スライド 1

Size: px
Start display at page:

Download "スライド 1"

Transcription

1 光通信工学 マクスウェルの方程式. 復習. マクスウェルの方程式 E 3. 誘電率 透磁率と光速 4. 波動インピーダンス D 5. 境界条件 ( 誘電体 ) H D t + i B t ρ B 磁場でお馴染みの H と B 注意 : 英語では H も B も magnetic field と呼ばれる 混同しやすい 本講義では 磁場 H 磁場 B と記す 磁場 H:magnetic H field 磁場の強さ :magnetic field intensity 磁場 B:magnetic B field 磁束密度 :magnetic flu density T: テスラ Wb: ウェーバー T 単位 Am Wb m 光通信工学 5-

2 まとめ : ご苦労様でした! 電場 E と電束密度 D D εe 磁場 H と磁場 B Β µ H ファラデーの電磁誘導の法則物理現象 : 磁場 H の時間変化により非零渦巻電場 E が誘起される 真空中でも可 アンペールの法則 ( 変位電流追加 ) 物理現象 ( 右辺第一項 ): 電場 E の時間変化により非零渦巻磁場 H が誘起される 真空中でも可 右辺第二項 : 電流 ( 電子 ) が流れると渦巻磁場 H が発生 真空中では電子が存在しないので不可 電場 E に関するガウスの法則物理現象 : 実在する電荷と電場 E の関係式で正電荷では電場 E が湧き出す 負電荷の場合 逆 + Er dl ds t Br n 内 Hr dl (, ) DrtndS t 内 内 V表面 i r nds (, ) ρ (, ) Drt nds rt dv V体積 磁場 H に関するガウスの法則物理現象 : モノポール (S 極のみの磁荷や N 極のみの磁荷 ) は存在しない V 表面 ( t) Br, nds 注意 : ファラデーやアンペールやガウスの法則は発見当初 光 ( 振動電場 E と振動磁場 H) と無関係であった 時間変化は光の振動に対して無視できるくらい遅い 我々も 電磁気学 で彼らの法則について勉強したと思うが 光とは無関係な現象として扱った 光との関係については次回 光通信工学 5-

3 ファラデーの電磁誘導 : 渦巻電場 E 時間変化する磁束 Φ 時間変化する磁束 Φ で非零の渦巻電場 E が発生線積分の向き : 右ねじの方向 ループ 渦巻電場 E Er (, ) t d l Φ t コイル 注意 ループ電流 ( 電子 ) が流れることよりも 渦巻電場 E が発生することに注目 電場 E は ある場所 ( 空間 ) に存在 空間さえあれば 真空中 でも可 渦巻電場 E にループ状の電線を置くと 電子が移動 : 電流 垂直に貫く磁束 Φ 定義 : 磁場 B( 磁束密度 B) 面積分 : 閉ループ の内側 法線ベクトル 磁場 B Φ 内 Br nds ループ n B ファラデーの電磁誘導の法則電場 E と磁場 B で表記 枠内 : 垂直に貫く磁束 Φ 線積分の向き Er dl ds t Br n 内 磁束 :Magnetic flu 単位 :W( ウェーバ ) 磁束密度 B:Magnetic flu density 単位 : T( テスラ ) Wb/m N/A/m 光通信工学 5-3

4 ファラデーの電磁誘導の法則 : 逆過程 ( 磁電誘導?) 電磁誘導の法則 : 電場 E と磁場 B で表記 面積分 : 閉ループ の内側 法線ベクトル 磁場 B Er dl ds t Br n 内 B 磁場 B µ H 透磁率 μ 磁場 H 物理現象 : 磁場 H の時間変化により非零渦巻電場 E が誘起される ループ 垂直に貫く成分のみ n B 線積分の向き 興味ある対応関係 D B, E H, ε µ 物理現象 : 電場 E の時間変化により非零渦巻磁場 H が誘起される? 注意 : 磁電誘導という呼び方で統一されている訳ではない 磁場 H と電束密度 D で表記 電束密度 D 負号なし : 説明省略 Hr dl (, ) DrtndS t 内 D εe 誘電率 ε 電場 E 垂直に貫く成分のみ 面積分 : 閉ループ の内側 ループ 法線ベクトル n 電束密度 D D 光通信工学 5-4 線積分の向き

5 アンペールの法則と比較 : 変位電流 中心 : 磁場 H 大 H I π r 右辺 : 実在する電子による電流 電流密度 i H r d l I( t) ( ) (, ) 内 I t i r t nds 電流密度 : アンペールの法則 (, ) (, ) 内 H r t dl i r t nds 直流電流 磁電誘導 : ファラデーの電磁誘導の逆過程物理現象 : 電場 E の時間変化により非零渦巻磁場 H が誘起される 電束密度 D Hr dl (, ) DrtndS t 内 面積分 : 閉ループ の内側 法線ベクトル ループ D εe 誘電率 ε 電場 E n D 電束密度 D 左辺 : アンペールの法則と同じ 右辺 : 電流と同じ単位電場 E の時間変化による仮想的な電流とみなす変位電流 Displacement current 単位 :A 光通信工学 5-5 線積分の向き

6 アンペールの法則の修正 磁電誘導 : ファラデーの電磁誘導の法則の逆過程物理現象 : 電場 E の時間変化により非零渦巻磁場 H が誘起される 面積分 : 閉ループ の内側 磁場 H と電束密度 D で表記すると Hr dl (, ) DrtndS t 内 ループ 法線ベクトル n 電束密度 D D D εe 変位電流 : 電場 E が存在できる空間 ( 場 ) さえあればよい 電子不要の仮想的な電流 ( 真空中でも変位電流は可 ) 線積分の向き アンペールの法則物理現象 : 電流 ( 電子 ) が流れると渦巻磁場 H が発生実在する電子による電流 : 真空中では電流零 面積分 : 閉ループ の内側 法線ベクトル 電流密度 i (, ) (, ) 内 H r t dl i r t nds ループ n i 実在する電子による電流 : 真空中では電流零 マクスウェルの貢献 : アンペールの法則を修正 ( 変位電流を追加 : 同時存在を許す ):Ampère-Mawell law とも言う H( r, t ) d l D( r, ) + (, ) t t n ds i r t n ds 内内 光通信工学 5-6

7 比較 : 磁場 H と電場 E に対するガウスの法則 磁場 H に関するガウスの法則モノポール無 ( 右辺は零 ) 電場 E に関するガウスの法則真電荷があると電場 E が湧き出す V 表面 ( t) Br, nds V 表面 Dr nds qv 真電荷が V の内部にない 真電荷が V の内部にある 磁場 H と磁場 B ガラスなど : 非磁性体 電場 E と電束密度 D glass Β µ H Β µ H D εe 誘電率 : 媒質依存 棒磁石 : 静磁場 真空中 or ガラス : 湧き出す 真空中 E qv 4πε r r ガラス中 S 極 N 極 真電荷 q v E qv 4πε r 表面積分が零の物理的意味磁場 H( 磁場 B) は出て行った分だけ戻る ある空間を 出るだけ とか 入るだけ は不可 光通信工学 5-7

8 透磁率 :Magnetic permeability 注意 : 以後 磁場 B(Magnetic field) と表記 真空中の透磁率 : 本講義ではガラス ( 非磁性体 ) しか扱わない B µ H 透磁率 : 単位あわせ ( 真空中 ) 参考文献 : 和田純夫 電磁気学のききどころ p5 岩波書店 磁束密度 B:Magnetic flu density 単位 : T( テスラ ) Wb/m N/A/m 磁場 H:Magnetic field intensity 単位 :A/m 透磁率 μ :Magnetic permeability 単位 : H( ヘンリー )/m N/A 基準 : 真空中の透磁率 MKSA 単位系 µ 4π 常磁性体 : 鉄など棒磁石につく 3 µ µ + B µ H 磁性体の透磁率 誘電率 :Permittivity 真空中の誘電率 D ε E 誘電率. 単位あわせ ( 真空中 ). 分極効果 ( ガラスなど ) ε ε D εe 基準 : 真空中の誘電率 MKSA 単位系参照 : 次頁 c εµ 約束 : 下ツキ 真空中 電束密度 D: Electric displacement field 単位 : ( クーロン )/m 電場 E:Electric field 単位 :V/m 誘電率 ε :Permittivity 単位 : F( ファラッド )/m /V/m D B, E H, ε µ 興味ある対応関係実は E ー B 対応が自然と言われています 参考文献 : 広江克彦 趣味で物理学 p.4 理工図書 光通信工学 5-8

9 参考資料 真空中の誘電率 透磁率 : 単位系に依存 単位系 GS 電磁 GS 静電 ガウス µ, ε c µ c, ε µ, ε 真空中の光速 MKSA 7 µ 4π NA, ε c µ A S N m MKSA 単位系 : 国際単位系 (The International System of Units) 真空中の透磁率 : 7 N 国際単位 (SI 単位 ) では 真空中にm 離して置いた 本の平行電流に働く力がm 当たりのとき その電流をAとして電流の単位を定義している ビオ サバールの法則 (Biot-Savart law) 参照 7 真空中の透磁率 µ 4π NA であるのは アンペア (A) の定義のためである f µ II 'πr 光通信工学 5-9

