スライド 1

Size: px
Start display at page:

Download "スライド 1"

Transcription

1 暫定版修正 加筆の可能性あり ( 付録 ) 位相整合 : 第二高調波発生. 位相整合. 擬似位相整合 (QPM: quasi-phase-matching) 3. 周期分極反転 (periodic poling) 4. 反転対象 非対称 付録 43 のアプローチ. 第二高調波発生 増幅に関する位相整合 位相不整合について検討する. 位相不整合を解消する考え方 擬似位相整合 とそれを実現するために必要な 周期分極反転 について検討する 3. 第二高調波発生について 不完全なばね による電子振動子模型で説明するが ばね振動に関するポテンシャルエネルギー の 反転対称性の有無がポイントになる 4. ポテンシャルが反転対称であるとき二次非線形電気感受率が零になるため 反転対称性結晶では第二高調波を発生できない 5. お詫び : 二次非線形電気感受率は本来 三階テンソル で表示すべきであるが 今回は省略します 6. 注意 : 赤色は実数 青色は複素数 角周波数を単に周波数と記述します 説明省略 : 位相整合に関しては異方性結晶 (anisotropic crystal) による角度チューニングや温度チューニングが利用される 参考文献 :A Yariv 多田邦雄 神谷武志 ( 訳 ) 光エレクトロニクスの基礎 p.63 丸善 付録 433: 擬似位相整合ニオブ酸リチウム (PPLN:periodically poled lithium niobate) について説明する 43-

2 基本波 : 複素数表示 振動電場 : 実数表示 下線部 : 対応関係 A K z ( r ), t = z, t,0,0, z, t = z cos t 屈折率 : 媒質中 ( 周波数 ν に依存 ) K = = n n = n ( ) c c0 c0 c0 c0 媒質中の光速真空中の光速 K z = K z z K z n K z,, c0 振動電場 : 複素数表示 複素振幅 : 光と物質の相互作用を含ませる意図正確に言えば 基本波の線形電気感受率を含ませる意図 ( r, t) = ( z, t),0,0, z, t = A z epi t K z ( z) = A( z) ep i ( z) = ( z) epi ( ) 0 A A t Kz 43-

3 第二高調波 : 複素数表示 復習 :43 振動電場 : 実数表示下線部 : 対応関係位相定数 : 現時点では未定 ( r ) ( ) ( z), t = z, t,0,0, z, t = z cos t Kz ( z ) = 0 = 0 屈折率 : 媒質中 ( 周波数 ν に依存 ) K = = n n, = c c0 c0 振動電場 : 複素数表示 位置依存 : 現時点では未定位相整合 : 零位相不整合 : 非零参考 :43-0 ややこしいかな : 第二高調波複素振幅 : 今度は非線形電気感受率のみ含ませる意図 ( ) ( ( z) ) ( r ), t = z, t,0,0, z, t = z epi t K z i ( z) e epi ( t K z) = ( z) = ( z) e i ( z) 43-3

4 第二高調波の波動方程式 (3) 復習 :43 第二高調波 : 波動方程式 () = ( :, ) z c t c0 t z, t z, t z, t 代入 ( z, t) = A( z) epi ( t Kz) ( z, t) ( z) e i = epi ( t K z) 増大する第二高調波を記述する場合 : 導出例 (43-6) 位相整合条件 赤色 : 両辺とも実数 i K K z z z = i e A e = A z n ( z) = 0, = z n z i () () i K K z K = K ( z) ( z) = 0 = i ( ) z = z e z, t = z e epi t K z ( z, t) = ( z) cos t K z = ( z) sin ( t K z) 43-4

5 位相整合 第二高調波発生のための位相整合条件 基本波と第二高調波の光速が一致することのように思いますが 本質は 第二高調波と二倍分極振動波の速度一致にあります 二倍分極振動波の速度は基本波の光速で決まる 第二高調波の速度はもちろん第二高調波の光速で決まる ( t) ( a ) ( e m) i i = ( z t) = A( z) i( t K z) ( a ) ( e m), ep 0 A = = ( t) ( ) epi t K z ( t) aa epi ( t K z) ( t ) aa cos( t K z) i ( z, t) = ( z) e epi( t K z), sin i = ( z) = ( z) e ( z), z = 0, = ( z t) ( z) ( t K z) 参照 43-8: いつでもどこでも光増幅の位相関係が成立 二倍分極振動第二高調波 位相整合条件と第二高調波発生 K = K = = ( z) 0, が成立するときを満足する第二高調波に限って発生 ( 成長 ) 上記位相関係を持つ第二高調波はブランコによる光増幅が要求する位相関係を いつでもどこでも 満足している 上記以外の位相関係を持つ場合 いつでもどこでも とはならない つまり 第二高調波は成長しない 43-5

6 位相不整合 () 第二高調波 : 波動方程式 青色 : 複素数 赤色 : 実数 () = ( :, ) z c t c0 t z, t z, t z, t 代入 ( z t) = A( z) i ( t Kz) i ( z, t) = ( z) e epi ( t K z), ep = i ( z) e i( z) 位相整合 : 増大する第二高調波を記述する場合 = = () () :, ikz K = 0 :, A e A i z ( z) = ( z) e, ( z) = 0 z c n z c n 0 0 位相不整合 ( 両辺とも複素数 ): 基本波と第二高調波の光速が不一致 ( :, ) () = ikz A e, K K K 0, ( z) 0 z cn

7 位相不整合 () 第二高調波 : 非線形媒質の長さを L 0 0 () ikz L () () :, :, L i Kz = A e, ( L) = A dz e z c n c n 0 ikl e e = A = A c n ik c n ik KL KL KL () KL i i () KL i i e e i e e = A e = A e cn 0 ik c0n ik KL KL () KL sin () KL sin i i A e A L e = = c0n K c KL 0n KL i ikz ( L) :, sin ( ) c n () KL = A Lsinc, sinc =

8 位相不整合 (3) 第二高調波 : 振幅の絶対値自乗が光強度に比例 ( L) () KL K = const. = A sin sin KL c0nk () KL L= const. = A Lsinc sinc KL c0n 位相整合 L L 位相不整合 コヒーレント長 L KL L sin 非線形媒質長 :L コヒーレント長 KL L = = K 43-8

9 擬似位相整合 () 擬似位相整合 : 位相不整合を克服する方法 (43-4) K () i( K K) z = i A = () i i ikz e e ie A e z n c0n i A () A () = i e cos Kz i sin Kz c0n c0n 注意 : 位相不整合の場合 第二高調波の振幅は cos 部も sin 部も振動するだけで増大しない もし 上式右辺第一項 (or 第二項 ) の括弧 [ ] を絶対値に変えることができれば増大可かもしれない 以下のように 非線形電気感受率 の符号を 周期反転 させる必要あり ( 周期分極反転 :periodic poling ) 周期分極反転により 擬似的に 位相整合を実現する手法を 擬似位相整合 :QPM: quasi-phase matching と呼ぶ 一例として第二項の括弧を絶対値に変えて振る舞いを調べる = 0 A () A () i cos Kz sin Kz z c n c n () sin 0 () Kz = sin Kz () 0 Kz 0 z K = 0 Kz K z K = () () 0 0 () Kz 3 K z 3 K =

10 擬似位相整合 () 図参照 : 右辺第一項は振動するが増大しないから無視 非線形媒質の長さを L A L () A L L = i cos Kz dz sin Kz c n c n A A c n c n L L ( L) ~ dz sin Kz = dz sin Kz, ( L) = ( L) 被積分項 L () sin Kz sin 部 積分後 =, = () () ( ) コヒーレント長 L ( L) cos 部 () cos Kz sin 部 43-0

11 擬似位相整合 (3) 積分後 比較 : 擬似位相整合と位相整合 ー コヒーレント長 L ーー ー 位相整合 ーー ( L) ( L) L 0.4L 擬似位相整合 cos 部 位相整合条件 K K K = 0 擬似位相整合条件 K K K 0 分極反転周期 : コヒーレント長と一致 L = K K = 0 K L 43-

