スライド 1

Size: px
Start display at page:

Download "スライド 1"

Transcription

1 暫定版修正 加筆の可能性あり ( 付録 ) マクスウェルの応力テンソル (). ある領域に作用する力 2. 応力テンソル 3. 力の総和と応力テンソル 4. ローレンツ力 5. マクスウェルの方程式 6. 孤立系 注意. 本付録 : マクスウェルの応力テンソル(stress tesor) 2. 簡単のため 個々の電荷が真空中をバラバラに運動する孤立系を考えます 3. 背景は真空とします 真空中の誘電率と透磁率を使用します 4. 参考文献 : 本宮 波動光学の風景 O plus E, 29, 3, p.274 (2007) 604

2 おことわり 電場でお馴染みの E と D 本付録では 電場 E 電束密度 D と記す 電場 E:electric field 電束密度 D:electric flux desity 電気変位 D:electric displacemet field C: クーロン 単位 V m 2 Cm 磁場でお馴染みの H と B 注意 : 英語では H も B も magetic field と呼ばれる 混同しやすい 本付録では 磁場 H 磁場 B と記す 磁場 H:magetic H field 磁場の強さ :magetic field itesity 磁場 B:magetic B field 磁束密度 :magetic flux desity T: テスラ Wb: ウェーバー T 単位 Am = Wb m

3 ある領域に作用する力 () 質点 :poit mass 微小領域 :dv z 軸 y 軸 F 2 F 5 F F 3 F 2 F 3 x 軸 F F 4 力の総和 : ベクトル和 F= F F2 F3 F4 総和が零の場合 : 慣性の法則に従う F 4 力の総和ベクトル和 F 6 F dv = dxdydz = Fi F= F F2 F3 F4 = 0 導入 : 位置依存性 f 単位体積当たりの力 ( r) dv = F( r) 注意 : 外力と内力を問わず成立する話 外力 : 力の源 (source) が質点位置の外部に存在 内力 : 力の源 (source) が質点内に存在 但し 質点の内力と言われてもピンときませんが 注意 : 外力と内力を問わず成立する話 外力 : 力の源 (source) が微小領域外に存在 内力 : 力の源 (source) が微小領域内に存在 6043

4 ある領域に作用する力 (2) 領域全体 : 太線内 領域全体に作用する力の総和 F ( r ) 2 微小領域 :dv F ( r ) 5 f( r ) F ( r ) 3 F( r) F total ( ) = f r 微小領域での力の総和 単位体積当たりの力 位置依存性有 dv 位置ベクトル r F = r ( r ) 4 F ( r ) 6 r = r 2 f( r 2 ) 微小領域 :dv ( ) dv = F( r) f r dv = dxdydz 微小領域での力の総和ベクトル和 O 位置ベクトル ( ) F ( r) F r = i 原点 : 領域内でも外でも構わない 6044

5 微小領域に作用する力 微小領域での力の総和 : ベクトル和 微小領域 :dv z 軸 y 軸 ( ) F ( r) F r = i F 2 F 5 F 3 x 軸 微小領域での力の総和 単位体積当たりの力 位置依存性有 F ( ) = f( r)dxdydz F r F 4 ( F F ) ( F F ) ( F F ) = F 6 力 :yz 面力 :zx 面力 :xy 面 応力 (stress): 微小領域各面に作用する単位面積あたりの力 注意 : 外力と内力を問わず成立する話 ( ) = ( ) = ( ) ( ) ( ) F r f r dxdydz u u dydz u u dzdx u u dxdy 応力 :yz 面応力 :zx 面応力 :xy 面 6045

6 応力テンソル 応力テンソル :stress tesor 応力 (stress): 行ベクトル (raw vector) の場合 微小領域各面に作用する単位面積あたりの力 T: 応力テンソルの転置行列 (trasposed matrix) 応力は縦ベクトル表示も可 ( 本質的に変わりません ) xx xy = yx yy yz zx zy zz 行ベクトル表示 縦ベクトル表示 u u i i = = i T i 具体的な表現 : 行ベクトル表示注意 : 外力と内力を問わず成立する話 微小領域各面に対して外向きの単位法線ベクトル u xx xy = =,, zx zy zz i i x y z yx yy yz u 2 u 5 u 3 u u 4 微小領域各面に対して外向きの単位法線ベクトル u 6 微小領域 :dv 6046