10 発見当初 : 電気回路の法則マクスウェル : 光の振動電場 E と振動磁場 H を記述するための基本法則 電場 E と電束密度 D ファラデーの電磁誘導の法則物理現象 : 磁場 H の時間変化により非零渦巻電場 E が誘起される 真空中でも可 D εe 磁場 H と磁場 B Β µ H Er dl ds t Br n 内 アンペールの法則 ( 変位電流追加 ) 物理現象 ( 右辺第一項 ): 電場 E の時間変化により非零渦巻磁場 H が誘起される 真空中でも可 右辺第二項 : 電流 ( 電子 ) が流れると渦巻磁場 H が発生 真空中では電子が存在しないので不可 電場 E に関するガウスの法則物理現象 : 実在する電荷と電場 E の関係式で正電荷では電場 E が湧き出す 負電荷の場合 逆 + Hr dl (, ) DrtndS t 内 内 V表面 i r nds (, ) ρ (, ) Drt nds rt dv V体積 磁場 H に関するガウスの法則物理現象 : モノポール (S 極のみの磁荷や N 極のみの磁荷 ) は存在しない V 表面 ( t) Br, nds 注意 : 光の電場 E と磁場 H は振動しながら進む波 光波 波の特徴 : 近接作用 4 個一括で マクスウェルの方程式と呼ぶ興味 : 波動方程式 が導出できるか否か 光通信工学 5-

11 光を記述する波動方程式とは 基本 : 二階の変微分方程式 ( 位置 時間 ) 振動電場 E と振動磁場 H 平面波偏光 : 電場 E の振動方向 ( 例 : 直線偏光 ) 波の特徴 : 近接作用 電場 E と磁場 H の同期 E E z vp t H H y y z vp t 波動方程式と位相速度の関係 電場 E と磁場 H 波動方程式を満足する解 : 光 vp ω k 位相速度 : 光速 y (, ) E cos( ω + φ) (, ) ± ( E η) cos( ω + φ) E z t t kz H z t t kz 正 : 前進波 負 : 後退波 E E z E, + ± v z vp t z vp t z vp t t p 波動方程式の一般化 : 電場 E 磁場 H ベクトル ( t) Er, Hr vp t vp t ナブラ,, + + ( t) Er, Η r, y z y z 波動方程式とは? 振動電場 E と振動磁場 H を記述 波動方程式を満足する解は 光波 を記述 波動方程式はどこからやってきたのか? 本講義で説明 光通信工学 5-

12 計算例 ( 電場 E のみ ): 前進波と後退波 ( ) ( ) E ( ω φ) ( ) ( ) Er, t E zt,,, E zt, cos t kz+ 波動方程式の一般化 : 電場 E のみ ( t) Er E ( yzt,,, ) vp t vp t,, + + ( ) ( ) ( ) ( ) ( yzt) Er, E,,, 電場 E ベクトル y z y z ( y z ) ( ( ) ) Er, t E r, t, E r, t, E r, t E z, t,, (, ) ( r, ) E ( r, t) ややこしいかな!: 電場 E ベクトルは 成分のみ但し 位置 z と時間 t の関数 ( ) ( ) Ert E t y Ez r, t E zt,,,,, t t t t t ナブラの計算 E y z z E( zt, ) + + E ( zt, ) (, ) (, ) E zt E zt E E z vp t z vp t ( zt, ) 光通信工学 5-

13 前進波 ( 一例 ): 平面波の場合 電場 E 平面波 : 定数振幅 ( 波の拡がり無限大 非現実的だけど ) 電場 E 磁場 H( 右ねじ ) 前進波 : 直線偏光 y cos( ω φ) ( E η) cos( ωt kz φ) E E t kz + H + 赤 : 正実数 k > 電場 E を 方向 磁場 H を y 方向 進行方向 磁場 H y 前進波 z かなり荒っぽい説明 波動方程式 ( 光波伝搬の様子 ) を導出しましょう ファラデーの電磁誘導の法則物理現象 : 磁場 H の時間変化により非零渦巻電場 E が誘起される 真空中でも可 平面波の場合 渦巻電場 E ではないが磁場 H の時間変化により時間変化する電場 E が誘起されている アンペールの法則 ( 変位電流追加 ) 物理現象 ( 右辺第一項 ): 電場 E の時間変化により非零渦巻磁場 H が誘起される 真空中でも可 右辺第二項 : 電流 ( 電子 ) が流れると渦巻磁場 H が発生 真空中では電子が存在しないので不可 平面波の場合 渦巻磁場 H ではないが電場 E の時間変化により時間変化する磁場 H が誘起されている 電場 E 磁場 H に関するガウスの法則物理現象 : 実在する電荷と電場 E の関係式で正電荷では電場 E が湧き出す 磁場 H ではモノポール (S 極のみの磁荷や N 極のみの磁荷 ) は存在しないので湧き出しはない 重要なのは 電荷 ( 真電荷 ) の無い場合 真空中を伝搬する場合 電場 E や磁場 H の湧き出し等はなし 光通信工学 5-3

14 マクスウェルの方程式積分型と微分型 結果のみ アンペールの法則 + 変位電流 H r dl 積分型 ds + ds t D r n i r n 内 内 Er dl ds t Br n 内 ファラデーの電磁誘導の法則 Stokes theorem 内 dl ( A( r, t) ) A r 微分型 H D t + i E B t nds ナブラ : ベクトル解析 電場 磁場のガウスの法則 V表面 (, ) ρ (, ) Drt nds rt dv ( ) Br, t nds V表面 電場 E と電束密度 D 磁場 H と磁場 B D εe B µ H V体積 Gauss s divergence theorem D ρ,, B y z V表面 V体積 A r nds A r (, ) t dv ガウスの発散定理とガウスの法則は異なる光通信工学 5-4

15 波動方程式導出 : ベクトル解析 ファラデーの電磁誘導の法則 B H E µ E µ H t t t アンペールの法則 : 電子の流れによる電流零の場合 ( ) ( ) H ( E) µ εµ t t t D D E 結果のみ : 細かいことは言いません 導出の流れに注目してください (, y, z) + y + z 電場 E のガウスの法則 真電荷が無い場合 真電荷 : 零 誘電率 D ρ D εe E ベクトル解析の公式 マクスウェルの方程式から導出される偏微分方程式 : 電場 E のみ E ( ) ( ) E E E E ( t) Er, εµ Er t Er v p Er t 光速が以下のように誘電率と透磁率で決まるとすれば 光の波動方程式になる ( 振動電場 E) vp c vp c εµ 位相速度 : 光約束 : 下ツキ 真空中 εµ 歴史 : 静電単位と電磁単位の比から予測される光速が 光速の実験値とほぼ一致したことから マクスウェルは光も電磁誘導等の法則で支配され その結果 波動方程式から光が 振動電場 E と 振動磁場 H からなる電磁波ではないかという予測を行ったのである その予測は 888 年にハインリヒ ヘルツによって実証される ( 単位 :Hz) 光通信工学 5-5

16 重要な関係式 真空の透磁率 µ o π/ 7 H/m 位相速度 : 真空中 約束 : 下ツキ 真空中 媒質中 非磁性体 : 誘電体 ( ガラスなど ) vp c εµ vp c εµ µ µ c εµ 屈折率 : 真空中 n 注意 : 詳細省略 損失無視 ( ガラスなど誘電体 ): 誘電率実数 誘電率が複素数 : 虚数部 損失 増幅 を意味する 屈折率が 虚数 の場合 エバネセント波 屈折率 : 媒質中 ( 損失無 ) の誘電率に依存比誘電率 εr の平方根 n c c εµ ε εµ ε ε r 波数 角周波数 周波数 波長の関係式 媒質中の波長は真空中より屈折率分短い k c ω π f π c c λ fλ k k ω nω π f π c c c n λ n nk λ λ λ n 約束 : 下ツキ 真空中 媒質中の波数は真空中の波数と屈折率の積 光通信工学 5-6

17 波動インピーダンス : 平面波の場合 前進進行波 : 直線偏光赤 : 正実数 k > 電場 E 進行方向 k: 電場 E 磁場 H( 右ねじ ) 磁場 H:k 電場 E cos( ω φ) ( E η) cos( ωt kz φ) E E t kz + H y H + E η ファラデーの電磁誘導の法則 電場 E を 方向 磁場 H を y 方向 B H E µ µ H y E t t z t 波動インピーダンス : 単位 Ω 電場 E:V/m 磁場 H:A/m c ω k c εµ η µ η 進行方向 磁場 H ωµ µ c k ε y 前進波 z 係数 :5:μ: 透磁率磁場 H:k 電場 E 位相速度 : 説明省略 : 電場 E のガウスの法則 位相速度 :5-5 k ( ) k E H k E H k E H E H E ωµ ωµ ωµ η 光通信工学 5-7

18 境界条件 : 結論のみ 境界条件の導出 :5 磁場 H は簡単!:- 電場 E の境界条件 : 電場 E の面内方向成分 (z 成分 ) が一致 媒質 側 : 入射波と反射波の合成波 k E H ωµ ( k, ky, ), (,, Ez), ( ke y z, ke z,) 媒質 側 : 透過波 波数ベクトル入射波 y 波数ベクトル反射波 ( r ) ( r ) ( r ) E, t + E, t E, t,@ y iz rz tz 磁場 H の境界条件 : 磁場 H の面内方向成分 ( 成分 ) が一致 ( r ) ( r ) ( r ) ( r, ) + ( r, ) ( r, ) H, t + H, t H, t,@ y i r t k E t k E t k E t iy iz ry rz ty tz 入射電場 E z 成分のみ 反射電場 E z 成分のみ 透過電場 E z 成分のみ ( r, ) Ei ep ( ω ) ( r, ) Er ep ( ω ) ( r, t) Et ep j( ωt k k y) E t j t k k y iz i iy E t j t k k y E rz r ry tz t ty 注意 : 未知数が 個だから方程式が 個 k i 媒質 :n 媒質 :n 波数ベクトル透過波 θ θ θ n k r > n k t 求めたい関係? 複素振幅反射率と複素振幅透過率 r s E E r, t t s E E i 光通信工学 5-8 i