12 擬似位相整合 (4) 大雑把に言えば 周期分極反転非線形媒質 : 第二高調波発生 擬似位相整合 ー ー ー ー ー ー ー ー K K K 0 K K = 0 L = ( z, t) = Aepi ( t K z) ( z, t) = Acos ( t K z) 第二高調波発生 分極反転周期 : コヒーレント長 L = = K K K L = i (, ) = e ep ( ) L t L i t KL ( L) = ( L) ( L) epi ( t K 0 L = ) ( L, t) = ( z) cos( t K z) 43-

13 ばね振動 () 復習 :430 強制力が働く調和振動子 : 理想的なばねの場合 基本波 : 振動電場 d d e, ep t t A i t dt dt = = m 共鳴周波数 : オメガ = F = k m k フックの法則 イメージ : 調和振動子ポテンシャルエネルギー = k V ポテンシャルエネルギー : 弾性力による位置エネルギー F = V V = k 理想的なばねの場合 分極振動は振動電場 ( 強制力 ) に誘われて伸縮する電気双極子の集団振動 ( 参照 :4) 伸縮する電気双極子を強制力が働く調和振動子でモデル化する 調和振動子とはポテンシャルエネルギーの大きさが距離の自乗に比例する振動運動 注意 : 原子核 ( 赤 ) の位置は ばね を壁の位置と異なる 壁 43-3 電気双極子原子核 ( 赤 ) 電子 ( 青 ) 分極振動 理想的なばね

14 ばね振動 () 復習 :430 理想的なばねの場合イメージ : 調和振動子 = k V 不完全なばねの場合イメージ : ポテンシャルエネルギーに歪み 自乗のみ : 細線 電気双極子原子核 ( 赤 ) 電子 ( 青 ) 分極振動 三乗成分追加 : 太線 再確認 : 理想的なばねの場合 分極振動は強制力である振動電場 の周波数と一致 双極子放射光も振動電場 の周波数と一致 3 4 V ( ) = k a b これからやりたいこと : 不完全なばねの場合 ( 但し 不完全性は非常に小さい : ) 歪み : 距離の三乗に比例するポテンシャルエネルギーを追加 ( 簡単のため四乗以上は無視 ) 分極振動に基本波周波数以外のものも含まれるかもしれない? 基本波周波数と異なる新しい光波 ( 高調波 ) が発生するかもしれない k a 43-4

15 周期分極反転 () 周期分極反転 : ばね振動の非線形性に基づく 非線形電気感受率 ( 参照 :43-9) ( Ne )( a ) ( e m) :, = = 0 () () 0 ( ) r ( ) 不完全なばねの場合 : 参照 430 イメージ : ポテンシャルエネルギーに歪み ポテンシャルエネルギー : 三乗成分追加 (430) F = V V = k a 3 3 自乗のみ : 細線 簡単のため : ばねの振動方向は 軸に限定 F = k a, k a F = k ', k ' = k a 三乗成分追加 : 太線 3 4 V ( ) = k a b 周期分極反転 :periodic poling 非線形ばね定数 a] の符号を周期的に反転させればよい 電子が感じるポテンシャルエネルギーの三乗成分の符号を周期的に反転させればよい どうすれば ポテンシャルエネルギーの三乗成分の符号を反転 できるのか検討しましょう ( 次頁以降 ) 43-5

16 周期分極反転 () 理想的なばねの場合イメージ : 調和振動子 q 0 = k V 束縛電子 : 電子振動領域を原点付近に限定 V 0 = k qq 下線部 : クーロン力に相当するポテンシャルエネルギー q 0 0 電荷 0 q ばね振動モデル 理想的なばねを考えてポテンシャルエネルギーを 放物線 とする 電気双極子の中心から 正イオン を等距離配置 電子は正イオンからのクーロン力を受ける お詫び 正 でも 負イオン でも本質は変わらない 図では 正イオン を プロトン のように描いているが 実際には 電子を放出して正の電荷を帯びた原子 であるから 残りの電子は省略しているだけ 本付録では正イオンの中身 電気双極子近傍への設置方法などは議論しない qq 4 = k ~ k qq 00 0 注意 : 正イオン を等距離配置すると ポテンシャルエネルギーは多少歪むが 偶関数 のまま 非線形ばね定数 a] は三乗成分だから a=0 仮に 等距離 でない場合 どうなる?( 次頁 ) 43-6

17 周期分極反転 (3) 等距離でない場合 一例 : 左シフト q 0 q 0 電荷 = k V q 簡単のため : 電子振動領域を原点付近に限定 V, = k qq = 3 3 = 3 ポテンシャルエネルギー : 三乗成分のみ qq a = 重要な結論 : 非線形ばね定数 a] の符号 左シフト のとき 正 : 右シフト のとき 負 : 43-7

18 ポンチ絵 : 周期分極反転 大雑把な説明 : 周期分極反転を実現する可能性のある媒質 ( 結晶 ) とは? 結晶が 正イオン と 負イオン で構成されている 通常 電気的中性を保つ位置に 正負イオン は存在する ( 定常位置 ) 外部からの高電圧印加等により 正イオン のみ移動する ( 負イオンが移動してもよい ) 周期分極反転のため 外部電圧印加も周期的に行う ( 図参照 ) 印加終了後 移動した 正イオン は そのまま安定 印加前の 定常位置 に戻らない もし このようなことができれば 周期的分極反転 が実現する ニオブ酸リチウムはその代表例であり 擬似位相整合ニオブ酸リチウム (PPLN:periodically poled lithium niobate) として広く利用されている ( 結晶構造に起因する細かい話はしません ) 正イオン ( 赤 ) 負イオン ( 青 ) 電気的中性 : 定常位置 ー ー 印加終了後 そのまま安定 ー ー 43-8

19 反転対象 非対称 ポテンシャルが反転対称であるとき二次非線形電気感受率が零になるため 反転対称性結晶では第二高調波を発生できない 理想的なばねの場合イメージ : 調和振動子 = k V 等距離でない場合 q 0 q q 0 電荷 q q 0 電荷 q 一例 : 左シフト 赤点線に対して反転対称 非線形ばね定数 a] は零 二次非線形電気感受率も零 非反転対称 : 非線形ばね定数 a] は非零 左シフト のとき 正符号 右シフト のとき 負符号 43-9

20 別表記 (): 二次非線形電気感受率 参照 43: 二次非線形電気感受率 青色 : 複素数 赤色 : 実数 P ( z, t) = ( :, ) ( z, t) ( z, t) 0 別表記 : d 表記 ( 実数表示 ) ( z, t) ( z, t) ( z, t) ( z, ) Re ( z, ) P = d t = t = * 複素数表示 : d 表記 P P P ( z, t) = d ( z, t) ( z, t) P ( z, t) = Re P ( zt, ) = * 関係式 : 二次非線形電気感受率 ( :, ) d = ()

21 別表記 (): 振動電場 例えば : 位相整合 波動インピーダンス : 真空中 ( :, c ) 0 () d d d n 0 n n = = A = A A = z c n c A 振幅 : 置換 ( 理由 :43-) 波動インピーダンス : 非線形媒質中 a A =, b =, i = = = n n n c c 0 i = = i 0 0 i 代入 : 導出は次頁 b g = 3 3 a, g = 4 d, =, =, ~ ~ z 43-

22 別表記 (3): 導出例 振幅 : 置換 d = A, A = a, = b z z 0 n d b= ( ) 0 a n b g = a z g d = 0 n ~ n~ n 3 3 = d d d d = d g d d =, = d d 0 0 = n n g 3 3 = 4 d, ~ ~ 43-

23 別表記 (4): 振幅 振幅 : 置換 生成 消滅演算子 : 参照 80-4 A a =, b= a A A = = a 単位断面積当たりの光強度 : 単位 :W/m( 参照 06-6) A = a 体積 V 中の進行波エネルギーに対応 ( t) ˆ ˆ p H = m qˆ t ˆ ( t) aˆ ( t ) = a nˆ = aˆ ( t) aˆ ( t) nˆ 単位断面積を単位時間に通過する光子数 体積 V 中の進行波の光子数に対応 量子光学なら : 単位断面積を単位時間に通過する光子数演算子 a ˆn = aa 注意 : 光子数演算子の定義が異なるようです 43-3

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 準備 : 非線形光学効果 (). 絵解き : 第二高調波発生. 基本波の波動方程式 3. 第二高調波の波動方程式 4. 二倍分極振動 : ブランコ 5. 結合波動方程式へ 6. 補足 : 非線形電気感受率 ( 複素数 ) 付録 43 のアプローチ. 分極振動とは振動電場に誘われて伸縮する電気双極子の集団運動. 電気感受率と波動方程式の関係を明らかにする 3.

