave photon 1 = c (17.1) c =3 10 8 ms ;1 m mm = 10 ;3 m m =10 ;6 m nm = 10 ;9 m 1 Hz 17.1 spectrum radio 2 infrared 3 visual light optical light 4 ultraviolet

More information

2005 4 18 3 31 1 1 8 1.1.................................. 8 1.2............................... 8 1.3.......................... 8 1.4.............................. 9 1.5.............................. 9

More information

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 19 Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 1 1 1.1 γ ΛN................. 1 1.2 KEK J-PARC................................ 2 1.2.1 J-PARC....................................

More information

Muon Muon Muon lif

Muon Muon Muon lif 2005 2005 3 23 1 2 2 2 2.1 Muon.......................................... 2 2.2 Muon........................... 2 2.3................................. 3 2.4 Muon life time.........................................

More information

B

B B09170 5 8 ) ( ) π 0-1 s -1 sr -1 MeV HI Emissivity (3rd quadrant) -3-4 Abdo et al. 009 (6 months, P6V3_DIFFUSE) Local arm interarm Perseus arm and beyond Emissivity (MeV E -5-6 3 4 Energy (MeV) 5 1: 1

More information

Abstruct CANGAROO-III (PhotoMultiplier Tube PMT PMT ) PMT PMT R3479 ND 1 PMT 10 ( 90 ) Woomera PMT PMT (Light Guide LG) LG 0.944±0.023 PMT (4 ch) PMT

Abstruct CANGAROO-III (PhotoMultiplier Tube PMT PMT ) PMT PMT R3479 ND 1 PMT 10 ( 90 ) Woomera PMT PMT (Light Guide LG) LG 0.944±0.023 PMT (4 ch) PMT CANGAROOIII January 16, 2009 Abstruct CANGAROO-III (PhotoMultiplier Tube PMT PMT ) PMT PMT R3479 ND 1 PMT 10 ( 90 ) Woomera PMT PMT (Light Guide LG) LG 0.944±0.023 PMT (4 ch) PMT R8900U (HPKK) R8900U Bialkali

More information

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

untitled

untitled masato@icrr.u-tokyo.ac.jp 996 Start 997 998 999 000 00 00 003 004 005 006 007 008 SK-I Accident Partial Reconstruction SK-II Full reconstruction ( SK-III ( ),46 (40%) 5,8 (9%),9 (40%) 5MeV 7MeV 4MeV(plan)

More information

(高エネルギー) 広がったTEVガンマ線源VER J のX線観測による放射機構の研究

(高エネルギー) 広がったTEVガンマ線源VER J のX線観測による放射機構の研究 広がった TeV ガンマ線源 VER J2019+368 の X 線観測 2016 年 9 月 14 日日本天文学会秋季年会 @ 愛媛大学 田中慎之 ( 広島大学 ) 水野恒史 高橋弘充 勝田隼一郎 ( 広島大学 ) 林克洋 ( 名古屋大学 ) 山崎了 ( 青山学院大学 ) 1 目次 Introduction 4P VER J2019+368 の過去の観測 XMM の解析 2P イメージスペクトル

More information

スーパーカミオカンデにおける 高エネルギーニュートリノ研究

スーパーカミオカンデにおける 高エネルギーニュートリノ研究 2009 11 20 Cosmic Ray PD D M P4 ? CR M f M PD MOA M1 ν ν p+p+p+p 4 He +2e - +2ν e MeV e - + p n+ ν e γ e + + e - ν x + ν x p + p, γ + p π + X π µ + ν µ e + ν µ + ν e TeV p + p π + X π µ + ν µ e + ν µ +

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

PowerPoint Presentation

PowerPoint Presentation Sgr A* の赤外線観測 西山正吾 ( 京都大学 ) NIR obserbvations of the Galactic center 2/46 NIR obserbvations of the Galactic center 3/46 NIR obserbvations of the Galactic center 4/46 Dereddened flux density [mjy] 40 20

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

B

B B07557 0 0 (AGN) AGN AGN X X AGN AGN Geant4 AGN X X X (AGN) AGN AGN X AGN. AGN AGN Seyfert Seyfert Seyfert AGN 94 Carl Seyfert Seyfert Seyfert z < 0. Seyfert I II I 000 km/s 00 km/s II AGN (BLR) (NLR)

More information

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary Measurements of Galactic and Atmospheric Cosmic-Ray Absolute Fluxes BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary Introduction 90% 9% 100~10 6