19 境界条件 ( 誘電体 ): 電場 E( 説明省略 ) マクスウェルの方程式より微小ループ: 面積 S 電場 Eの面内方向成分ファラデーの電磁誘導の法則 E 単位法線ベクトル n y z y Edl By ds t 内 媒質 :n 媒質 :n E ΔP 場 : 微小ループ内を貫く磁場 H は一様と近似可能 l 電場 E の面内方向成分 内 P ( ) ( ) By ds By ds By l P 内 内 By ds 注意 : ループが潰れれば貫く磁場 H もなし 右辺 : 零媒質 側 : 電場 E の面内方向成分 ( 微小ループのため一様と近似 ) 参考までに 誘電体の場合 : ガラスなど電場 E の面内方向成分 : 一致 P, Edl E l E l E r E r 鏡 ( 導体 ) の場合電場 E の面内方向成分 : 零 媒質 側 : 電場 E の面内方向成分 ( 微小ループのため一様と近似 ) 負号 : ループの向きとベクトル電場 E の向きが反対 境界条件 : 電場 E の面内方向成分が一致 マクスウェルの方程式から導出 光通信工学 5-9

20 境界条件 ( 誘電体 ): 磁場 H( 説明省略 ) マクスウェルの方程式より微小ループ: 面積 S 磁場 Hの面内方向成分 比較 : ファラデーの電磁誘導の法則単位法線ベクトル n y H z y Edl By ds t 内 媒質 :n 媒質 :n H ΔP アンペールの法則 : 変位電流含電子の流れによる電流 : 零 ( ガラスなど ) l H d l Dy + t ds iy ds 内内 磁場 H の面内方向成分 場 : 微小ループ内で電場 E( 電束密度 D) は一様と近似可能 : 面積分零 右辺 : 零媒質 側 : 磁場 H の面内方向成分媒質 側 : 磁場 H の面内方向成分 P, Hdl H l H l H r H r 磁場 H の面内方向成分 : 微小ループのため一様と近似 参考までに 誘電体の場合磁場 H の面内方向成分 : 一致 鏡 ( 導体 ) の場合表面電流が誘起され反射光となる 境界条件 : 磁場 H の面内方向成分が一致 マクスウェルの方程式から導出 光通信工学 5-

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) マクスウェルの方程式 : 真空中 () 1. 電磁波 ( 光波 ) の姿 : 真空中. エネルギー密度 3. ポインティング ベクトル 4. 絵解き : ポインティング ベクトル 5. ポインティング ベクトル : 再確認 6. 両者の関係 7. 付録 : ベクトル解析 注意 1. 本付録 : マクスウェルの方程式: 微分型 を使用. マクスウェルの方程式を数学的に取扱います

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) コイルと磁場 () coil and magnetic field part. ソレノイドコイルのエネルギー. エネルギー密度の比較 : 電場と磁場 3. 磁場のエネルギーとベクトルポテンシャル 4. 相互作用エネルギー : 電場と磁場 5. 資料 : 電源について 注意. 電磁波を記述する マクスウェル方程式 の理解に必要を思われるトピックスに限定. 定常電流が作る磁場

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 屈折率と誘電率 : 金属. 復習. 電気伝導度 3. アンペールの法則の修正 4. 表皮効果 表皮深さ 5. 鏡の反射 6. 整理 : 電子振動子模型 注意 : 整理しましょう! 前回 : 付録 (4) のアプローチ. 屈折率と損失について記述するために分極振動 ( 電気双極子の集団運動 ) による電気双極子放射を考慮. 誘電率は 真空中の値 を採用 オリジナル光

More information

スライド 1

スライド 1 光通信工学. 復習. ポインティング ベクトル 3. 光強度 4. 強度反射 ( 透過 率 通常のレンズ フレネルレンズ 光通信工学 3- 光波とは : 式で書いた方が分かりやすいかも! 軸 偏光 : 電場 の振動方向偏波面 : 電場 ベクトルと波数ベクトルからなる平面 方向の直線偏光 軸 + 軸 : 磁場の強さ 平面波 & 進行波 : 簡単 便利 偏波面 :-z 平面右ねじ : 電場 (+ 磁場

More information

スライド 1

スライド 1 光通信工学 1. 復習 2. スネルの法則 3. 屈折率 4. 振幅反射 ( 透過 ) 率 5. フレネルの式 n n 媒質 1:n 1 媒質 2:n 2 nθ n nθ > n θ < θ 1 1 2 2 1 2 1 2 θ 2 n > n 1 2 t 光通信工学 22-1 光波とは : 式で書いた方が分かりやすいかも! 軸 偏光 : 電場 E の振動方向偏波面 : 電場 E ベクトルと波数ベクトルからなる平面

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) マクスウェルの応力テンソル (). ある領域に作用する力 2. 応力テンソル 3. 力の総和と応力テンソル 4. ローレンツ力 5. マクスウェルの方程式 6. 孤立系 注意. 本付録 : マクスウェルの応力テンソル(stress tesor) 2. 簡単のため 個々の電荷が真空中をバラバラに運動する孤立系を考えます 3. 背景は真空とします 真空中の誘電率と透磁率を使用します

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 5 回平面波の媒質への垂直および射入射と透過 柴田幸司 Bounda Plan Rgon ε μ Rgon Mdum ( ガラスなど ε μ z 平面波の反射と透過 垂直入射の場合 左図に示す様に 平面波が境界面に対して垂直に入射する場合を考える この時の入射波を とすると 入射波は境界において 透過波 と とに分解される この時の透過量を 反射量を Γ とおくと 領域 における媒質の誘電率に対して透過量

More information

Microsoft PowerPoint - 第9回電磁気学

Microsoft PowerPoint - 第9回電磁気学 017 年 1 月 04 日 ( 月 ) 13:00-14:30 C13 平成 9 年度工 V 系 ( 社会環境工学科 ) 第 9 回電磁気学 Ⅰ 天野浩 mno@nuee.ngoy-u.c.jp 9 1 月 04 日 第 5 章 電流の間に働く力 磁場 微分形で表したア ンペールの法則 ビオ サバールの法則 第 5 章電流の作る場 http://www.ntt-est.co.jp/business/mgzine/netwok_histoy/0/

More information

F コンデンサーの静電容量高校物理において コンデンサーは合同な 2 枚の金属板を平行に並べたものである 電池を接続すると 電圧の高い方 (+ 極 ) に接続された金属板には正の電気量 Q(C) が 低い方には負の電気量 -Q(C) が蓄積される 正負の電気量の絶対値は等しい 蓄積された電気量 Q

F コンデンサーの静電容量高校物理において コンデンサーは合同な 2 枚の金属板を平行に並べたものである 電池を接続すると 電圧の高い方 (+ 極 ) に接続された金属板には正の電気量 Q(C) が 低い方には負の電気量 -Q(C) が蓄積される 正負の電気量の絶対値は等しい 蓄積された電気量 Q 電磁気の公式の解説 更新日 :2017 年 5 月 11 日 A 電気量電荷と電気量は何が違うのだろうか? 簡単に言うと 電気を帯びたものを電荷といい その電荷の大きさを数字で表すものが電気量である 電荷と電気量の本来の意味は少し違うが 実際には同じ意味で使われることが多い 電気量は次のように決められる ファラデー定数 9.65 10 4 (C /mol ) より電子 6.02 10 23 個が電気量

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) コイルと磁場 () coil nd mgnetic field prt. 相互インダクタンス : 変圧器. 磁場のエネルギー : 変圧器 3. 直線近似 4. ローレンツ力とアンペールの力 5. 直線定常が作るベクトルポテンシャル 6. ポテンシャルエネルギー 注意. 電磁波を記述する マクスウェル方程式 の理解に必要を思われるトピックスに限定. 定常が作る磁場

More information

Microsoft PowerPoint EM2_15.ppt

Microsoft PowerPoint EM2_15.ppt ( 第 5 回 ) 鹿間信介摂南大学理工学部電気電子工学科 後半部 (4~5 章 ) のまとめ 4. 導体 4.3 誘電体 5. 磁性体 5. 電気抵抗 演習 静電誘導電界とその重ね合わせ 導体内部の電荷 : 外部電界 誘導電界の重ね合わせ電界を感じる () 内部電荷自身が移動することで作り出した電界にも反応 () さらに移動場所を変える (3) 上記 ()~() の繰り返し 最終的に落ち着く状態

More information

Microsoft PowerPoint EM2_15.ppt

Microsoft PowerPoint EM2_15.ppt ( 第 5 回 ) 鹿間信介摂南大学理工学部電気電子工学科 後半部 (4~5 章 ) のまとめ 4. 導体 4.3 誘電体 5. 磁性体 5. 電気抵抗 演習 導体表面の電界強度 () 外部電界があっても導体内部の電界は ( ゼロ ) になる () 導体の電位は一定 () 導体表面は等電位面 (3) 導体表面の電界は導体に垂直 導体表面と平行な成分があると, 導体表面の電子が移動 導体表面の電界は不連続