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 屈折率と誘電率 : 金属. 復習. 電気伝導度 3. アンペールの法則の修正 4. 表皮効果 表皮深さ 5. 鏡の反射 6. 整理 : 電子振動子模型 注意 : 整理しましょう! 前回 : 付録 (4) のアプローチ. 屈折率と損失について記述するために分極振動 ( 電気双極子の集団運動 ) による電気双極子放射を考慮. 誘電率は 真空中の値 を採用 オリジナル光

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 電磁波 ( 光 ) の角運動量. 復習 : 電磁波 ( 光 ) のエネルギー. 運動量 角運動量 ( 実空間 ) 3. 軌道 スピン角運動量 4. 円偏光状態 5. 螺旋状態 付録 8 のアプローチ. 本付録では電磁波 ( 光 ) の軌道 スピン角運動量ついて古典的に扱う. スピン角運動量は直線偏光状態では零 円偏光状態では非零 右 左回りで大きさは同じ

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) マクスウェルの方程式 : 真空中 () 1. 電磁波 ( 光波 ) の姿 : 真空中. エネルギー密度 3. ポインティング ベクトル 4. 絵解き : ポインティング ベクトル 5. ポインティング ベクトル : 再確認 6. 両者の関係 7. 付録 : ベクトル解析 注意 1. 本付録 : マクスウェルの方程式: 微分型 を使用. マクスウェルの方程式を数学的に取扱います

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 球面波 回折 (. グリーンの定理. キルヒホッフの積分定理 3. ホイヘンスの原理 4. キルヒホッフの回折公式 5. ゾンマーフェルトの放射条件 6. 補足 付録 (90~904 のアプローチ : 回折 (diffaction までの道標. 球面波 (pheical wave のみ対象 : スカラー表示. 虚数単位 i を使用する 3. お詫び : 自己流かつ説明が飛躍する場面があります

More information

Microsoft Word - note02.doc

Microsoft Word - note02.doc 年度 物理化学 Ⅱ 講義ノート. 二原子分子の振動. 調和振動子近似 モデル 分子 = 理想的なバネでつながった原子 r : 核間距離, r e : 平衡核間距離, : 変位 ( = r r e ), k f : 力の定数ポテンシャルエネルギー ( ) k V = f (.) 古典運動方程式 [ 振動数 ] 3.3 d kf (.) dt μ : 換算質量 (m, m : 原子, の質量 ) mm

More information

多次元レーザー分光で探る凝縮分子系の超高速動力学

多次元レーザー分光で探る凝縮分子系の超高速動力学 波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 iwamoto.y@kuchem.kyoto-u.ac.jp ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 屈折率と誘電率 (1) 1. 屈折率の考え方 2. 分極電流と円電流 3. 分極振動と電流密度 4. アンペールの法則の修正 5. 複素電気感受率 6. 補足 : 世界観 ( 実空間と複素空間 ) 注意 : 整理しましょう! 前回 : 付録 (41) のアプローチ 1. 電子振動子模型を利用して媒質を電気双極子の集団としてモデル化 2. 薄いシート媒質中の分極振動

More information

スライド 1

スライド 1 光通信工学. 復習. ポインティング ベクトル 3. 光強度 4. 強度反射 ( 透過 率 通常のレンズ フレネルレンズ 光通信工学 3- 光波とは : 式で書いた方が分かりやすいかも! 軸 偏光 : 電場 の振動方向偏波面 : 電場 ベクトルと波数ベクトルからなる平面 方向の直線偏光 軸 + 軸 : 磁場の強さ 平面波 & 進行波 : 簡単 便利 偏波面 :-z 平面右ねじ : 電場 (+ 磁場

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) デルタ関数. ローレンツ関数. ガウス関数 3. Sinc 関数 4. Sinc 関数 5. 指数関数 6. 量子力学 : デルタ関数 7. プレメリの公式 8. 電磁気学 : デルタ関数 9. デルタ関数 : スケール 微分 デルタ関数 (delta function) ( ) δ ( ) ( ), δ ( ), δ ( ), δ ( ) f x x dx

More information

Microsoft Word - Chap17

Microsoft Word - Chap17 第 7 章化学反応に対する磁場効果における三重項機構 その 7.. 節の訂正 年 7 月 日. 節 章の9ページ の赤枠に記載した説明は間違いであった事に気付いた 以下に訂正する しかし.. 式は 結果的には正しいので安心して下さい 磁場 の存在下でのT 状態のハミルトニアン は ゼーマン項 と時間に依存するスピン-スピン相互作用の項 との和となる..=7.. g S = g S z = S z g

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 5 回平面波の媒質への垂直および射入射と透過 柴田幸司 Bounda Plan Rgon ε μ Rgon Mdum ( ガラスなど ε μ z 平面波の反射と透過 垂直入射の場合 左図に示す様に 平面波が境界面に対して垂直に入射する場合を考える この時の入射波を とすると 入射波は境界において 透過波 と とに分解される この時の透過量を 反射量を Γ とおくと 領域 における媒質の誘電率に対して透過量

More information

レーザー発振の原理

レーザー発振の原理 第 6 章光と原子との相互作用光の吸収と放出前章では 光と相互作用する原子の束縛電子状態は定常状態とは異なるが 定常状態の状態ベクトルで展開して表現できることが示された 原子 個の微視的双極子モーメントの期待値から 巨視的な物質分極が導かれ 我々の観測できるマクロ的な光学定数が関連付けられた 本章では 状態の変化と それに伴う光の吸収と放出について議論する 6. 量子論に基づく A 係数と B 係数分散理論では

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) コイルと磁場 () coil and magnetic field part. ソレノイドコイルのエネルギー. エネルギー密度の比較 : 電場と磁場 3. 磁場のエネルギーとベクトルポテンシャル 4. 相互作用エネルギー : 電場と磁場 5. 資料 : 電源について 注意. 電磁波を記述する マクスウェル方程式 の理解に必要を思われるトピックスに限定. 定常電流が作る磁場

More information

s とは何か 2011 年 2 月 5 日目次へ戻る 1 正弦波の微分 y=v m sin ωt を時間 t で微分します V m は正弦波の最大値です 合成関数の微分法を用い y=v m sin u u=ωt と置きますと dy dt dy du du dt d du V m sin u d dt

s とは何か 2011 年 2 月 5 日目次へ戻る 1 正弦波の微分 y=v m sin ωt を時間 t で微分します V m は正弦波の最大値です 合成関数の微分法を用い y=v m sin u u=ωt と置きますと dy dt dy du du dt d du V m sin u d dt とは何か 0 年 月 5 日目次へ戻る 正弦波の微分 y= in を時間 で微分します は正弦波の最大値です 合成関数の微分法を用い y= in u u= と置きますと y y in u in u (co u co になります in u の は定数なので 微分後も残ります 合成関数の微分法ですので 最後に u を に戻しています 0[ra] の co 値は [ra] の in 値と同じです その先の角