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

[ ] [ ] [ ] [ ] [ ] [ ] ADC

[ ] [ ] [ ] [ ] [ ] [ ] ADC [ ] [ ] [ ] [ ] [ ] [ ] ADC BS1 m1 PMT m2 BS2 PMT1 PMT ADC PMT2 α PMT α α = n ω n n Pn TMath::Poisson(x,[0]) 0.35 0.3 0.25 0.2 0.15 λ 1.5 ω n 2 = ( α 2 ) n n! e α 2 α 2 = λ = λn n! e λ Poisson Pn 0.1

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション CANGAROO 実験と現在の TeV ガンマ線観測 東京大学宇宙線研究所チェレンコフ宇宙ガンマ線グループ大石理子 sdf 2011/02/20 研究会 グローバルな宇宙天文観測 目次 組織的若手派遣プログラムによる渡航状況 CANGAROO 実験 解像型大気チェレンコフ望遠鏡による超高エネルギーガンマ線検出原理 VHE ガンマ線の観測意義 標的天体 CANGAROO-III 望遠鏡による観測のサマリー

More information

BH BH BH BH Typeset by FoilTEX 2

BH BH BH BH Typeset by FoilTEX 2 GR BH BH 2015.10.10 BH at 2015.09.07 NICT 2015.05.26 Typeset by FoilTEX 1 BH BH BH BH Typeset by FoilTEX 2 1. BH 1.1 1 Typeset by FoilTEX 3 1.2 2 A B A B t = 0 A: m a [kg] B: m b [kg] t = t f star free

More information

Microsoft PowerPoint - okamura.ppt[読み取り専用]

Microsoft PowerPoint - okamura.ppt[読み取り専用] TKK の物理的可能性 an extension of the TK neutrino oscillation experiment with a far detector in Korea 岡村直利 ( 京大 基研 ) 関西セミナーハウス (007/03/7( 007/03/7) based on hep-ph/050406 [Phys.Lett.B637,66 (006)] hep-ph/060755

More information

X u

X u X u1079037 14 4 1 X X X X X SNR X X ChandraX 0.3-10.0 kev 1 1 X 3 X 1 3 2 X 5 2.1 X... 5 2.1.1 Powerlaw... 5 2.1.2 BlackBody( )... 5 2.1.3 Disk-BlackBody... 6 2.1.4... 8 2.2 X... 9 2.2.1 HMXB:High-Mass

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

E 1 GeV E 10 GeV 1 2, X X , GeV 10 GeV 1 GeV GeV π

E 1 GeV E 10 GeV 1 2, X X , GeV 10 GeV 1 GeV GeV π 169 8555 3 4 1 e-mail: kataoka.jun@waseda.jp 606 8502 e-mail: totani@kuastro.kyoto-u.ac.jp 305 0801 1 1 e-mail: kunihito.ioka@kek.jp 50 5 X 1 10 10 2008 3 2,000 542 2012 9 5 2. 1 3 E 1 GeV E 10 GeV 1 2,

More information

Fermi ( )

Fermi ( ) Fermi ( ) Outline Introduction Blazar Spectral Energy Distribution (SED) Predictions for the Fermi mission (Prospects for CTA) Summary The Blazar Sequence and the Cosmic Gamma-ray Background Radiation

More information

thesis.dvi

thesis.dvi 3 17 03SA210A 2005 3 1 introduction 1 1.1 Positronium............ 1 1.2 Positronium....................... 4 1.2.1 moderation....................... 5 1.2.2..................... 6 1.2.3...................

More information

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 2.2 1 2.2 2.2.1 (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 kpc, Θ 0 = 220 km s 1. (2.1) R 0 7kpc 8kpc Θ 0 180 km s 1 270

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( )

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( ) ( ) TA 2234 oda@phys.kyushu-u.ac.jp TA (M1) 2161 sumi@epp.phys.kyushu-u.ac.jp TA (M1) 2161 takada@epp.phys.kyushu-u.ac.jp TA (M1) 2254 tanaka@epp.phys.kyushu-u.ac.jp µ ( ) 1 2 1.1...............................................

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

Donald Carl J. Choi, β ( )

Donald Carl J. Choi, β ( ) :: α β γ 200612296 20 10 17 1 3 2 α 3 2.1................................... 3 2.2................................... 4 2.3....................................... 6 2.4.......................................