More information

2. コンデンサー 極板面積 S m 2, 極板間隔 d m で, 極板間の誘電率が ε F/m の平行板コンデンサー 容量 C F は C = ( )(23) 容量 C のコンデンサーの極板間に電圧をかけたとき 蓄えられる電荷 Q C Q = ( )(24) 蓄えられる静電エネルギー U J U

2. コンデンサー 極板面積 S m 2, 極板間隔 d m で, 極板間の誘電率が ε F/m の平行板コンデンサー 容量 C F は C = ( )(23) 容量 C のコンデンサーの極板間に電圧をかけたとき 蓄えられる電荷 Q C Q = ( )(24) 蓄えられる静電エネルギー U J U 折戸の物理 簡単復習プリント 電磁気 1 基本事項の簡単な復習電磁気 1. 電場 クーロンの法則 電気量 q1,q2 C の電荷が距離 r m で置かれているとき働く 静電気力 F N は, クーロンの法則の比例定数を k N m 2 /s 2 として 電場 F = ( )(1) 力の向きは,q1,q2 が, 同符号の時 ( )(2) 異符号の時 ( )(3) 大きさ E V/m の電場に, 電気量

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 準備 : 非線形光学効果 (). 絵解き : 第二高調波発生. 基本波の波動方程式 3. 第二高調波の波動方程式 4. 二倍分極振動 : ブランコ 5. 結合波動方程式へ 6. 補足 : 非線形電気感受率 ( 複素数 ) 付録 43 のアプローチ. 分極振動とは振動電場に誘われて伸縮する電気双極子の集団運動. 電気感受率と波動方程式の関係を明らかにする 3.

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 屈折率と誘電率 (1) 1. 屈折率の考え方 2. 分極電流と円電流 3. 分極振動と電流密度 4. アンペールの法則の修正 5. 複素電気感受率 6. 補足 : 世界観 ( 実空間と複素空間 ) 注意 : 整理しましょう! 前回 : 付録 (41) のアプローチ 1. 電子振動子模型を利用して媒質を電気双極子の集団としてモデル化 2. 薄いシート媒質中の分極振動

More information

Microsoft PowerPoint - 第5回電磁気学I 

Microsoft PowerPoint - 第5回電磁気学I  1 年 11 月 8 日 ( 月 ) 1:-1: Y 平成 年度工 系 ( 社会環境工学科 ) 第 5 回電磁気学 Ⅰ 天野浩 項目 電界と電束密度 ガウスの発散定理とガウスの法則の積分形と微分形 * ファラデーの電気力線の使い方をマスターします * 電界と電束密度を定義します * ガウスの発散定理を用いて ガウスの法則の積分形から微分形をガウスの法則の積分形から微分形を導出します * ガウスの法則を用いて

More information

平面波

平面波 平面波 図.に示すように, 波源 ( 送信アンテナあるいは散乱点 ) から遠い位置で, 観測点 Pにおける波の状態を考えてみる. 遠いとは, 波長 λ に比べて距離 が十分大きいことを意味しており, 観測点 Pの近くでは, 等位相面が平面とみなせる状態にある. 平面波とは波の等位相面が平面になっている波のことである. 通信や計測を行うとき, 遠方における波の振舞いは平面波で近似できる. したがって平面波の性質を理解することが最も重要である.

More information

反射係数

反射係数 平面波の反射と透過 電磁波の性質として, 反射と透過は最も基礎的な現象である. 我々の生活している空間は, 各種の形状を持った媒質で構成されている. 人間から見れば, 空気, 水, 木, 土, 火, 金属, プラスチックなど, 全く異なるものに見えるが, 電磁波からすると誘電率, 透磁率, 導電率が異なるだけである. 磁性体を除く媒質は比透磁率がで, ほとんど媒質に当てはまるので, 実質的に我々の身の回りの媒質で,

More information

スライド 1

スライド 1 電流と磁場 目次 0. はじめにー物質の磁気的性質と磁場ー 1. 磁石と磁場 2. 電流のつくる磁場 (1) 3. 磁場中の運動する荷電粒子に働く磁気力 ( ローレンツ力 ) 4. 磁場中の電流に働く力 ( アンペアの力 ) 5. 平行または反平行電流の間に働く磁気力 6. 電流のつくる磁場 (2)- ビオ サバールの法則 7. アンペアの法則 ( アンペアの回路定理 ) 8. 磁場 に対するガウスの法則付録

More information

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし 交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし 積分定数を 0 とすること 1 f(t) = sin t 2 f(t) = A sin t 3 f(t)

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) マクスウェルの応力テンソル () 1. 復習 : 孤立系. マクスウェルの応力テンソル 3. 電磁波 ( 光 ) の運動量密度 4. 運動量の保存則 5. 電磁波 ( 光 ) の運動量 : 進行波 6. 電磁波 ( 光 ) の運動量 : 定在波 7. 電磁波 ( 光 ) の運動量 : 鏡面反射 8. 鏡面反射と定在波 9. マクスウェルの応力テンソル :

More information

人間科学部研究年報平成 24 年 (1) (2) (3) (4) 式 (1) は, クーロン (Coulomb) の法則とも呼ばれる.ρは電荷密度を表し,ε 0 は真空の誘電率と呼ばれる定数である. 式 (2) は, 磁荷が存在しないことを表す式である. 式 (3) はファラデー (Faraday)

人間科学部研究年報平成 24 年 (1) (2) (3) (4) 式 (1) は, クーロン (Coulomb) の法則とも呼ばれる.ρは電荷密度を表し,ε 0 は真空の誘電率と呼ばれる定数である. 式 (2) は, 磁荷が存在しないことを表す式である. 式 (3) はファラデー (Faraday) 複素振幅をもつ球面波の人間科学部研究年報 Maxwell 平成 24 方程式年 複素振幅をもつ球面波の Maxwell 方程式 Maxwell Equation of Spherical Wave with Complex Amplitude 戸上良弘 Yoshihiro TOGAMI Abstract 複素振幅をもつ球面波に関して, マクスウェル (Maxwell) 方程式との関係を考察した. 電気的な球面波としてのスカラーポテンシャルが与えられたとき,

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 6 回境界条件と伝送線路 柴田幸司 伝送線路とは 伝送線路とは光速で進む電磁波を構造体の中に閉じ込めて低損失にて伝送させるための線路であり 伝搬方向 断面方向に電磁波を閉じ込めるためには金属条件や誘電体の境界条件を利用する必要がある 開放型 TM 型 平行 線 誘電体型 誘電体線路 光ファイバ 閉鎖型 TM 型 同軸線路 導波路型 導波管 おのおのの伝送線路の形状に対する管内断面の電磁波の姿体の導出

More information

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63> 1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です

More information

Microsoft PowerPoint - 基礎電気理論 07回目 11月30日

Microsoft PowerPoint - 基礎電気理論 07回目 11月30日 基礎電気理論 7 回目 月 30 日 ( 月 ) 時限 次回授業 時間 : 月 30 日 ( 月 )( 本日 )4 時限 場所 : B-3 L,, インピーダンス教科書 58 ページから 64 ページ http://ir.cs.yamanashi.ac.jp/~ysuzuki/kisodenki/ 授業評価アンケート ( 中間期評価 ) NS の授業のコミュニティに以下の項目について記入してください

More information

Microsoft PowerPoint - em01.pptx

Microsoft PowerPoint - em01.pptx No. 基礎 ~ マクスウェルの方程式 ~ t t D H B E d t d d d t d D l H B l E 微分形積分形 電磁気学の知識からマクスウェルの方程式を導く No. ファラデーの法則 V d dt E dl t B d ストークスの定理を使って E d E ファラデー : 近接作用 界の概念を提唱 B t t B d アンペアの法則 I H rh I H dl d r dl V

More information

s ss s ss = ε = = s ss s (3) と表される s の要素における s s = κ = κ, =,, (4) jωε jω s は複素比誘電率に相当する物理量であり ここで PML 媒質定数を次のように定義する すなわち κξ をPML 媒質の等価比誘電率 ξ をPML 媒質の

s ss s ss = ε = = s ss s (3) と表される s の要素における s s = κ = κ, =,, (4) jωε jω s は複素比誘電率に相当する物理量であり ここで PML 媒質定数を次のように定義する すなわち κξ をPML 媒質の等価比誘電率 ξ をPML 媒質の FDTD 解析法 (Matlab 版 2 次元 PML) プログラム解説 v2.11 1. 概要 FDTD 解析における吸収境界である完全整合層 (Perfectl Matched Laer, PML) の定式化とプログラミングを2 次元 TE 波について解説する PMLは異方性の損失をもつ仮想的な物質であり 侵入して来る電磁波を逃さず吸収する 通常の物質と接する界面でインピーダンスが整合しており

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 電磁波 ( 光 ) の角運動量. 復習 : 電磁波 ( 光 ) のエネルギー. 運動量 角運動量 ( 実空間 ) 3. 軌道 スピン角運動量 4. 円偏光状態 5. 螺旋状態 付録 8 のアプローチ. 本付録では電磁波 ( 光 ) の軌道 スピン角運動量ついて古典的に扱う. スピン角運動量は直線偏光状態では零 円偏光状態では非零 右 左回りで大きさは同じ