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) マクスウェルの応力テンソル (). ある領域に作用する力 2. 応力テンソル 3. 力の総和と応力テンソル 4. ローレンツ力 5. マクスウェルの方程式 6. 孤立系 注意. 本付録 : マクスウェルの応力テンソル(stress tesor) 2. 簡単のため 個々の電荷が真空中をバラバラに運動する孤立系を考えます 3. 背景は真空とします 真空中の誘電率と透磁率を使用します

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 点群基礎 (). 三回転対称 2. 表現行列. 基底変換 4. 具体例 5. 簡約化 6. 指標表 7. 直積 付録 (75 76) のアプローチ : 群論 (group thor) の基礎. アンモニア (NH) でお馴染みの点群 (point group) について検討する 2. ダイヤモンド窒素空孔 (nitrogn acanc cntr in diamond)

More information

スライド 1

スライド 1 光通信工学 1. 復習 2. スネルの法則 3. 屈折率 4. 振幅反射 ( 透過 ) 率 5. フレネルの式 n n 媒質 1:n 1 媒質 2:n 2 nθ n nθ > n θ < θ 1 1 2 2 1 2 1 2 θ 2 n > n 1 2 t 光通信工学 22-1 光波とは : 式で書いた方が分かりやすいかも! 軸 偏光 : 電場 E の振動方向偏波面 : 電場 E ベクトルと波数ベクトルからなる平面

More information

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2 第 4 週コンボリューションその, 正弦波による分解 教科書 p. 6~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問. 以下の図にならって, と の δ 関数を図示せよ. - - - δ () δ ( ) - - - 図 δ 関数の図示の例 δ ( ) δ ( ) δ ( ) δ ( ) δ ( ) - - - - - - - -

More information

Microsoft Word - 9章(分子物性).doc

Microsoft Word - 9章(分子物性).doc 1/1/6 9 章分子物性 1 節電気双極子モーメント (Electric Dipole Moment) 電子双極子モーメント とは 微小な距離 a だけ離れて点電荷 q が存在する状態 絶対値は aq で 負電荷 q から正電荷 q へ向かうベクトルである 例えば 水分子は下右図のような向きの電気双極子モーメントをもち その大きさは約 1.85D である このように元々から持っている双極子モーメントを

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考 3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x = f x= x t f c x f = [1] c f x= x f x= x 2 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考える まず 初期時刻 t=t に f =R f exp [ik x ] [3] のような波動を与えたとき どのように時間変化するか調べる

More information

三重大学工学部

三重大学工学部 反応理論化学 ( その 軌道相互作用 複数の原子が相互作用して分子が形成される複数の原子軌道 ( または混成軌道 が混合して分子軌道が形成される原子軌道 ( または混成軌道 が混合して分子軌道に変化すると軌道エネルギーも変化する. 原子軌道 原子軌道は3つの量子数 ( nlm,, の組合せにより指定される量子数の取り得る値の範囲 n の値が定まる l の範囲は n の値に依存して定まる m の範囲は

More information

木村の物理小ネタ 単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合

木村の物理小ネタ   単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合 単振動と単振動の力学的エネルギー. 弾性力と単振動 弾性力も単振動も力は F = -x の形で表されるが, x = の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合いの位置 である たとえば, おもりをつるしたばねについて, ばねの弾性力を考えるときは, ばねの自然長を x = とし, おもりの単振動で考える場合は, おもりに働く力がつり合った位置を

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

Q

Q 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 自由振動と強制振動 -1/6 テーマ H3: 自由振動と強制振動 振動の形態には, 自由振動と強制振動の 種類があります. 一般に, 外力が作用しなくても固有振動数で振動を継続する場合は自由振動であり, 外力が作用することによって強制的に振動が引き起こされる場合は強制振動になります. 摩擦抵抗の有無によって減衰系と非減衰系に区分されるため, 振動の分類は次のようになる.

More information

s ss s ss = ε = = s ss s (3) と表される s の要素における s s = κ = κ, =,, (4) jωε jω s は複素比誘電率に相当する物理量であり ここで PML 媒質定数を次のように定義する すなわち κξ をPML 媒質の等価比誘電率 ξ をPML 媒質の

s ss s ss = ε = = s ss s (3) と表される s の要素における s s = κ = κ, =,, (4) jωε jω s は複素比誘電率に相当する物理量であり ここで PML 媒質定数を次のように定義する すなわち κξ をPML 媒質の等価比誘電率 ξ をPML 媒質の FDTD 解析法 (Matlab 版 2 次元 PML) プログラム解説 v2.11 1. 概要 FDTD 解析における吸収境界である完全整合層 (Perfectl Matched Laer, PML) の定式化とプログラミングを2 次元 TE 波について解説する PMLは異方性の損失をもつ仮想的な物質であり 侵入して来る電磁波を逃さず吸収する 通常の物質と接する界面でインピーダンスが整合しており

More information

第9章

第9章 第 9 章光の量子化これまでは光を古典的電磁波として扱い 原子を量子力学システムとして与え 電磁波と原子に束縛された電子との相互作用ポテンシャルを演算子で表現した この表現の中で電磁波の電場はあくまでも古典的パラメータとして振舞う ここでは この電磁波も量子力学的システム ; 電場と磁場をエルミート演算子で与える として表現する その結果 電磁波のエネルギー密度や運動量密度なども演算子として表せれる

More information

s と Z(s) の関係 2019 年 3 月 22 日目次へ戻る s が虚軸を含む複素平面右半面の値の時 X(s) も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z(s) にしていま す リアクタンス回路の駆動点リアクタンス X(s)

s と Z(s) の関係 2019 年 3 月 22 日目次へ戻る s が虚軸を含む複素平面右半面の値の時 X(s) も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z(s) にしていま す リアクタンス回路の駆動点リアクタンス X(s) と Z の関係 9 年 3 月 日目次へ戻る が虚軸を含む複素平面右半面の値の時 X も虚軸を含む複素平面右半面の値でなけれ ばなりません その訳を探ります 本章では 受動回路をインピーダンス Z にしていま す リアクタンス回路の駆動点リアクタンス X も Z に含まれます Z に正弦波電流を入れた時最大値 抵抗 コイル コンデンサーで作られた受動回路の ラプラスの世界でのインピーダンスを Z とします

More information

Microsoft Word

Microsoft Word 第 9 回工学基礎ミニマム物理試験問題.. 日立 水戸 正解は各問の選択肢 (,, ) の中からつだけ選び, その番号をマークシートにマークせよ この際,HBまたはBの鉛筆またはシャープペンシルを使うこと ボールペンは不可 正解が数値の場合には, 選択肢の中から最も近い値を選ぶこと 正解が選択肢の中に無い場合には, 番号ゼロを選択せよ 学生番号, 氏名を指定された方法でマークシートの所定の欄に記入せよ

More information

( 全体 ) 年 1 月 8 日,2017/1/8 戸田昭彦 ( 参考 1G) 温度計の種類 1 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k B T を

( 全体 ) 年 1 月 8 日,2017/1/8 戸田昭彦 ( 参考 1G) 温度計の種類 1 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k B T を ( 全体 htt://home.hiroshima-u.ac.j/atoda/thermodnamics/ 9 年 月 8 日,7//8 戸田昭彦 ( 参考 G 温度計の種類 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k T を単位として決められている 9 年 月 日 ( 世界計量記念日 から, 熱力学温度 T/K の定義も熱エネルギー k T/J に基づく. 定積気体温度計

More information

スライド 1

スライド 1 光通信工学 1. スラブ導波路 ( 復習 ). モード ( 姿態 ) 3. 光ファイバ コア クラッド? 光パルス伝送 特許の流れ : 出願 拒絶理由通知 意見書 手続補正書 特許査定 ( 約 5 年 ) 光通信工学 5-1 参考 :7 異なる波数ベクトルを持つ平面波 : 電場 E 電場 E: スカラー表示電場 E 振動方向 :x 軸のみ ( 頭に入れておく ) r, Acos r E t t 1