7 応力と応力テンソル () 計算例 :yz 面の場合 注意 : 位置依存性 xx xy u = = [,0,0 ] yx yy yz = xx ( x x), xy ( x x), ( x x) zx zy zz xx xy u2 = 2 = [,0,0 ] yx yy yz = xx ( x), xy ( x), ( x) zx zy zz 法線ベクトル :ormal vector x z 軸 y 軸 2 = (,0,0) (,0,0) = u 2 u x 軸 x = x x= x x 6047

8 応力と応力テンソル (2) 計算例 :zx 面の場合 xx xy u3 = 3 = [ 0,, 0 ] yx yy yz = yx ( y y), yy ( y y), yz ( y y) zx zy zz ( y), ( y), ( y), [ 0,, 0] u 4 = 4 = yx yy yz 4 = 計算例 :xy 面の場合 xx xy u5 = 5 = [ 0,0, ] yx yy yz = zx ( z z), zy ( z z), zz ( z z) zx zy zz ( z), ( z), ( z), [ 0,0, ] u 6 = 6 = zx zy zz 6 = 6048

9 力の総和と応力テンソル 重要な関係式 : 微小領域に作用する力の総和 ( 単位体積当たり ) = ナブラベクトルと応力テンソル ( 行列 ) の積 xx yx zx f( r) = =,,, = xy yy zy x y z yz zz 具体的な表現 注意 : ベクトル解析でお馴染みの勾配 (gradiet) や発散 (divergece) ではありません ( ) f r xx xy = =,, yx yy yz x y z zx zy zz 注意 : 外力と内力を問わず成立する話 外力のみでも有効 内力のみでも有効 両者混在でも有効 yx xy yy zy yz f( r) =,, x y z x y z x y z xx zx zz 6049

10 力の総和と応力テンソル : 確認 () 応力 (stress): 参照 6045 ( ) = ( ) = ( ) ( ) ( ) F r f r dxdydz u u dydz u u dzdx u u dxdy 計算 : 右辺第一項 u u 2 ( x x), ( x x), ( x x) ( x), ( x), ( x) = xx xy xx xy ( x x) ( x), ( x x) ( x), ( x x) ( x) = xx xx xy xy ( x x) ( x) ( x x) ( x) ( x x) ( x) xx xx xy xy =,, x x x x xx xy,, dx x x x xx xy 2 dydz =,, dxdydz x x x ( u u ) 6040

11 力の総和と応力テンソル : 確認 (2) 計算 : 続き xx xy dydz =,, dxdydz x x x yx yy yz dzdx =,, dxdydz y y y zx zy zz dxdy =,, dxdydz z z z ( u u ) 2 ( u u ) 3 4 ( u u ) 5 6 ( ) = ( ) = ( ) ( ) ( ) F r f r dxdydz u u dydz u u dzdx u u dxdy yx xy yy zy yz =,, x y z x y z x y z xx zx zz = x y z x y z x y z ( ),, f r xx yx zx xy yy zy yz zz dxdydz 604

12 ローレンツ力とアンペールの力 参照 :407 ローレンツ力 (Loretz force): 単一電荷の場合 右辺第一項はクーロン力 (Coulomb fource) F= q ( E v B) F= qe qv B A: 導線の表面積 電荷 電荷の速度 電流 I I = qav : 単位体積当たりの電荷数 導線単位長さ当たりの電荷数 A アンペールの力 :Ampere s force: 単位長さ当たり ( ) F= A qv B = I B J: 電流密度 アンペールの力 :Ampere s force: 単位体積当たり ( q ) I f = v B = B= J B A ローレンツ力単位体積当たり (, t) = ρ (, t) (, t) (, t) (, t) f r r Er Jr Br 単一電荷の場合 : 位置 r 電荷密度 ρ:charge desity 単位体積当たりの電荷量 ( ) (, ), (, ) ( ) q = ρ r t dv ρ r t = qδ r r t 6042