More information

nakajima_

nakajima_ SK-Gd (ICRR) 30 2018 12 21 SK-Gd SK!2 !3 ls of SK Solar ν measurement rvation of day-night asymmetry far, B8, 2.5σ indication Hep reported at NEUTRINO2014) nalizing all SK-IV data very of the transition

More information

KamLAND (µ) ν e RSFP + ν e RSFP(Resonant Spin Flavor Precession) ν e RSFP 1. ν e ν µ ν e RSFP.ν e νµ ν e νe µ KamLAND νe KamLAND (ʼ4). kton-day 8.3 < E ν < 14.8 MeV candidates Φ(νe) < 37 cm - s -1 P(νe

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

: 8.2: A group (i.e. a very small cluster) of galaxies superimposed on a x-ray image from the ROSAT satellite

: 8.2: A group (i.e. a very small cluster) of galaxies superimposed on a x-ray image from the ROSAT satellite 1 8 8.1 8.1.1 8.1: ( Ω = ρ/ρ c ) (Fukugita, M. et al., APJ 503 (1998) 518) ( 15%) (z 0 ) 1.................. 0.0026 h 1 0.0043 h 1 0.0014 h 1 A 2..................... 0.00086 h 1 0.00129 h 1 0.00051 h

More information

CdTe γ 02cb059e :

CdTe γ 02cb059e : CdTe γ 02cb059e : 2006 5 2 i 1 1 1.1............................................ 1 1.2............................................. 2 1.3............................................. 2 2 3 2.1....................................

More information

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT 3 SPECT SJ SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT 9ch MPPC array 3 3 9 3 3 9.mm(sigma) . SPECT..................................................................3............

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV]

3-2 PET ( : CYRIC ) ( 0 ) (3-1 ) PET PET [min] 11 C 13 N 15 O 18 F 68 Ga [MeV] [mm] [MeV] 3 PET 3-1 PET 3-1-1 PET PET 1-1 X CT MRI(Magnetic Resonance Imaging) X CT MRI PET 3-1 PET [1] H1 D2 11 C-doxepin 11 C-raclopride PET H1 D2 3-2 PET 0 0 H1 D2 3-1 PET 3-2 PET ( : CYRIC ) ( 0 ) 3-1-2 (3-1

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

main.dvi

main.dvi MICE Sci-Fi 2 15 3 7 1 1 5 1.1 MICE(Muon Ionization Cooling Experiment)............. 5 1.1.1........................... 5 1.1.2............................... 7 1.1.3 MICE.......................... 10

More information

soturon.dvi

soturon.dvi Stopped Muon 94S2003J 11 3 10 1 2 2 3 2.1 Muon : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2.2 : : : : : : : : 4 2.3 : : : : : : : : : : : : : 6 3 7 3.1 : : : : : : : : : : : : : : : :

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

Solar Flare neutrino for Super Novae Conference

Solar Flare neutrino for Super Novae Conference KamLAND 2019/01/07-08 KamLAND KamLAND 1. 10 2 ~10 3 sec 10 32 ~10 33 erg (http://www.isas.jaxa.jp/home/solar/yohkoh/) X,γ ( ) νe,νe,νµ,νµ. 2. p π ν/x /γ N π 0, π ± 2.22 MeV from 1 H(n,γ) 2 H p,n Solar

More information

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索  第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智 µ COMET LFV esys clfv (Charged Lepton Flavor Violation) J-PARC µ COMET ( ) ( ) ( ) ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B 2016 J- PARC µ KEK 3 3 3 3 3 3 3 3 3 3 3 clfv clfv clfv clfv clfv clfv clfv

More information

Microsoft Word - 章末問題

Microsoft Word - 章末問題 1906 R n m 1 = =1 1 R R= 8h ICP s p s HeNeArXe 1 ns 1 1 1 1 1 17 NaCl 1.3 nm 10nm 3s CuAuAg NaCl CaF - - HeNeAr 1.7(b) 2 2 2d = a + a = 2a d = 2a 2 1 1 N = 8 + 6 = 4 8 2 4 4 2a 3 4 π N πr 3 3 4 ρ = = =

More information

イメージング分光によるMeVガンマ線天文学の展望

イメージング分光によるMeVガンマ線天文学の展望 髙田淳史 ( 京大理 ) 元素合成 SNR : 放射性同位体銀河面 : 26 Al 電子陽電子対消滅線粒子加速ジェット (AGN) : シンクロトロン + 逆コンプトン強い重力場 Black hole : 降着円盤, π 0 Etc. ガンマ線パルサー, 太陽フレア 1-30 MeV MeV sky map CGRO/COMPTEL Bad Sensitivity Good erg / (cm 2