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) コイルと磁場 () coil nd mgnetic field prt. 相互インダクタンス : 変圧器. 磁場のエネルギー : 変圧器 3. 直線近似 4. ローレンツ力とアンペールの力 5. 直線定常が作るベクトルポテンシャル 6. ポテンシャルエネルギー 注意. 電磁波を記述する マクスウェル方程式 の理解に必要を思われるトピックスに限定. 定常が作る磁場

More information

領域シンポ発表

領域シンポ発表 1 次元の減衰運動の中の強制振動 ) ( f d d d d d e f e ce ) ( si ) ( 1 ) ( cos ω =ω -γ とおくと 一般解は 外力 f()=f siω の場合 f d d d d si f ce f ce si ) cos( cos si ) cos( この一般解は 1 φ は外力と変位との間の位相差で a 時間が経つと 第 1 項は無視できる この場合の振幅を

More information

Microsoft PowerPoint - 卒業論文 pptx

Microsoft PowerPoint - 卒業論文 pptx 時間に依存するポテンシャルによる 量子状態の変化 龍谷大学理工学部数理情報学科 T966 二正寺章指導教員飯田晋司 目次 はじめに 次元のシュレーディンガー方程式 3 井戸型ポテンシャルの固有エネルギーと固有関数 4 4 中央に障壁のある井戸型ポテンシャルの固有エネルギーと固有関数 3 5 障壁が時間によって変化する場合 7 6 まとめ 5 一次元のシュレディンガー方程式量子力学の基本方程式 ψ (

More information

Microsoft Word - 1.2全反射.doc

Microsoft Word - 1.2全反射.doc . 全反射 φ 吸収があると透過光は減少する ( 吸収は考えない ) 全反射普通に三角関数を理解しているものには不思議な現象 Opia Fibr はこのメカニズムで伝える ブリュ - スター角 全反射 となる すなわち は実数として存在しない角度となる虚数 (or 複素数 ) となる 全反射という そこで r si を考えよう は存在しない角度なので この式から を消去して 実数である だけの表示にしよう

More information

人間科学部研究年報平成 24 年 (1) (2) (3) (4) 式 (1) は, クーロン (Coulomb) の法則とも呼ばれる.ρは電荷密度を表し,ε 0 は真空の誘電率と呼ばれる定数である. 式 (2) は, 磁荷が存在しないことを表す式である. 式 (3) はファラデー (Faraday)

人間科学部研究年報平成 24 年 (1) (2) (3) (4) 式 (1) は, クーロン (Coulomb) の法則とも呼ばれる.ρは電荷密度を表し,ε 0 は真空の誘電率と呼ばれる定数である. 式 (2) は, 磁荷が存在しないことを表す式である. 式 (3) はファラデー (Faraday) 複素振幅をもつ球面波の人間科学部研究年報 Maxwell 平成 24 方程式年 複素振幅をもつ球面波の Maxwell 方程式 Maxwell Equation of Spherical Wave with Complex Amplitude 戸上良弘 Yoshihiro TOGAMI Abstract 複素振幅をもつ球面波に関して, マクスウェル (Maxwell) 方程式との関係を考察した. 電気的な球面波としてのスカラーポテンシャルが与えられたとき,

More information

スライド 1

スライド 1 光通信工学 マクスウェルの方程式. 復習. マクスウェルの方程式 E 3. 誘電率 透磁率と光速 4. 波動インピーダンス D 5. 境界条件 ( 誘電体 ) H D t + i B t ρ B 磁場でお馴染みの H と B 注意 : 英語では H も B も magnetic field と呼ばれる 混同しやすい 本講義では 磁場 H 磁場 B と記す 磁場 H:magnetic H field

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

航空機の運動方程式

航空機の運動方程式 過渡応答 定常応答 線形時不変のシステムの入出力関係は伝達関数で表された. システムに対する基本的な 入力に対する過渡応答と定常応答の特性を理解する必要がある.. 伝達関数の応答. 一般的なシステムの応答システムの入力の変化に対する出力の変化の様相を応答 ( 時間応答, 動的応答 ) という. 過渡応答 システムで, 入力がある定常状態から別の定常状態に変化したとき, 出力が変化後の定常状態に達するまでの応答.

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

Microsoft Word - 5章摂動法.doc

Microsoft Word - 5章摂動法.doc 5 章摂動法 ( 次の Moller-Plesset (MP) 法のために ) // 水素原子など 電子系を除いては 原子系の Schrödiger 方程式を解析的に解くことはできない 分子系の Schrödiger 方程式の正確な数値解を求めることも困難である そこで Hartree-Fock(H-F) 法を導入した H-F 法は Schrödiger 方程式が与える全エネルギーの 99% を再現することができる優れた近似方法である

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) マクスウェルの応力テンソル () 1. 復習 : 孤立系. マクスウェルの応力テンソル 3. 電磁波 ( 光 ) の運動量密度 4. 運動量の保存則 5. 電磁波 ( 光 ) の運動量 : 進行波 6. 電磁波 ( 光 ) の運動量 : 定在波 7. 電磁波 ( 光 ) の運動量 : 鏡面反射 8. 鏡面反射と定在波 9. マクスウェルの応力テンソル :

More information

物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように 2つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右の2つ

物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように 2つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右の2つ 物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右のつの物質の間に電位差を設けて左から右に向かって電流を流すことを行った場合に接点を通って流れる電流を求めるためには

More information

Matrix and summation convention Kronecker delta δ ij 1 = 0 ( i = j) ( i j) permutation symbol e ijk = (even permutation) (odd permutation) (othe

Matrix and summation convention Kronecker delta δ ij 1 = 0 ( i = j) ( i j) permutation symbol e ijk = (even permutation) (odd permutation) (othe Matr ad summato covto Krockr dlta δ ( ) ( ) prmutato symbol k (v prmutato) (odd prmutato) (othrs) gvalu dtrmat dt 6 k rst r s kt opyrght s rsrvd. No part of ths documt may b rproducd for proft. 行列 行 正方行列

More information

Microsoft Word - H26mse-bese-exp_no1.docx

Microsoft Word - H26mse-bese-exp_no1.docx 実験 No 電気回路の応答 交流回路とインピーダンスの計測 平成 26 年 4 月 担当教員 : 三宅 T A : 許斐 (M2) 齋藤 (M) 目的 2 世紀の社会において 電気エネルギーの占める割合は増加の一途をたどっている このような電気エネルギーを制御して使いこなすには その基礎となる電気回路をまず理解する必要がある 本実験の目的は 電気回路の基礎特性について 実験 計測を通じて理解を深めることである

More information

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0 /7 平成 9 年 月 5 日 ( 土 午前 時 分量子力学とクライン ゴルドン方程式 ( 学部 年次秋学期向 量子力学とクライン ゴルドン方程式 素粒子の満たす場 (,t の運動方程式 : クライン ゴルドン方程式 : æ ö ç å è = 0 c + ( t =, 0 (. = 0 ì æ = = = ö æ ö æ ö ç ì =,,,,,,, ç 0 = ç Ñ 0 = ç Ñ 0 Ñ Ñ

More information

DVIOUT

DVIOUT 第 3 章 フーリエ変換 3.1 フーリエ積分とフーリエ変換 第 章では 周期を持つ関数のフーリエ級数について学びました この章では 最初に 周期を持つ関数のフーリエ級数を拡張し 周期を持たない ( 一般的な ) 関数のフーリエ級数を導きましょう 具体的には 関数 f(x) を区間 L x L で考え この L を限りなく大きくするというアプローチを取ります (L ) なお ここで扱う関数 f(x)

More information

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ 以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する