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 球面波 回折 (. グリーンの定理. キルヒホッフの積分定理 3. ホイヘンスの原理 4. キルヒホッフの回折公式 5. ゾンマーフェルトの放射条件 6. 補足 付録 (90~904 のアプローチ : 回折 (diffaction までの道標. 球面波 (pheical wave のみ対象 : スカラー表示. 虚数単位 i を使用する 3. お詫び : 自己流かつ説明が飛躍する場面があります

More information

応用数学A

応用数学A 応用数学 A 米田 戸倉川月 7 限 1930~2100 西 5-109 V を :x 2 + y 2 + z 2 = 4 で囲まれる内部とする F = ye x xe y + ze z FdV = V e x e y e z F = = 2e z 2e z dv = 2e z 3 23 = 64π 3 e z y x z 4π V n Fd = 1 F nd 2 F nd 法線ベクトル n g x,

More information

電磁気学 IV 第 7 回導体内の電磁界 表皮効果 ( 電磁気ノート19 章を参照 ) 工学部電気電子工学科松嶋徹 授業のスケジュール ( 順番変更 ) 6 月 12 日 ( 第 1 回 ) 電磁気学的な量 一般直交座標におけるベクトル演算 6 月 14 日 ( 第 2 回 )

電磁気学 IV 第 7 回導体内の電磁界 表皮効果 ( 電磁気ノート19 章を参照 ) 工学部電気電子工学科松嶋徹 授業のスケジュール ( 順番変更 ) 6 月 12 日 ( 第 1 回 ) 電磁気学的な量 一般直交座標におけるベクトル演算 6 月 14 日 ( 第 2 回 ) 電磁気学 IV 08.07.03 第 7 回導体内の電磁界 表皮効果 ( 電磁気ノート9 章を参照 ) 工学部電気電子工学科松嶋徹 授業のスケジュール ( 順番変更 ) 6 月 日 ( 第 回 ) 電磁気学的な量 一般直交座標におけるベクトル演算 6 月 4 日 ( 第 回 ) 時間的に変化がない場 静電界 静磁界 定常電流界 6 月 9 日 ( 第 3 回 ) 定常的な場のシミュレーション 6 月

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) デルタ関数. ローレンツ関数. ガウス関数 3. Sinc 関数 4. Sinc 関数 5. 指数関数 6. 量子力学 : デルタ関数 7. プレメリの公式 8. 電磁気学 : デルタ関数 9. デルタ関数 : スケール 微分 デルタ関数 (delta function) ( ) δ ( ) ( ), δ ( ), δ ( ), δ ( ) f x x dx

More information

科目概要 電磁気学 IV 第 1 回講義概要 これまでの復習 科目名 : 電磁気学 IV Electromagnetics IV 学部学科 : 電気電子工学科電子工学コース選択必修単位数 :2 単位担当教員 : 松嶋徹 工学部電気電子工学科松嶋徹 オフィスタイム : 毎週火曜と

科目概要 電磁気学 IV 第 1 回講義概要 これまでの復習 科目名 : 電磁気学 IV Electromagnetics IV 学部学科 : 電気電子工学科電子工学コース選択必修単位数 :2 単位担当教員 : 松嶋徹 工学部電気電子工学科松嶋徹 オフィスタイム : 毎週火曜と 科目概要 電磁気学 IV 2018.06.12 第 1 回講義概要 これまでの復習 科目名 : 電磁気学 IV Electromgnetics IV 学部学科 : 電気電子工学科電子工学コース選択必修単位数 :2 単位担当教員 : 松嶋徹 工学部電気電子工学科松嶋徹 オフィスタイム : 毎週火曜と金曜 10:00~12:00 オフィス場所 : 総合研究 1 号棟 E2-504 E-mil :mtsushim@ele.kutech.c.jp

More information

基礎から学ぶ光物性 第2回 光が物質中を伝わるとき:

基礎から学ぶ光物性  第2回 光が物質中を伝わるとき: 基礎から学ぶ光物性 第 2 回光が物質中を伝わるとき : 東京農工大学特任教授 佐藤勝昭 第 2 回講義で学ぶこと 光が物質中を伝わるとき何がおきるか : 屈折率とは何か? 消光係数とは? 吸収係数 透過率との関係はここでは 屈折率 n 消光係数 κ がどのように定義された量であるかを電磁波の伝わり方をあらわす式を用いて説明します マクスウェルの方程式の固有解を求めることによって 光学定数と光学誘電率の関係を導きます

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 演習プリント N.15 43. 目的 : 電磁誘導は, 基本を理解すれば問題はそれほど難しくない! ということを学ぶ 問 1 の [ ] に適切な数値または数式を入れ, 問 に答えよ 図 1 のように, 紙面に垂直で一様な磁界が 0 の領域だけにある場合について考える 磁束密度は Wb/m で, 磁界は紙面の表から裏へ向かっている 図のように,1 辺の長さが m の正方形のコイル を,

More information

Microsoft PowerPoint - 04.誘導起電力 [互換モード]

Microsoft PowerPoint - 04.誘導起電力 [互換モード] 第 4 章誘導起電力 Φ 磁界中のコイルと磁束 ( 復習 ) : コイルの断面積 Φ : コイルを貫く磁 力線 ( 磁束 ) B B θ : コイル面と磁界 Φ θ のなす角 B: 磁束密度 a) 磁界に対して垂直 b) 傾きθ の位置図 a) のように, 面積 の1 回巻きコイルをΦ の磁力線が貫くときを考える このような磁力線の数を磁束 (magnetic flux) と呼び,[Wb( ウェーバー

More information

第1章 様々な運動

第1章 様々な運動 自己誘導と相互誘導 自己誘導 自己誘導起電力 ( 逆起電力 ) 図のように起電力 V V の電池, 抵抗値 R Ω の抵抗, スイッチS, コイルを直列につないだ回路を考える. コイルに電流が流れると, コイル自身が作る磁場による磁束がコイルを貫く. コイルに流れる電流が変化すると, コイルを貫く磁束も変化するのでコイルにはこの変化を妨げる方向に誘導起電力が生じる. この現象を自己誘導という. 自己誘導による起電力は電流変化を妨げる方向に生じるので逆起電力とも呼ばれる.

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://orito-buturi.com/ NO.3 今日の目的 : 1 微分方程式をもう一度 三角関数の近似について学ぶ 3 微分の意味を考える 5. 起電力 の電池, 抵抗値 の抵抗, 自己インダクタンス のコイルとスイッチを用いて右図のような回路をつくった 始めスイッチは 開かれている 時刻 t = でスイッチを閉じた 以下の問に答えよ ただし, 電流はコイルに

More information

技術者のための電磁気学入門 コロナ社

技術者のための電磁気学入門 コロナ社 技術者のための電磁気学入門 まえがき MRI LAN D ii H B Web http://wwwcoronashacojp/np/isbn// 目 次 iv v DRAM AED vi vii viii MRI CT 1 電荷と電場 乾燥した日には紙束の紙どうしがくっついてしまい, なかなか紙の枚数が数え られなかったり, 衣服が体にまとわりついたりすることがある これらの現象 は, 物質の原子レベルで生ずるクーロン力という力によるものである

More information

電磁気学 A 練習問題 ( 改 ) 計 5 ページ ( 以下の問題およびその類題から 3 題程度を定期試験の問題として出題します ) 以下の設問で特に断らない限り真空中であることが仮定されているものとする 1. 以下の量を 3 次元極座標 r,, ベクトル e, e, e r 用いて表せ (1) g

電磁気学 A 練習問題 ( 改 ) 計 5 ページ ( 以下の問題およびその類題から 3 題程度を定期試験の問題として出題します ) 以下の設問で特に断らない限り真空中であることが仮定されているものとする 1. 以下の量を 3 次元極座標 r,, ベクトル e, e, e r 用いて表せ (1) g 電磁気学 A 練習問題 ( 改 ) 計 5 ページ ( 以下の問題およびその類題から 題程度を定期試験の問題として出題します ) 以下の設問で特に断らない限り真空中であることが仮定されているものとする. 以下の量を 次元極座標,, ベクトル e, e, e 用いて表せ () gad () ot A (). 以下の量を 次元円柱座標,, z 位ベクトル e e, e, z 用いて表せ () gad ()

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

Microsoft Word

Microsoft Word 第 9 回工学基礎ミニマム物理試験問題.. 日立 水戸 正解は各問の選択肢 (,, ) の中からつだけ選び, その番号をマークシートにマークせよ この際,HBまたはBの鉛筆またはシャープペンシルを使うこと ボールペンは不可 正解が数値の場合には, 選択肢の中から最も近い値を選ぶこと 正解が選択肢の中に無い場合には, 番号ゼロを選択せよ 学生番号, 氏名を指定された方法でマークシートの所定の欄に記入せよ

More information

Microsoft PowerPoint - Ppt [読み取り専用]

Microsoft PowerPoint - Ppt [読み取り専用] 9 年 4 月 7 日 水 限 限 N-4 電気磁気学 Ⅲ は電気磁気学の集大成! 第 回電気磁気学 Ⅲ 竹内哲也 天野浩 竹内の HP アドレス 講義ノートへのアクセス方法 http://nitide.meijo-u.c.jp/tkeuchi/inde.html 電気磁気学 Ⅲ の目的 マクスウェル方程式の意味を確実に理解し その応用が出来る真の実力を身につけること 学習 教育目標 5 : 自然科学の基礎能力