13 ローレンツ力 : 導線 単位体積当たりのローレンツ力 : 導線を流れる定常電流 定常電流 : イメージ 積分領域 ρ = 0 = ρ = f E J B f J B 長さ :L 電流と電流密度の関係 時間平均 = 測定時間 ( ) = J ( r, ) I t L t dv 定常電流 : 測定毎に同一値 I ( t) = cost. 電流密度と電子位置 速度 ( ミクロな表現 ) 素電荷 :elemetary charge 電子の場合 ( i ) (, ) ( ) δ ( ) J r t = q v t r r t q= e i= i なにが言いたいのかな?: 導線を流れる定常電流 電子は移動中に周囲の電荷 ( 正 負 ) との間の引力 斥力で散乱される 但し 集団としてある一定の速度を持って同一方向に移動する ( 定常電流 ) 導線外 : 真空なので電荷密度は零 導線内 : 電子は移動 正電荷は不動 但し いつでもどこでも両者の数は同じとみなしてよい つまり 電荷密度は導線内も零 導線は正にも負にも帯電しない 電荷密度が導線内外で零だからクーロン力 ( ローレンツ力 : 右辺第一項 ) は効かない 参考文献 : 太田浩一 電磁気学の基礎 Ⅱ p.47 東京大学出版会 6043

14 ローレンツ力 : 電子流 単位体積当たりのローレンツ力 : 電子流 定常的な電子流 : イメージ 速度 : 一定 f = ρe J B v = cost. 電荷密度 :charge desity 電流密度 :curret desity( 一定速度 ) ρ ( i ) ( r, t) = q δ r r ( t) i= ( i ) (, t) = q δ ( t) J r v r r i= 真空中を電荷がバラバラに運動 : 単位体積当たりのローレンツ力 イメージ 速度変化 (, t) = ρ (, t) (, t) (, t) (, t) f r r Er Jr Br 電荷密度位置 : バラバラ 電流密度位置 速度 : バラバラ ρ ( i ) ( r, t) = qδ r r ( t) i= i ( ) (, t) = q ( t) δ ( t) J r v r r i= i i i q v ( t ) = e 電子 q 2 v 2 ( t) q i q v i ( t) v t 3 = e 正電荷 : 価 ( )

15 ローレンツ力 : 内力と外力 微小領域に作用するローレンツ力添字 : 電荷 (charge) に作用する力 ストロボ ( ある瞬間を ) 撮影 : 電荷はバラバラに運動 自己場 : 赤色の電荷が微小領域に作る電場 磁場 外場 : 黒色の電荷が微小領域に作る電場 磁場 ( ) = ρ ( ) ( ) ( ) ( ) fcharge r, t dv r, t Er, t dv Jr, t Br, t dv 微小領域が文字通り微小で領域内に電荷が 個しかない場合 dv 0 図中の赤色の電荷が受けるローレンツ力 赤色の電荷が電場 磁場の発生源となる場合 : 赤色の電荷が受けるローレンツ力は自分自身が作る電場 磁場 ( 自己場 ) による内力 ( 自己力 ) 微小領域外に存在する電荷が電場 磁場の発生源となる場合 : 赤色の電荷が受けるローレンツ力は自分自身を除いた他電荷が作る電場 磁場による外力 微小領域に作用する全ての力を計算するために 以後 ローレンツ力を 内力 外力の両方を含むローレンツ力 として扱います 電場 磁場の発生源は微小領域の内側 ( 自己場 ) にも外側 ( 外場 ) にも存在 電荷が感じる電場 磁場は自己場と外場の両方を含む ローレンツ力は電荷に作用する内力 外力の両者を含む 微小領域 :dv 質問 仮に 電荷に対してローレンツ力以外の力 ( 例えば 万有引力 ) の作用が無視できるとき 微小領域内の電荷に作用する内力 外力の両方を含むローレンツ力 は 微小領域に作用する内力 外力の両方を含む全ての力 と考えてよい? 6045