More information

τ-→K-π-π+ν τ崩壊における CP対称性の破れの探索

τ-→K-π-π+ν τ崩壊における CP対称性の破れの探索 τ - K - π - π + ν τ 崩壊における CP 対称性の破れの探索 奈良女子大学大学院人間文化研究科 物理科学専攻高エネルギー物理学研究室 近藤麻由 1 目次 はじめに - τ 粒子の概要 - τ - K - π - π + ν τ 崩壊における CP 対称性の破れ 実験装置 事象選別 τ - K - π - π + ν τ 崩壊の不変質量分布 CP 非対称度の解析 - モンテカルロシミュレーションによるテスト

More information

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63> 1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です

More information

物性物理学I_2.pptx

物性物理学I_2.pptx phonon U r U = nαi U ( r nαi + u nαi ) = U ( r nαi ) + () nαi,β j := nαi β j U r nαi r β j > U r nαi r u nαiuβ j + β j β j u β j n α i () nαi,β juβj 調和振動子近似の復習 極 小 値近傍で Tylor展開すると U ( x) = U ( x ) + (

More information

平面波

平面波 平面波 図.に示すように, 波源 ( 送信アンテナあるいは散乱点 ) から遠い位置で, 観測点 Pにおける波の状態を考えてみる. 遠いとは, 波長 λ に比べて距離 が十分大きいことを意味しており, 観測点 Pの近くでは, 等位相面が平面とみなせる状態にある. 平面波とは波の等位相面が平面になっている波のことである. 通信や計測を行うとき, 遠方における波の振舞いは平面波で近似できる. したがって平面波の性質を理解することが最も重要である.

More information

Microsoft PowerPoint _量子力学短大.pptx

Microsoft PowerPoint _量子力学短大.pptx . エネルギーギャップとrllouゾーン ブリルアン領域,t_8.. 周期ポテンシャル中の電子とエネルギーギャップ 簡単のため 次元に間隔 で原子が並んでいる結晶を考える 右方向に進行している電子の波は 間隔 で規則正しく並んでいる原子が作る格子によって散乱され 左向きに進行する波となる 波長 λ が の時 r の反射条件 式を満たし 両者の波が互いに強め合い 定在波を作る つまり 式 式を満たす波は

More information

通信理論

通信理論 情報通信 振幅変調 (1) 情報信号を搬送波に載せて送信する方式情報信号 : 変調信号 変調 信号に応じて搬送波のパラメータの一つを変化させる操作 変調信号 + 搬送波 被変調波変調 復調 : 元の情報信号を抽出 情報を表す変調信号搬送波変調 ( 被 ) 変調波復調 変調の種類 振幅変調 AM(Amplitude Modulation) 周波数変調 FM (Frequency Modulation)

More information

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし 交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし 積分定数を 0 とすること 1 f(t) = sin t 2 f(t) = A sin t 3 f(t)

More information

Taro-F25理論 印刷原稿

Taro-F25理論 印刷原稿 第 種理論 A 問題 ( 配点は 問題当たり小問各 点, 計 0 点 ) 問 次の文章は, 真空中の静電界に関する諸法則の微分形に関する記述である 文中の に当てはまるものを解答群の中から選びなさい 図のように, 直交座標系において電界の z 軸成分が零となるような電界について, y 平面の二次元で電位や電界を考える ここで,4 点 (h,0),(0,h), (- h,0),(0,-h) の電位がそれぞれ

More information

Microsoft PowerPoint - DigitalMedia2_3b.pptx

Microsoft PowerPoint - DigitalMedia2_3b.pptx Contents デジタルメディア処理 2 の概要 フーリエ級数展開と 離散とその性質 周波数フィルタリング 担当 : 井尻敬 とは ( ) FourierSound.py とは ( ) FourierSound.py 横軸が時間の関数を 横軸が周波数の関数に変換する 法 声周波数 周波数 ( 係数番号 ) 後の関数は元信号に含まれる正弦波の量を す 中央に近いほど低周波, 外ほどが 周波 中央 (

More information

Microsoft PowerPoint EM2_15.ppt

Microsoft PowerPoint EM2_15.ppt ( 第 5 回 ) 鹿間信介摂南大学理工学部電気電子工学科 後半部 (4~5 章 ) のまとめ 4. 導体 4.3 誘電体 5. 磁性体 5. 電気抵抗 演習 導体表面の電界強度 () 外部電界があっても導体内部の電界は ( ゼロ ) になる () 導体の電位は一定 () 導体表面は等電位面 (3) 導体表面の電界は導体に垂直 導体表面と平行な成分があると, 導体表面の電子が移動 導体表面の電界は不連続

More information

2018/6/12 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位 1. ショックレー状態 ( 準位 ) 2. タム状態 ( 準位 ) 3. 鏡像状態 ( 準位 ) 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテン

2018/6/12 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位 1. ショックレー状態 ( 準位 ) 2. タム状態 ( 準位 ) 3. 鏡像状態 ( 準位 ) 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテン 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位. ショックレー状態 ( 準位. タム状態 ( 準位 3. 鏡像状態 ( 準位 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテンシャル e F z ( z z e V ( z ( Fz dz 4z e V ( z 4z ( z > ( z < のときの電子の運動を考える

More information

Microsoft PowerPoint - ip02_01.ppt [互換モード]

Microsoft PowerPoint - ip02_01.ppt [互換モード] 空間周波数 周波数領域での処理 空間周波数 (spatial frquncy) とは 単位長さ当たりの正弦波状の濃淡変化の繰り返し回数を表したもの 正弦波 : y sin( t) 周期 : 周波数 : T f / T 角周波数 : f 画像処理 空間周波数 周波数領域での処理 波形が違うと 周波数も違う 画像処理 空間周波数 周波数領域での処理 画像処理 3 周波数領域での処理 周波数は一つしかない?-

More information

<4D F736F F F696E74202D F8088CA8CB48E7182C6838C815B B8CF582C682CC918A8CDD8DEC97702E707074>

<4D F736F F F696E74202D F8088CA8CB48E7182C6838C815B B8CF582C682CC918A8CDD8DEC97702E707074> 準位原子とレーザー光との相互作用 年夏学期原子物理学 講義スライドからの抜粋 年 5 月 9 日ランチミーティング担当 : 鳥井 J.J. サクライ 現代の量子力学 下 p448 時間に依存する 準位問題 9~ 件 レーザー分光学の発展に対してブレーンバーゲン ショーロウ98 入れ忘れ? J.J. サクライ氏の死後 98 年以降 原子時計に対してラムゼー989 イオントラップに対してデーメルト ポール989

More information

Microsoft PowerPoint - siryo7

Microsoft PowerPoint - siryo7 . 化学反応と溶液 - 遷移状態理論と溶液論 -.. 遷移状態理論 と溶液論 7 年 5 月 5 日 衝突論と遷移状態理論の比較 + 生成物 原子どうしの反応 活性錯体 ( 遷移状態 ) は 3つの並進 つの回転の自由度をもつ (1つの振動モードは分解に相当 ) 3/ [ ( m m) T] 8 IT q q π + π tansqot 3 h h との並進分配関数 [ πmt] 3/ [ ] 3/

More information

2. コンデンサー 極板面積 S m 2, 極板間隔 d m で, 極板間の誘電率が ε F/m の平行板コンデンサー 容量 C F は C = ( )(23) 容量 C のコンデンサーの極板間に電圧をかけたとき 蓄えられる電荷 Q C Q = ( )(24) 蓄えられる静電エネルギー U J U

2. コンデンサー 極板面積 S m 2, 極板間隔 d m で, 極板間の誘電率が ε F/m の平行板コンデンサー 容量 C F は C = ( )(23) 容量 C のコンデンサーの極板間に電圧をかけたとき 蓄えられる電荷 Q C Q = ( )(24) 蓄えられる静電エネルギー U J U 折戸の物理 簡単復習プリント 電磁気 1 基本事項の簡単な復習電磁気 1. 電場 クーロンの法則 電気量 q1,q2 C の電荷が距離 r m で置かれているとき働く 静電気力 F N は, クーロンの法則の比例定数を k N m 2 /s 2 として 電場 F = ( )(1) 力の向きは,q1,q2 が, 同符号の時 ( )(2) 異符号の時 ( )(3) 大きさ E V/m の電場に, 電気量