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 米田 戸倉川月 7 限 193~21 西 5-19 応用数学 A 積分定理 Gaussの定理 divbd = B nds Stokesの定理 E bds = E dr Green の定理 g x f y dxdy = fdx + gdy = f e i + ge j dr Gauss の発散定理 S n FdS = Fd 1777-1855 ドイツ Johann arl Friedrich Gauss

More information

Microsoft PowerPoint - 学内講演会.ppt

Microsoft PowerPoint - 学内講演会.ppt Force-free トルクと縦磁界効果 超伝導体内の電磁現象 大学院情報工学研究院松下照男 2009 年 6 月 17 日 内容 はじめに 横磁界下の電磁現象 通常の超伝導体内の電磁現象 縦磁界下の電磁現象 従来の考え方新しい考え方 超伝導と電磁気学 まとめ 1. はじめに 通常の横磁界下の超伝導体に電流を流す場合磁束に歪が生じ 復元力 (Lorentz 力 J B ) が働く ( 金属でも同様

More information

Microsoft Word - EM_EHD_2010.doc

Microsoft Word - EM_EHD_2010.doc H のための電磁気学 機能材料工学科阿部洋 . 電磁気学電磁気学電磁気学電磁気学の基礎基礎基礎基礎 - マクスウェルマクスウェルマクスウェルマクスウェルの応力応力応力応力静電場の条件は e div ρ ( ) ot ( ) である 体積 V で電荷密度 ρ e に働く力はクーロン力から ρ dv F e ( 3) と表せる ( 3) 式に ( ) を代入すると ( ) dv div F ( 4) となる

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 電子スピン共鳴 :Electron pin Reonance (ER) 1. 歳差運動 (preceion). スピン角運動量 : 電子 3. ゼーマン効果 : スピン 4. 平行 反平行状態 5. ラーモア歳差運動 6. 電子スピン共鳴 7. 緩和過程 注意 1. 本付録 : 電子スピン共鳴 について 原理 概略を説明. 但し 電子スピン共鳴装置 の特徴や使用法の説明はしません

More information

1 B () Ver 2014 0 2014/10 2015/1 http://www-cr.scphys.kyoto-u.ac.jp/member/tsuru/lecture/... 1. ( ) 2. 3. 3 1 7 1.1..................................................... 7 1.2.............................................

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://oritobuturi.co/ NO.5(009..16) 今日の目的 : 1 物理と微分 積分について 微分方程式について学ぶ 3 近似を学ぶ 10. 以下の文を読み,[ ア ]~[ ク ] の空欄に適当な式をいれよ 物体物体に一定の大きさの力を加えたときの, 物体の運動について考え よう 右図のように, なめらかな水平面上で質量 の物体に水平に一定の大きさ

More information

Microsoft Word - 9章(分子物性).doc

Microsoft Word - 9章(分子物性).doc 1/1/6 9 章分子物性 1 節電気双極子モーメント (Electric Dipole Moment) 電子双極子モーメント とは 微小な距離 a だけ離れて点電荷 q が存在する状態 絶対値は aq で 負電荷 q から正電荷 q へ向かうベクトルである 例えば 水分子は下右図のような向きの電気双極子モーメントをもち その大きさは約 1.85D である このように元々から持っている双極子モーメントを

More information

Microsoft PowerPoint - A1_vector_intro_slide.pptx

Microsoft PowerPoint - A1_vector_intro_slide.pptx v3.9 Ma.2018 1 ベクトル解析が必要な理由 2 ベクトル解析の基礎 - 内積と外積 回転と発散 - 1 st 2011/04/01 L st 2018/05/06 1. 電磁場 ( 電界と磁界 ) がベクトル量 ( 大きさだけでなく方向を有する物理量 ) であるため 2. 電磁界は自然法則 = マクスウェルの方程式で記述されるため 方程式を解くための計算において 重ね合わせや微分積分が出てくる

More information

スライド 1

スライド 1 光通信工学 1. スラブ導波路 ( 復習 ). モード ( 姿態 ) 3. 光ファイバ コア クラッド? 光パルス伝送 特許の流れ : 出願 拒絶理由通知 意見書 手続補正書 特許査定 ( 約 5 年 ) 光通信工学 5-1 参考 :7 異なる波数ベクトルを持つ平面波 : 電場 E 電場 E: スカラー表示電場 E 振動方向 :x 軸のみ ( 頭に入れておく ) r, Acos r E t t 1

More information

Taro-F25理論 印刷原稿

Taro-F25理論 印刷原稿 第 種理論 A 問題 ( 配点は 問題当たり小問各 点, 計 0 点 ) 問 次の文章は, 真空中の静電界に関する諸法則の微分形に関する記述である 文中の に当てはまるものを解答群の中から選びなさい 図のように, 直交座標系において電界の z 軸成分が零となるような電界について, y 平面の二次元で電位や電界を考える ここで,4 点 (h,0),(0,h), (- h,0),(0,-h) の電位がそれぞれ

More information

Microsoft Word - 第2章電磁気学編_

Microsoft Word - 第2章電磁気学編_ 第 章半導体工学のための電磁気学 半導体デバイスの働きを理解するためには 電磁気学の知識が必要である とりわけ 電荷の作る電界 電位の計算は必須である 多くの大学課程でこれらを計算するために 電気力線図を使って電界ベクトルをイメージし ガウスの式 電位と電界の関係式を積分を使って解くことを教わる しかし 半導体の世界では ガウスの式の微分形 ポアソン式を使って解くことになるため 初学者はかなりの混乱を伴う

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション ベクトル ベクトル関数 ベクトル場とは何か t dt t d dt t d dt t d dt t d t dt t d dt t d dt t d dt t d t t t t t t t t t t t t v ベクトル関数 : ベクトル場スカラー関数 t : スカラー場東京理科大学 8 物理数学 ガイダンス 次元直角座標での ニュートンの運動方程式の積分 m p mv mv dt dt dv

More information

SPring-8ワークショップ_リガク伊藤

SPring-8ワークショップ_リガク伊藤 GI SAXS. X X X X GI-SAXS : Grazing-incidence smallangle X-ray scattering. GI-SAXS GI-SAXS GI-SAXS X X X X X GI-SAXS Q Y : Q Z : Q Y - Q Z CCD Charge-coupled device X X APD Avalanche photo diode - cps 8

More information

高校電磁気学 ~ 電磁誘導編 ~ 問題演習

高校電磁気学 ~ 電磁誘導編 ~ 問題演習 高校電磁気学 ~ 電磁誘導編 ~ 問題演習 問 1 磁場中を動く導体棒に関する問題 滑車 導体棒の間隔 L m a θ (1) おもりの落下速度が のとき 導体棒 a に生じる誘導起電力の 大きさを求めよ 滑車 導体棒の間隔 L m a θ 導体棒の速度 水平方向の速度 cosθ Δt の時間に回路を貫く磁束の変化 ΔΦ は ΔΦ = ΔS = LcosθΔt ΔΦ ファラデーの法則 V = N より

More information

領域シンポ発表

領域シンポ発表 1 次元の減衰運動の中の強制振動 ) ( f d d d d d e f e ce ) ( si ) ( 1 ) ( cos ω =ω -γ とおくと 一般解は 外力 f()=f siω の場合 f d d d d si f ce f ce si ) cos( cos si ) cos( この一般解は 1 φ は外力と変位との間の位相差で a 時間が経つと 第 1 項は無視できる この場合の振幅を

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

<4D F736F F F696E74202D2095A8979D90948A CE394BC A2E707074>

<4D F736F F F696E74202D2095A8979D90948A CE394BC A2E707074> 物理数学 1B( 後半部 ) 担当教員 : 山本貴博 講義内容 : ベクトル場における積分定理 第 1 回目講義 : 平面におけるグリーンの定理 ( 線積分 2 重積分 ) (12 月 11 日 ) 第 2 回目講義 : ガウスの定理 ( 面積分 体積分 ) (12 月 18 日 ) 第 3 回目講義 : ストークスの定理 ( 線積分 面積分 ) (1 月 15 日 ) 第 1 回目講義 : 平面におけるグリーンの定理

More information

Microsoft Word - 1.2全反射.doc

Microsoft Word - 1.2全反射.doc . 全反射 φ 吸収があると透過光は減少する ( 吸収は考えない ) 全反射普通に三角関数を理解しているものには不思議な現象 Opia Fibr はこのメカニズムで伝える ブリュ - スター角 全反射 となる すなわち は実数として存在しない角度となる虚数 (or 複素数 ) となる 全反射という そこで r si を考えよう は存在しない角度なので この式から を消去して 実数である だけの表示にしよう

More information

Laplace2.rtf

Laplace2.rtf =0 ラプラスの方程式は 階の微分方程式で, 一般的に3つの座標変数をもつ. ここでは, 直角座標系, 円筒座標系, 球座標系におけるラプラスの方程式の解き方を説明しよう. 座標変数ごとに方程式を分離し, それを解いていく方法は変数分離法と呼ばれる. 変数分離解と固有関数展開法. 直角座標系における 3 次元の偏微分方程式 = x + y + z =0 (.) を解くために,x, y, z について互いに独立な関数の積で成り立っていると考え,