16 ローレンツ力 : 領域全体 ローレンツ力 : 領域全体に含まれる全ての電荷に作用する力の総和 ( ) = ρ ( ) ( ) ( ) ( ) fcharge r, t dv r, t Er, t dv Jr, t Br, t dv やや仮想的な世界 : 領域全体は完全に孤立 外部との交流なし 外部から孤立系への影響は皆無 孤立系内の電場 E と磁場 B はマクスウェルの方程式に支配される 電場 E と磁場 B の発生源は孤立系内の電荷の運動に限られる 孤立系は非常に大きく 電荷粒子 電場 E と磁場 B は孤立系から外に出られない 孤立系内の電荷はローレンツ力以外の力を受けない 質問 2: 真空中を電荷がバラバラに運動しているような孤立系に対して 孤立系全体に作用する力 は 孤立系内全ての電荷に作用するローレンツ力の総和 に等しい? 領域全体 : イメージ十分に大きな孤立系 ローレンツ力が有効 領域全体の外側は無 : 領域外との交流なし 電場 E と磁場 B が存在しても領域外には出られない (, t), Br (, t) Er マクスウェルの方程式が有効 6046

17 マクスウェルの方程式 参照 :2054 ファラデーの電磁誘導の法則 Br Er (, t) = t アンペールの法則 ( 変位電流追加 ) (, t) (, t) Dr H( r, t) = J r, t ( t) ガウスの法則 : 電場 E 磁場 B ( t) ρ ( t) ( t) Dr, = r,, Br, = 0 誘電率と透磁率 : 真空中 背景 : 真空 Dr (, t) = ε 0Er (, t) Br (, t) = µ Hr (, t) 0 単位体積当たりのローレンツ力 : 真空中を電荷がバラバラに運動 イメージ 速度変化 (, t) = ρ (, t) (, t) (, t) (, t) f r r Er Jr Br 電荷密度位置 : バラバラ 電流密度位置 速度 : バラバラ ρ ( i ) ( r, t) = qδ r r ( t) i= i ( ) (, t) = q ( t) δ ( t) J r v r r i= i i i q v ( t ) = e 電子 q 2 v 2 ( t) q i q v i ( t) v t 3 = e 正電荷 : 価 ( )

18 孤立系 ローレンツ力 : 微小領域 ローレンツ力 : 孤立系全体 f dv = ρe dv J B dv charge ρ charge f dv = EdV J BdV マクスウェルの方程式 (, t) ρ ( r, t) (, t) 0 (, t) Br Er (, t) = t Dr (, t) H( r, t) = J r, t Dr = Br = ( t) 孤立系 : 真空中を電荷がバラバラに運動 ρ (, t) = ε 0Er (, t) (, t) = µ Hr (, t) Dr Br 0 ( i ) ( r, t) = qδ r r ( t) i= ( ) (, t) = q ( t) δ ( t) J r v r r i= i i i i 質問 : 微小領域内の電荷に作用する内力 外力の両方を含むローレンツ力 は 微小領域に作用する内力 外力の両方を含む全ての力 と考えてよい? 質問 2: 真空中を電荷がバラバラに運動しているような孤立系に対して 孤立系全体に作用する力 は 孤立系内全ての電荷に作用するローレンツ力の総和 に等しい? ( 付録 ) マクスウェルの応力テンソル (2) へ続く ( 参照 :605) 6048

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) マクスウェルの応力テンソル () 1. 復習 : 孤立系. マクスウェルの応力テンソル 3. 電磁波 ( 光 ) の運動量密度 4. 運動量の保存則 5. 電磁波 ( 光 ) の運動量 : 進行波 6. 電磁波 ( 光 ) の運動量 : 定在波 7. 電磁波 ( 光 ) の運動量 : 鏡面反射 8. 鏡面反射と定在波 9. マクスウェルの応力テンソル :

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) マクスウェルの方程式 : 真空中 () 1. 電磁波 ( 光波 ) の姿 : 真空中. エネルギー密度 3. ポインティング ベクトル 4. 絵解き : ポインティング ベクトル 5. ポインティング ベクトル : 再確認 6. 両者の関係 7. 付録 : ベクトル解析 注意 1. 本付録 : マクスウェルの方程式: 微分型 を使用. マクスウェルの方程式を数学的に取扱います

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) コイルと磁場 () coil and magnetic field part. ソレノイドコイルのエネルギー. エネルギー密度の比較 : 電場と磁場 3. 磁場のエネルギーとベクトルポテンシャル 4. 相互作用エネルギー : 電場と磁場 5. 資料 : 電源について 注意. 電磁波を記述する マクスウェル方程式 の理解に必要を思われるトピックスに限定. 定常電流が作る磁場