More information

A 99% MS-Free Presentation

A 99% MS-Free Presentation A 99% MS-Free Presentation 2 Galactic Dynamics (Binney & Tremaine 1987, 2008) Dynamics of Galaxies (Bertin 2000) Dynamical Evolution of Globular Clusters (Spitzer 1987) The Gravitational Million-Body Problem

More information

Microsoft PowerPoint - Ppt ppt[読み取り専用]

Microsoft PowerPoint - Ppt ppt[読み取り専用] Astroparticle physics 富山大学 松本重貴 1. 暗黒物質問題 2. 暗黒物質の正体? 3. 暗黒物質の探査 Astroparticle physics って何? 素粒子 物理学 ニュートリノ暗黒物質暗黒エネルギー宇宙のバリオン数インフレーション 宇宙 物理学 宇宙の暗黒物質問題暗黒物質の存在は確立したが その正体 ( 質量 スピン 量子数や相互作用 ) については不明であるという問題!

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

FPWS2018講義千代

FPWS2018講義千代 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 3つの究極の 宗教や神話 哲学や科学が行き着く人間にとって究極の問い 宇宙 世界 はどのように始まり どのように終わるのか 全てをつかさどる究極原理は何か 今日はこれを考えます 人類はどういう存在なのか Wikipediaより 4 /72 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 電子レンジ 可視光では中が透け

More information

Appendix 1. CRC 13 Appendix Appendix LCGT 18 DECIGO 18 XMASS 19 GADZOOKS! 20 NEWAGE(

Appendix 1. CRC 13 Appendix Appendix LCGT 18 DECIGO 18 XMASS 19 GADZOOKS! 20 NEWAGE( CRC 22 1 3 2 4 2-1 2-2 2-3 2-4 3 9 3-1 3-2 3-3 3-4 3-5 4 12 Appendix 1. CRC 13 Appendix 2. 14 Appendix 3. 17 LCGT 18 DECIGO 18 XMASS 19 GADZOOKS! 20 NEWAGE( ) 21 22 24 CTA (Cherenkov Telescope Array) 25

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

Hasegawa_JPS_v6

Hasegawa_JPS_v6 ATLAS W, トップクォークの相互作用と W ボゾン偏極 トップ(t)クォーク 素粒子中で最大質量(73.3.9 GeV) 崩壊事象中に New physics の寄与が期待できる ハドロン化の前に崩壊 素粒子として性質を検証できる t SM V-A interaction + NP SM + New Physics SM+NP Contribution from NP Longitudinal

More information

JPS2016_Aut_Takahashi_ver4

JPS2016_Aut_Takahashi_ver4 CTA 111: CTA 7 A B A C D A E F G D H I J K H H J L H I A C B I A J I H A M H D G Dang Viet Tan G Daniela Hadasch A Daniel Mazin A C CTA-Japan A, B, Max-Planck-Inst. fuer Phys. C, D, ISEE E, F, G, H, I,

More information

2004 A1 10 4 1 2 2 3 2.1................................................ 3 2.2............................................. 4 2.3.................................................. 5 2.3.1.......................

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

ELECTRONIC IMAGING IN ASTRONOMY  Detectors and Instrumentation   5 Instrumentation and detectors ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors 4 2017/5/10 Contents 5.4 Interferometers 5.4.1 The Fourier Transform Spectrometer (FTS) 5.4.2 The Fabry-Perot

More information

untitled

untitled MPPC 18 2 16 MPPC(Multi Pixel Photon Counter), MPPC T2K MPPC T2K (HPK) CPTA, MPPC T2K p,π T2K > 5 10 5 < 1MHz > 15% 200p.e. MIP 5p.e. p/π MPPC HPK MPPC 2 1 MPPC 5 1.1...................................

More information

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq 2007 2007 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 2007 2 4 5 6 6 2 2.1 1: KEK Web page 1 1 1 10 16 cm λ λ = h/p p ( ) λ = 10 16 cm E pc [ev] 2.2 quark lepton 2 2.2.1 u d c s t b + 2 3 e 1 3e electric charge

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1 Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) µ = lim xk( k = autocorrelation function R( t, t + τ) = lim ( ) ( + τ) xk t xk t k = V p o o R p o, o V S M R realization

More information

SFN

SFN THE STAR FORMATION NEWSLETTER No.291-14 March 2017 2017/04/28 16-20 16. X-Shooter spectroscopy of young stellar objects in Lupus. Atmospheric parameters, membership and activity diagnostics 17. The evolution

More information

4 3 1 Introduction 3 2 7 2.1.................................. 7 2.1.1..................... 8 2.1.2............................. 8 2.1.3.......................... 10 2.2...............................