More information

Microsoft PowerPoint - 夏の学校(CFD).pptx

Microsoft PowerPoint - 夏の学校(CFD).pptx /9/5 FD( 計算流体力学 ) の基礎理論 性能 運動分野 夏の学校 神戸大学大学院海事科学研究科勝井辰博 流体の質量保存 流体要素内の質量の増加率 [ 単位時間当たりの増加量 ] 単位時間に流体要素に流入する質量 流体要素 Fl lm (orol olm) v ( ) ガウスの定理 v( ) /9/5 = =( ) b=b =(b b b ) b= b = b + b + b アインシュタイン表記

More information

改訂履歴 第 1 版 第 版 p. 1, 0 本文第 5 行ことで混乱 p. 1, 0 本文第 5 行ことで ( 一応 ) 混乱 p. 1, 脚注 1 筆者は, 大学教養時代 p. 1, 脚注 1 筆者は大学教養時代 p. 1, 脚注 4 SI 単位系で p. 1, 脚注 4 MKSA 単位系で p

改訂履歴 第 1 版 第 版 p. 1, 0 本文第 5 行ことで混乱 p. 1, 0 本文第 5 行ことで ( 一応 ) 混乱 p. 1, 脚注 1 筆者は, 大学教養時代 p. 1, 脚注 1 筆者は大学教養時代 p. 1, 脚注 4 SI 単位系で p. 1, 脚注 4 MKSA 単位系で p AC0003 007 6 9 0 1 8 molsci-edit@bunken.co.jp 改訂履歴 第 1 版 第 版 p. 1, 0 本文第 5 行ことで混乱 p. 1, 0 本文第 5 行ことで ( 一応 ) 混乱 p. 1, 脚注 1 筆者は, 大学教養時代 p. 1, 脚注 1 筆者は大学教養時代 p. 1, 脚注 4 SI 単位系で p. 1, 脚注 4 MKSA 単位系で p. 3,

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 位相整合 : 第二高調波発生. 位相整合. 擬似位相整合 (QPM: quasi-phase-matching) 3. 周期分極反転 (periodic poling) 4. 反転対象 非対称 付録 43 のアプローチ. 第二高調波発生 増幅に関する位相整合 位相不整合について検討する. 位相不整合を解消する考え方 擬似位相整合 とそれを実現するために必要な

More information

Microsoft Word - MHD-wave.doc

Microsoft Word - MHD-wave.doc 電磁流体力学波 基礎方程式と線形化 谷一郎著 流れ学 を参考にして以下説明する. 流体の運動と電磁場の作用が相互に干渉する 結果, 磁場が存在する場合の導電性気体中の小さい撹乱は, 普通の音波や電磁波とは異なる波の 形で伝播する. 特に伝播速度は, 伝播の方向が磁場の方向となす角に関係する. このような伝播 の法則を明らかにすることは, 導電性気体中の物体の運動を正しく理解するためにも重要なもの である.

More information

ベクトル公式.rtf

ベクトル公式.rtf 6 章ラプラシアン, ベクトル公式, 定理 6.1 ラプラシアン Laplacian φ はベクトル量である. そこでさらに発散をとると, φ はどういう形になるであろうか? φ = a + a + a φ a + a φ + a φ = φ + φ + φ = 2 φ + 2 φ 2 + 2 φ 2 2 φ = 2 φ 2 + 2 φ 2 + 2 φ 2 = 2 φ したがって,2 階の偏微分演算となる.

More information

Microsoft PowerPoint - siryo7

Microsoft PowerPoint - siryo7 . 化学反応と溶液 - 遷移状態理論と溶液論 -.. 遷移状態理論 と溶液論 7 年 5 月 5 日 衝突論と遷移状態理論の比較 + 生成物 原子どうしの反応 活性錯体 ( 遷移状態 ) は 3つの並進 つの回転の自由度をもつ (1つの振動モードは分解に相当 ) 3/ [ ( m m) T] 8 IT q q π + π tansqot 3 h h との並進分配関数 [ πmt] 3/ [ ] 3/

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える 共振回路 概要 回路は ラジオや通信工学 などに広く使われる この回路の目的は 特定の周波数のときに大きな電流を得ることである 使い方には 周波数を設定し外へ発する 外部からの周波数に合わせて同調する がある このように 周波数を扱うことから 交流を考える 特に ( キャパシタ ) と ( インダクタ ) のそれぞれが 周波数によってインピーダンス *) が変わることが回路解釈の鍵になることに注目する

More information

s とは何か 2011 年 2 月 5 日目次へ戻る 1 正弦波の微分 y=v m sin ωt を時間 t で微分します V m は正弦波の最大値です 合成関数の微分法を用い y=v m sin u u=ωt と置きますと dy dt dy du du dt d du V m sin u d dt

s とは何か 2011 年 2 月 5 日目次へ戻る 1 正弦波の微分 y=v m sin ωt を時間 t で微分します V m は正弦波の最大値です 合成関数の微分法を用い y=v m sin u u=ωt と置きますと dy dt dy du du dt d du V m sin u d dt とは何か 0 年 月 5 日目次へ戻る 正弦波の微分 y= in を時間 で微分します は正弦波の最大値です 合成関数の微分法を用い y= in u u= と置きますと y y in u in u (co u co になります in u の は定数なので 微分後も残ります 合成関数の微分法ですので 最後に u を に戻しています 0[ra] の co 値は [ra] の in 値と同じです その先の角

More information

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30 2.5 (Gauss) 2.5.1 (flux) v(r)( ) n v n v n (1) v n = v n = v, n. n n v v I(2012), ec. 2. 5 p. 1/30 i (2) lim v(r i ) i = v(r) d. i 0 i (flux) I(2012), ec. 2. 5 p. 2/30 2.5.2 ( ) ( ) q 1 r 2 E 2 q r 1 E

More information

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 . 三角関数 基本関係 t cot c sc c cot sc t 還元公式 t t t t t t cot t cot t 数学 数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 数学. 三角関数 5 積和公式 6 和積公式 数学. 三角関数 7 合成 t V v t V v t V V V V VV V V V t V v v 8 べき乗 5 6 6

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

スライド 1

スライド 1 センサー工学 2012 年 11 月 28 日 ( 水 ) 第 8 回 知能情報工学科横田孝義 1 センサー工学 10/03 10/10 10/17 10/24 11/7 11/14 11/21 11/28 12/05 12/12 12/19 1/09 1/16 1/23 1/30 2 前々回から振動センサーを学習しています 今回が最終回の予定 3 振動の測定教科書 計測工学 の 194 ページ 二つのケースがある

More information

<4D F736F F D20824F B834E835882CC92E8979D814690FC90CF95AA82C696CA90CF95AA2E646F63>

<4D F736F F D20824F B834E835882CC92E8979D814690FC90CF95AA82C696CA90CF95AA2E646F63> 1/10 平成 23 年 6 月 1 日午後 4 時 33 分 07 ストークスの定理 : 線積分と面積分 07 ストークスの定理 : 線積分と面積分 ストークスの定理はガウスの定理とともに 非常に重要な定理であり 線積分と面積分の関係を表します つまり ガウスの定理 : 面積分と体積分 ( 体積を囲む閉じた面 = 表面 ) の関係 ストークスの定理 : 線積分と面積分 ( 面積を囲む外周の線 )

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 8 回電磁波の伝搬特性 Ⅱ ( ダクト伝搬 電離大気中の伝搬 フェージング ) 柴田幸司 本章の目的 産業や通信に用いられる電磁波は宇宙的な規模での振る舞いを考えると その周波数によって空間を伝搬する性質などが異なる よって 特に電離層での振る舞いを例に その違いについて理解する 電離層伝搬に関連する周波数 MF( 中波 ) 3kHz~ 3MHz HF( 短波 SW) 3MHz~3MHz

More information

Microsoft PowerPoint - 03.磁気

Microsoft PowerPoint - 03.磁気 第 3 章磁気 磁界と ローレンツ力 ヘンドリック アントーン ローレンツ ( Hendrik Antoon Lorentz 1853 年 7 月 18 日 - 1928 年 2 月 4 日 ) 磁石 磁石による磁気の特性 磁極間に発生する磁力線 電荷の同極同士 (+ と + と ) と同じように 磁石の同極同士 (N と N S と S) は反発し合い 異極同士 (N と S) は引き寄せ合う N

More information

[ 問題 1]( 力学 ) 図 1のように杭の頭の位置 A の上方 h のところから, おもりを初速度 0 で自由落下させて, 杭を地中に打ち込む おもりが杭に衝突したあとは, おもりと杭は一体となって鉛直下方向 ( 重力方向 ) に一緒に動き, おもりが地面に届く前に杭は止まった 自由落下のときに

[ 問題 1]( 力学 ) 図 1のように杭の頭の位置 A の上方 h のところから, おもりを初速度 0 で自由落下させて, 杭を地中に打ち込む おもりが杭に衝突したあとは, おもりと杭は一体となって鉛直下方向 ( 重力方向 ) に一緒に動き, おもりが地面に届く前に杭は止まった 自由落下のときに 専門科目 ( 午後 ) 創造エネルギー 26 大修 時間 13:30~15:30 [ 問題 1]( 力学 ) [ 問題 2]( 原子物理学 ) [ 問題 3]( 物理化学 ) [ 問題 4]( 流体力学 ) [ 問題 5]( 熱力学 伝熱工学 ) [ 問題 6]( 電磁気学 ) [ 問題 7]( 電気電子回路 ) 注意事項 1.[ 問題 1]~[ 問題 7] から3 題を選択し, 解答せよ 2. 解答は1