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) コイルと磁場 () coil nd mgnetic field prt. 相互インダクタンス : 変圧器. 磁場のエネルギー : 変圧器 3. 直線近似 4. ローレンツ力とアンペールの力 5. 直線定常が作るベクトルポテンシャル 6. ポテンシャルエネルギー 注意. 電磁波を記述する マクスウェル方程式 の理解に必要を思われるトピックスに限定. 定常が作る磁場

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 電磁波 ( 光 ) の角運動量. 復習 : 電磁波 ( 光 ) のエネルギー. 運動量 角運動量 ( 実空間 ) 3. 軌道 スピン角運動量 4. 円偏光状態 5. 螺旋状態 付録 8 のアプローチ. 本付録では電磁波 ( 光 ) の軌道 スピン角運動量ついて古典的に扱う. スピン角運動量は直線偏光状態では零 円偏光状態では非零 右 左回りで大きさは同じ

More information

Microsoft PowerPoint - 第5回電磁気学I 

Microsoft PowerPoint - 第5回電磁気学I  1 年 11 月 8 日 ( 月 ) 1:-1: Y 平成 年度工 系 ( 社会環境工学科 ) 第 5 回電磁気学 Ⅰ 天野浩 項目 電界と電束密度 ガウスの発散定理とガウスの法則の積分形と微分形 * ファラデーの電気力線の使い方をマスターします * 電界と電束密度を定義します * ガウスの発散定理を用いて ガウスの法則の積分形から微分形をガウスの法則の積分形から微分形を導出します * ガウスの法則を用いて

More information

スライド 1

スライド 1 光通信工学 マクスウェルの方程式. 復習. マクスウェルの方程式 E 3. 誘電率 透磁率と光速 4. 波動インピーダンス D 5. 境界条件 ( 誘電体 ) H D t + i B t ρ B 磁場でお馴染みの H と B 注意 : 英語では H も B も magnetic field と呼ばれる 混同しやすい 本講義では 磁場 H 磁場 B と記す 磁場 H:magnetic H field

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

スライド 1

スライド 1 電流と磁場 目次 0. はじめにー物質の磁気的性質と磁場ー 1. 磁石と磁場 2. 電流のつくる磁場 (1) 3. 磁場中の運動する荷電粒子に働く磁気力 ( ローレンツ力 ) 4. 磁場中の電流に働く力 ( アンペアの力 ) 5. 平行または反平行電流の間に働く磁気力 6. 電流のつくる磁場 (2)- ビオ サバールの法則 7. アンペアの法則 ( アンペアの回路定理 ) 8. 磁場 に対するガウスの法則付録

More information

F コンデンサーの静電容量高校物理において コンデンサーは合同な 2 枚の金属板を平行に並べたものである 電池を接続すると 電圧の高い方 (+ 極 ) に接続された金属板には正の電気量 Q(C) が 低い方には負の電気量 -Q(C) が蓄積される 正負の電気量の絶対値は等しい 蓄積された電気量 Q

F コンデンサーの静電容量高校物理において コンデンサーは合同な 2 枚の金属板を平行に並べたものである 電池を接続すると 電圧の高い方 (+ 極 ) に接続された金属板には正の電気量 Q(C) が 低い方には負の電気量 -Q(C) が蓄積される 正負の電気量の絶対値は等しい 蓄積された電気量 Q 電磁気の公式の解説 更新日 :2017 年 5 月 11 日 A 電気量電荷と電気量は何が違うのだろうか? 簡単に言うと 電気を帯びたものを電荷といい その電荷の大きさを数字で表すものが電気量である 電荷と電気量の本来の意味は少し違うが 実際には同じ意味で使われることが多い 電気量は次のように決められる ファラデー定数 9.65 10 4 (C /mol ) より電子 6.02 10 23 個が電気量

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) デルタ関数. ローレンツ関数. ガウス関数 3. Sinc 関数 4. Sinc 関数 5. 指数関数 6. 量子力学 : デルタ関数 7. プレメリの公式 8. 電磁気学 : デルタ関数 9. デルタ関数 : スケール 微分 デルタ関数 (delta function) ( ) δ ( ) ( ), δ ( ), δ ( ), δ ( ) f x x dx