More information

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 となるように半固定抵抗器を調整する ( ゼロ点調整のため ) 図 1 非反転増幅器 2010 年度版物理工学実験法

More information

三重大学工学部

三重大学工学部 反応理論化学 ( その5 6 ポテンシャルエネルギー面と反応経路最も簡単な反応 X + Y X + Y 反応物 ( 生成物 (P X 結合が切断反応系全体のエネルギーは X と Y の Y 結合が形成原子間距離によって変化 r(x と r( Y に対してエネルギーを等高線で表す赤矢印 P:X 結合の切断と Y 結合の形成が同時進行青矢印 P: まず X 結合が切断し次いで Y 結合が形成 谷 X +

More information

7 渦度方程式 総観規模あるいは全球規模の大気の運動を考える このような大きな空間スケールでの大気の運動においては 鉛直方向の運動よりも水平方向の運動のほうがずっと大きい しかも 水平方向の運動の中でも 収束 発散成分は相対的に小さく 低気圧や高気圧などで見られるような渦 つまり回転成分のほうが卓越

7 渦度方程式 総観規模あるいは全球規模の大気の運動を考える このような大きな空間スケールでの大気の運動においては 鉛直方向の運動よりも水平方向の運動のほうがずっと大きい しかも 水平方向の運動の中でも 収束 発散成分は相対的に小さく 低気圧や高気圧などで見られるような渦 つまり回転成分のほうが卓越 7 渦度方程式 総観規模あるいは全球規模の大気の運動を考える このような大きな空間スケールでの大気の運動においては 鉛直方向の運動よりも水平方向の運動のほうがずっと大きい しかも 水平方向の運動の中でも 収束 発散成分は相対的に小さく 低気圧や高気圧などで見られるような渦 つまり回転成分のほうが卓越している そこで 回転成分に着目して大気の運動を論じる 7.1 渦度 大気の回転成分を定量化する方法を考えてみる

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

物性基礎

物性基礎 水素様原子 水素原子 水素様原子 エネルギー固有値 波動関数 主量子数 角運動量 方位量子数 磁気量子数 原子核 + 電子 個 F p F = V = 水素様原子 古典力学 水素様原子 量子力学 角運動量 L p F p L 運動方程式 d dt p = d d d p p = p + dt dt dt = p p = d dt L = 角運動量の保存則 ポテンシャルエネルギー V = 4πε =

More information

Microsoft PowerPoint pptx

Microsoft PowerPoint pptx 4.2 小信号パラメータ 1 電圧利得をどのように求めるか 電圧ー電流変換 入力信号の変化 dv BE I I e 1 v be の振幅から i b を求めるのは難しい? 電流増幅 電流ー電圧変換 di B di C h FE 電流と電圧の関係が指数関数になっているのが問題 (-RC), ただし RL がない場合 dv CE 出力信号の変化 2 pn 接合の非線形性への対処 I B 直流バイアスに対する抵抗

More information

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63>

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63> 1/15 平成 3 年 3 月 4 日午後 6 時 49 分 5 ベクトルの 重積分と面積分 5 重積分と面積分 Ⅰ. 重積分 と で 回積分することを 重積分 といいます この 重積分は何を意味しているのでしょう? 通常の積分 (1 重積分 ) では C d 図 1a 1 f d (5.1) 1 f d f ( ) は 図形的には図 1a のように面積を表しています つまり 1 f ( ) を高さとしてプロットすると図

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

Microsoft Word - 素粒子物理学I.doc

Microsoft Word - 素粒子物理学I.doc 6. 自発的対称性の破れとヒッグス機構 : 素粒子の標準模型 Dc 方程式.5 を導くラグランジアンは ϕ ϕ mϕϕ 6. である [H] Eu-nn 方程式 を使って 6. のラグランジア ンから Dc 方程式が導かれることを示せ 6. ゲージ対称性 6.. U 対称性 :QED ディラック粒子の複素場 ψに対する位相変換 ϕ ϕ 6. に対して ラグランジアンが不変であることを要請する これは簡単に示せる

More information

19年度一次基礎科目計算問題略解

19年度一次基礎科目計算問題略解 9 年度機械科目 ( 計算問題主体 ) 略解 基礎科目の解析の延長としてわかる範囲でトライしてみたものです Coprigh (c) 7 宮田明則技術士事務所 Coprigh (c) 7 宮田明則技術士事務所 Ⅳ- よってから は許容荷重として は直径をロ - プの断面積 Ⅳ- cr E E E I, から Ⅳ- Ⅳ- : q q q q q q q q q で絶対値が最大 で絶対値が最大モーメントはいずれも中央で最大となる

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

diode_revise

diode_revise 2.3 pn 接合の整流作用 c 大豆生田利章 2015 1 2.3 pn 接合の整流作用 2.2 節では外部から電圧を加えないときの pn 接合について述べた. ここでは, 外部か らバイアス電圧を加えるとどのようにして電流が流れるかを電子の移動を中心に説明す る. 2.2 節では熱エネルギーの存在を考慮していなかったが, 実際には半導体のキャリアは 周囲から熱エネルギーを受け取る その結果 半導体のキャリヤのエネルギーは一定でな

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 東北大学サイクロトロン ラジオアイソトープセンター測定器研究部内山愛子 2 電子の永久電気双極子能率 EDM : Permanent Electric Dipole Moment 電子のスピン方向に沿って生じる電気双極子能率 標準模型 (SM): クォークを介した高次の効果で電子 EDM ( d e ) が発現 d e SM < 10 38 ecm M. Pospelov and A. Ritz,

More information

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074>

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074> 宇宙工学基礎 ( 軌道の基礎 松永三郎 機械宇宙学科 機械宇宙システム専攻 ニュートンの法則 第 法則 力が作用作用しないしない限り 質点質点は静止静止ないしはないしは一定速度一定速度で運動するする ( 慣性の法則 慣性空間 慣性座標系慣性座標系の定義第 法則 慣性座標系におけるにおける質点質点の運動 p F ( pɺ t ( F: 全作用力, pmv: 並進運動量 ( 質量と速度速度の積 慣性系を規準規準としてとして時間微分時間微分を行うことにことに注意第

More information

Microsoft Word - EM_EHD_2010.doc

Microsoft Word - EM_EHD_2010.doc H のための電磁気学 機能材料工学科阿部洋 . 電磁気学電磁気学電磁気学電磁気学の基礎基礎基礎基礎 - マクスウェルマクスウェルマクスウェルマクスウェルの応力応力応力応力静電場の条件は e div ρ ( ) ot ( ) である 体積 V で電荷密度 ρ e に働く力はクーロン力から ρ dv F e ( 3) と表せる ( 3) 式に ( ) を代入すると ( ) dv div F ( 4) となる

More information

Microsoft PowerPoint - 第2回半導体工学

Microsoft PowerPoint - 第2回半導体工学 17 年 1 月 16 日 月 1 限 8:5~1:15 IB15 第 回半導体工学 * バンド構造と遷移確率 天野浩 項目 1 章量子論入門 何故 Si は光らず GN は良く光るのか? *MOSFET ゲート SiO / チャネル Si 界面の量子輸送過程 MOSFET には どのようなゲート材料が必要なのか? http://www.iue.tuwien.c.t/ph/vsicek/noe3.html

More information

電気電子工学CH-2_1017_v2済

電気電子工学CH-2_1017_v2済 i-perc 電気通信 学 基礎電 学 CH-2 曽我部 東 電気通信 学 i- パワードエネルギーシステム研究センター (i-perc) 先週の OUTLINE: 2 体輻射 量 論の誕 光量 論 量 論 電 の古典 学特性 原 構造における電 の早期量 論 電 波とは何? 量 論 今週の概要 : 3 電 波 不確定性原理 量 論 円運動の方程式 量 学 複素数表現の導入 シュレーディンガー方程式の導き

More information

Microsoft Word - MHD-wave.doc

Microsoft Word - MHD-wave.doc 電磁流体力学波 基礎方程式と線形化 谷一郎著 流れ学 を参考にして以下説明する. 流体の運動と電磁場の作用が相互に干渉する 結果, 磁場が存在する場合の導電性気体中の小さい撹乱は, 普通の音波や電磁波とは異なる波の 形で伝播する. 特に伝播速度は, 伝播の方向が磁場の方向となす角に関係する. このような伝播 の法則を明らかにすることは, 導電性気体中の物体の運動を正しく理解するためにも重要なもの である.