More information

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1>

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1> 人工環境設計解析工学構造力学と有限要素法 ( 第 回 ) 東京大学新領域創成科学研究科 鈴木克幸 固体力学の基礎方程式 変位 - ひずみの関係 適合条件式 ひずみ - 応力の関係 構成方程式 応力 - 外力の関係 平衡方程式 境界条件 変位規定境界 反力規定境界 境界条件 荷重応力ひずみ変形 場の方程式 Γ t Γ t 平衡方程式構成方程式適合条件式 構造力学の基礎式 ひずみ 一軸 荷重応力ひずみ変形

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 9 回アンテナ ( 基本性質 利得 インピーダンス整合 指向性 実効長 ) 柴田幸司 講義ノート アンテナとは 無線機器の信号 ( 電磁波 ) を空間に効率よく放射したり 空間にある電磁波を無線機器に導くための部品 より長距離での通信の為 非共振型アンテナ ホーン ( ラッパ ) パラボラレンズ 非共振型アンテナの動作原理 ホーンアンテナ 導波路がテーパ状に広がることにより反射させることなく開口面まで伝搬させ

More information

Microsoft PowerPoint - C1_permanent_magnet_slide.pptx

Microsoft PowerPoint - C1_permanent_magnet_slide.pptx v6.9 ov.8 永久磁石と電磁石 磁石と磁極 永久磁石 電源不要 反磁界による減磁作用 極性は固定されて切替不可 電磁石 電源必要 電流量で磁力を調整可能 極性の切替が自在に可能 st. /4/ L st. 8//8 [T] キュリー温度 Tc で自発磁化消失 ( 高温減磁 ) 磁気ダイポールの向き T [K] T 谷腰,``トコトンやさしいフェライトの本, p.9, 日刊工業新聞社 周波数による電流量の変動

More information

PowerPoint Presentation

PowerPoint Presentation 半導体電子工学 II 神戸大学工学部 電気電子工学科 12/08/'10 半導体電子工学 Ⅱ 1 全体の内容 日付内容 ( 予定 ) 備考 1 10 月 6 日半導体電子工学 I の基礎 ( 復習 ) 11/24/'10 2 10 月 13 日 pn 接合ダイオード (1) 3 10 月 20 日 4 10 月 27 日 5 11 月 10 日 pn 接合ダイオード (2) pn 接合ダイオード (3)

More information

室蘭工業大学応用物理コース応用光学講義ノート 2016/0307 版 古典電磁気学による 光の性質と物質の光学的性質 目次 幾何光学 ---2 フェルマーの原理 ---2 レンズ ---5 波の性質 ---7 波の干渉

室蘭工業大学応用物理コース応用光学講義ノート 2016/0307 版 古典電磁気学による 光の性質と物質の光学的性質 目次 幾何光学 ---2 フェルマーの原理 ---2 レンズ ---5 波の性質 ---7 波の干渉 室蘭工業大学応用物理コース応用光学講義ノート 67 版 ------------------- 古典電磁気学による 光の性質と物質の光学的性質 ------------------- 目次 幾何光学 --- フェルマーの原理 --- レンズ ---5 波の性質 ---7 波の干渉 ---8 ホイヘンスの原理干渉および回折現象 ---9 反射型回折格子 --- 電子振動子模型 ---5 ドルーデ模型

More information

電磁波解析入門セミナー 説明資料 All Rights Reserved, Copyright c Murata Software Co., Ltd. 1

電磁波解析入門セミナー 説明資料 All Rights Reserved, Copyright c Murata Software Co., Ltd. 1 電磁波解析入門セミナー 説明資料 1 もくじ 1. 電磁波解析の概要 2. 電磁波解析の機能 設定の紹介 2 もくじ 1. 電磁波解析の概要 Femtet の3つの電磁界ソルバ... 4 電磁波解析の3つの種類... 5 調和解析... 6 導波路解析... 7 共振解析... 8 2. 電磁波解析の機能 設定の紹介 3 Femtet の 3 つの電磁界ソルバ Femtet には 3 つの電磁界ソルバがあります

More information

物性基礎

物性基礎 水素様原子 水素原子 水素様原子 エネルギー固有値 波動関数 主量子数 角運動量 方位量子数 磁気量子数 原子核 + 電子 個 F p F = V = 水素様原子 古典力学 水素様原子 量子力学 角運動量 L p F p L 運動方程式 d dt p = d d d p p = p + dt dt dt = p p = d dt L = 角運動量の保存則 ポテンシャルエネルギー V = 4πε =

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

Quz Quz

Quz Quz http://www.ppl.app.keo.ac.jp/denjk III (1969). (1977). ( ) (1999). (1981). (199). Harry Lass Vector and Tensor Analyss, McGraw-Hll, (195).. Quz Quz II E B / t = Maxwell ρ e E = (1.1) ε E= (1.) B = (1.3)

More information

em2_mat18-01

em2_mat18-01 平成 30 年度後期 内容 : 1. 序論 電磁気学 II 第 1 回 井上真澄 電磁気学 II の学び方概要, 目的, 授業予定, 他科目との関係, 注意点, など 様々な磁場発生源 電磁誘導に関する現象 応用現象, 応用 ( 変圧器, 誘導加熱 < 炊飯器, 電磁調理器, 結晶成長, 金属焼き入れ 焼鈍 >, 誘導モータ, 発電機, 非接触 IC カード RFID タグ ) 電磁波に関する現象

More information

em1_mat19-01

em1_mat19-01 < 平成 31 年度前期 > 内容 : 1. 序論 電磁気学 I 第 1 回 井上真澄 電磁気学 I の学び方概要, 目的, 授業予定, 他科目との関係, 注意点, ベクトル量の表記, など 電気とは 身の回りの電気電気の活躍する場, 日常の静電気現象, 静電気応用の工業製品 この授業について 科目名 : 電磁気学 I 開講対象 : メカトロニクス工学科 2 年生 授業の概要と目的 : メカトロニクスでは,

More information

スライド 1

スライド 1 物理学序論 2 ( 電磁気学入門 ) 第 14 講 160122 電磁波と光 1 2 波数ベクトル k : 波の進行方向を向き k =2p/l 電場ベクトル E : 媒体の振動方向を示し 最大振幅が E = E 0 横波であれば 振幅方向と波数ベクトル k は直交するので k E=0 電磁波の 3 次元空間における平面波は E = E 0 sin(w t - k r) = (E 0x, E 0y,

More information

Microsoft Word - note02.doc

Microsoft Word - note02.doc 年度 物理化学 Ⅱ 講義ノート. 二原子分子の振動. 調和振動子近似 モデル 分子 = 理想的なバネでつながった原子 r : 核間距離, r e : 平衡核間距離, : 変位 ( = r r e ), k f : 力の定数ポテンシャルエネルギー ( ) k V = f (.) 古典運動方程式 [ 振動数 ] 3.3 d kf (.) dt μ : 換算質量 (m, m : 原子, の質量 ) mm

More information

<4D F736F F D20824F E B82CC90FC90CF95AA2E646F63>

<4D F736F F D20824F E B82CC90FC90CF95AA2E646F63> 1/1 平成 3 年 6 月 11 日午前 1 時 3 分 4 ベクトルの線積分 4 ベクトルの線積分 Ⅰ. 積分の種類 通常の物理で使う積分には 3 種類あります 積分変数の数に応じて 線積分 ( 記号 横(1 重 d, dy, dz d ( ine: 面積分 ( 記号 縦 横 ( 重 線 4 ベクトルの線積分 重積分記号 ddy, dydz, dzdz ds ( Surface: 1 重積分記号

More information

5-仮想仕事式と種々の応力.ppt

5-仮想仕事式と種々の応力.ppt 1 以上, 運動の変数についての話を終える. 次は再び力の変数に戻る. その前に, まず次の話が唐突と思われないように 以下は前置き. 先に, 力の変数と運動の変数には対応関係があって, 適当な内積演算によって仕事量を表す ことを述べた. 実は,Cauchy 応力と速度勾配テンソル ( あるいは変位勾配テンソル ) を用いると, それらの内積は内部仮想仕事を表していて, そして, それは外力がなす仮想仕事に等しいという

More information

Microsoft Word - H26mse-bese-exp_no1.docx

Microsoft Word - H26mse-bese-exp_no1.docx 実験 No 電気回路の応答 交流回路とインピーダンスの計測 平成 26 年 4 月 担当教員 : 三宅 T A : 許斐 (M2) 齋藤 (M) 目的 2 世紀の社会において 電気エネルギーの占める割合は増加の一途をたどっている このような電気エネルギーを制御して使いこなすには その基礎となる電気回路をまず理解する必要がある 本実験の目的は 電気回路の基礎特性について 実験 計測を通じて理解を深めることである

More information

Microsoft PowerPoint - meta_tomita.ppt

Microsoft PowerPoint - meta_tomita.ppt メタマテリアルの光応答 量子物性科学講座 冨田知志 メタマテリアルとは meta-: higher, beyond Oxford ALD Pendry, Contemporary Phys. (004) メタマテリアル (meta-material): 波長 λ に対して十分小さい要素を組み合わせて 自然界には無い物性を実現した人工物質 ( 材料 ) 通常の物質 :, は構成原子に起因 メタ物質 :

More information

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析

More information