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

3 6 6.1: ALMA 6.1 galaxy, galaxies the Galaxy, our Galaxy, Milky Way Galaxy G. Galilei W. Herschel cm J.C. Kapteyn H. Sharpley 30 E.P. Hubble 6.2 6.2.1 b l 6.2 b = 0 6.2: l = 0 6.2.2 6.1 6.3 ( 60-100µm)

More information

( ) : 1997

( ) : 1997 ( ) 2008 2 17 : 1997 CMOS FET AD-DA All Rights Reserved (c) Yoichi OKABE 2000-present. [ HTML ] [ PDF ] [ ] [ Web ] [ ] [ HTML ] [ PDF ] 1 1 4 1.1..................................... 4 1.2..................................

More information

JPS-Niigata pptx

JPS-Niigata pptx l l 1916 Ø 2016/12/10 日本物理学会新潟支部 2 l l 1916 Ø l 2016/12/10 日本物理学会新潟支部 3 l 2015 9 14 UTC Ø Advanced LIGO l 2016 2 11 2 12 Ø LIGO & Virgo https://losc.ligo.org/events/gw150914/ http://media1.s-nbcnews.com/

More information

7-1yamazaki.pptx

7-1yamazaki.pptx Suzaku/ASTRO-H Suzaku/ASTRO-H 1. Vela ( Watchman ) (1967 1979): GRB (1969) 2. GINGA (1987 1991): X-ray counterpart GRB (galactic) X-ray burst? 3. BATSE (1991 2000): Galactic origin models!!! 4. BeppoSAX

More information

[pb/gev] T d / dp Data/Theory 6 5.5 0.5 0 0 00 00 00 500 600 p [GeV] T anti-k jets, R=0.6, y jet L dt=7 nb ( s=7 TeV) Systematic Uncertainties.8 NLO-pQCD (CTEQ 6.6)+ Non pert. corr. 0 00 00 00 500 600

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

Thick-GEM 06S2026A 22 3

Thick-GEM 06S2026A 22 3 Thick-GEM 06S2026A 22 3 (MWPC-Multi Wire Proportional Chamber) MPGD(Micro Pattern Gas Detector) MPGD MPGD MPGD MPGD GEM(Gas Electron Multiplier) GEM GEM GEM Thick-GEM GEM Thick-GEM 10 4 Thick-GEM 1 Introduction

More information

JPS2012spring

JPS2012spring BelleII 実験用 TOP カウンターの性能評価 2012.7.7( 土 ) 名古屋大学高エネルギー物理学研究室 (N 研究室 ) 有田義宣 BelleII に搭載する粒子識別装置 TOP カウンター 2 BelleII 実験 もっとも識別の難しい π/k 識別 BelleⅡ 実験は Belle 実験をさらに高輝度化 (40 倍 ) し 大量の B 中間子からの稀崩壊現象を探る電子陽電子コライダー

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

1 2013 11 31 1 4 1.1 11................................. 4 2 5 2.1....................................... 5 2.1.1........................................ 5 2.1.2........................................

More information

A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133

A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133 A Study of Adaptive Array Implimentation for mobile comunication in cellular system 15 1 31 01GD133 LSI DSP CMA 10km/s i 1 1 2 LS-CMA 5 2.1 CMA... 5 2.1.1... 5 2.1.2... 7 2.1.3... 10 2.2 LS-CMA... 13 2.2.1...

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

修士論文

修士論文 SAW 14 2 M3622 i 1 1 1-1 1 1-2 2 1-3 2 2 3 2-1 3 2-2 5 2-3 7 2-3-1 7 2-3-2 2-3-3 SAW 12 3 13 3-1 13 3-2 14 4 SAW 19 4-1 19 4-2 21 4-2-1 21 4-2-2 22 4-3 24 4-4 35 5 SAW 36 5-1 Wedge 36 5-1-1 SAW 36 5-1-2

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

untitled

untitled 71 7 3,000 1 MeV t = 1 MeV = c 1 MeV c 200 MeV fm 1 MeV 3.0 10 8 10 15 fm/s 0.67 10 21 s (1) 1fm t = 1fm c 1fm 3.0 10 8 10 15 fm/s 0.33 10 23 s (2) 10 22 s 7.1 ( ) a + b + B(+X +...) (3) a b B( X,...)

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information