More information

破壊の予測

破壊の予測 本日の講義内容 前提 : 微分積分 線形代数が何をしているかはうろ覚え 材料力学は勉強したけど ちょっと 弾性および塑性学は勉強したことが無い ー > ですので 解らないときは質問してください モールの応力円を理解するとともに 応力を 3 次元的に考える FM( 有限要素法 の概略 内部では何を計算しているのか? 3 物が壊れる条件を考える 特に 変形 ( 塑性変形 が発生する条件としてのミーゼス応力とはどのような応力か?

More information

ニュートン重力理論.pptx

ニュートン重力理論.pptx 3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

<4D F736F F D2091E631348FCD B838A83478B C982E682E982D082B882DD946782CC89F090CD2E646F63>

<4D F736F F D2091E631348FCD B838A83478B C982E682E982D082B882DD946782CC89F090CD2E646F63> NAOSI: Ngski Uivrsiy's Ac il 電気回路講義ノート Auhor(s 辻, 峰男 Ciio 電気回路講義ノート ; 4 Issu D 4-4 U hp://hdl.hdl./69/3466 igh his docum is dowlodd hp://osi.lb.gski-u.c.jp 第 4 章フーリエ級数によるひずみ波の解析 フーリエ級数 (Fourir sris 周期関数

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 電子スピン共鳴 :Electron pin Reonance (ER) 1. 歳差運動 (preceion). スピン角運動量 : 電子 3. ゼーマン効果 : スピン 4. 平行 反平行状態 5. ラーモア歳差運動 6. 電子スピン共鳴 7. 緩和過程 注意 1. 本付録 : 電子スピン共鳴 について 原理 概略を説明. 但し 電子スピン共鳴装置 の特徴や使用法の説明はしません

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

平成20年度 神戸大学 大学院理学研究科 化学専攻 入学試験問題

平成20年度 神戸大学 大学院理学研究科 化学専攻 入学試験問題 化学 Ⅰ- 表紙 平成 31 年度神戸大学大学院理学研究科化学専攻入学試験 化学 Ⅰ 試験時間 10:30-11:30(60 分 ) 表紙を除いて 7 ページあります 問題 [Ⅰ]~ 問題 [Ⅵ] の中から 4 題を選択して 解答しなさい 各ページ下端にある 選択する 選択しない のうち 該当する方を丸で囲みなさい 各ページに ( 用紙上端 ) と ( 用紙下端 ) を記入しなさい を誤って記入すると採点の対象とならないことがあります

More information

Microsoft PowerPoint - 基礎電気理論 07回目 11月30日

Microsoft PowerPoint - 基礎電気理論 07回目 11月30日 基礎電気理論 7 回目 月 30 日 ( 月 ) 時限 次回授業 時間 : 月 30 日 ( 月 )( 本日 )4 時限 場所 : B-3 L,, インピーダンス教科書 58 ページから 64 ページ http://ir.cs.yamanashi.ac.jp/~ysuzuki/kisodenki/ 授業評価アンケート ( 中間期評価 ) NS の授業のコミュニティに以下の項目について記入してください

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 =

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 = / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (.8 より ˆ ( ( ( q -, ( ( c ( H c c ë é ù û - Ü + c ( ( - に限る (. である 一方 フェルミ型は 成分をもち その成分を,,,,

More information

ハートレー近似(Hartree aproximation)

ハートレー近似(Hartree aproximation) ハートリー近似 ( 量子多体系の平均場近似 1) 0. ハミルトニアンの期待値の変分がシュレディンガー方程式と等価であること 1. 独立粒子近似という考え方. 電子系におけるハートリー近似 3.3 電子系におけるハートリー近似 Mde by R. Okmoto (Kyushu Institute of Technology) filenme=rtree080609.ppt (0) ハミルトニアンの期待値の変分と

More information

Microsoft Word - 中村工大連携教材(最終 ).doc

Microsoft Word - 中村工大連携教材(最終 ).doc 音速について考えてみよう! 金沢工業大学 中村晃 ねらい 私たちの身の回りにはいろいろな種類の波が存在する. 体感できる波もあれば, できない波もある. その中で音は体感できる最も身近な波である. 遠くで雷が光ってから雷鳴が届くまで数秒間時間がかかることにより, 音の方が光より伝わるのに時間がかかることも経験していると思う. 高校の物理の授業で音の伝わる速さ ( 音速 ) は約 m/s で, 詳しく述べると

More information

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為 Techniques for Nuclear and Particle Physics Experiments.. Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r e = (e mc ) で表される為 質量に大きく依存する Ex) 電子の次に質量の小さいミューオンの制動放射によるエネルギー損失 m e 0.5 MeV, m

More information

<4D F736F F D FCD B90DB93AE96402E646F63>

<4D F736F F D FCD B90DB93AE96402E646F63> 7 章摂動法講義のメモ 式が複雑なので 黒板を何度も修正したし 間違ったことも書いたので メモを置きます 摂動論の式の導出無摂動系 先ず 厳密に解けている Schrödiger 方程式を考える,,,3,... 3,,,3,... は状態を区別する整数であり 状態 はエネルギー順に並んでいる 即ち は基底状態 は励起状態である { m } は相互に規格直交条件が成立する k m k mdx km k

More information

Microsoft PowerPoint - 第06章振幅変調.pptx

Microsoft PowerPoint - 第06章振幅変調.pptx 通信システムのモデル コミュニケーション工学 A 第 6 章アナログ変調方式 : 振幅変調 変調の種類振幅変調 () 検波出力の信号対雑音電力比 (S/N) 送信機 送信メッセージ ( 例えば音声 ) をアナログまたはディジタル電気信号に変換. 変調 : 通信路で伝送するのに適した周波数帯の信号波形へ変換. 受信機フィルタで邪魔な雑音を除去し, 処理しやすい電圧まで増幅. 復調 : もとの周波数帯の電気信号波形に変換し,

More information

磁気光学の基礎と最近の展開(3)

磁気光学の基礎と最近の展開(3) 千葉大学理学部物理学科特別講義 7.6.4-6.5 磁気光学の基礎と最近の展開 3 佐藤勝昭 東京農工大学特任教授 3. 磁気光学効果の電子論 3. 磁気光学効果の古典電子論 3. 磁気光学効果の量子論 3. 磁気光学効果の古典電子論 電子を古典的な粒子として扱い 磁場中の古典的運動方程式を解いて電子の変位を求め 分極や誘電率を計算します 次回は量子論にもとづく扱いをお話しします 光と磁気第 4 章

More information

スライド 1

スライド 1 非線形数理秋の学校 パターン形成の数理とその周辺 - 反応拡散方程式理論による時 空間パターンの解析を中心に - 2007 年 9 月 25 日 -27 日 モデル方程式を通してみるパターン解析ー進行波からヘリカル波の分岐を例としてー 池田勉 ( 龍谷大学理工学部 ) 講義概要, 講義資料, 講義中に使用する C 言語プログラムと初期値データ, ヘリカル波のアニメーションをウェブで公開しています :

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information