More information

Microsoft PowerPoint - 第9回電磁気学

Microsoft PowerPoint - 第9回電磁気学 017 年 1 月 04 日 ( 月 ) 13:00-14:30 C13 平成 9 年度工 V 系 ( 社会環境工学科 ) 第 9 回電磁気学 Ⅰ 天野浩 mno@nuee.ngoy-u.c.jp 9 1 月 04 日 第 5 章 電流の間に働く力 磁場 微分形で表したア ンペールの法則 ビオ サバールの法則 第 5 章電流の作る場 http://www.ntt-est.co.jp/business/mgzine/netwok_histoy/0/

More information

Microsoft PowerPoint EM2_15.ppt

Microsoft PowerPoint EM2_15.ppt ( 第 5 回 ) 鹿間信介摂南大学理工学部電気電子工学科 後半部 (4~5 章 ) のまとめ 4. 導体 4.3 誘電体 5. 磁性体 5. 電気抵抗 演習 導体表面の電界強度 () 外部電界があっても導体内部の電界は ( ゼロ ) になる () 導体の電位は一定 () 導体表面は等電位面 (3) 導体表面の電界は導体に垂直 導体表面と平行な成分があると, 導体表面の電子が移動 導体表面の電界は不連続

More information

応用数学A

応用数学A 応用数学 A 米田 戸倉川月 7 限 1930~2100 西 5-109 V を :x 2 + y 2 + z 2 = 4 で囲まれる内部とする F = ye x xe y + ze z FdV = V e x e y e z F = = 2e z 2e z dv = 2e z 3 23 = 64π 3 e z y x z 4π V n Fd = 1 F nd 2 F nd 法線ベクトル n g x,

More information

Microsoft PowerPoint EM2_15.ppt

Microsoft PowerPoint EM2_15.ppt ( 第 5 回 ) 鹿間信介摂南大学理工学部電気電子工学科 後半部 (4~5 章 ) のまとめ 4. 導体 4.3 誘電体 5. 磁性体 5. 電気抵抗 演習 静電誘導電界とその重ね合わせ 導体内部の電荷 : 外部電界 誘導電界の重ね合わせ電界を感じる () 内部電荷自身が移動することで作り出した電界にも反応 () さらに移動場所を変える (3) 上記 ()~() の繰り返し 最終的に落ち着く状態

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

人間科学部研究年報平成 24 年 (1) (2) (3) (4) 式 (1) は, クーロン (Coulomb) の法則とも呼ばれる.ρは電荷密度を表し,ε 0 は真空の誘電率と呼ばれる定数である. 式 (2) は, 磁荷が存在しないことを表す式である. 式 (3) はファラデー (Faraday)

人間科学部研究年報平成 24 年 (1) (2) (3) (4) 式 (1) は, クーロン (Coulomb) の法則とも呼ばれる.ρは電荷密度を表し,ε 0 は真空の誘電率と呼ばれる定数である. 式 (2) は, 磁荷が存在しないことを表す式である. 式 (3) はファラデー (Faraday) 複素振幅をもつ球面波の人間科学部研究年報 Maxwell 平成 24 方程式年 複素振幅をもつ球面波の Maxwell 方程式 Maxwell Equation of Spherical Wave with Complex Amplitude 戸上良弘 Yoshihiro TOGAMI Abstract 複素振幅をもつ球面波に関して, マクスウェル (Maxwell) 方程式との関係を考察した. 電気的な球面波としてのスカラーポテンシャルが与えられたとき,

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 屈折率と誘電率 : 金属. 復習. 電気伝導度 3. アンペールの法則の修正 4. 表皮効果 表皮深さ 5. 鏡の反射 6. 整理 : 電子振動子模型 注意 : 整理しましょう! 前回 : 付録 (4) のアプローチ. 屈折率と損失について記述するために分極振動 ( 電気双極子の集団運動 ) による電気双極子放射を考慮. 誘電率は 真空中の値 を採用 オリジナル光

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 演習プリント N.15 43. 目的 : 電磁誘導は, 基本を理解すれば問題はそれほど難しくない! ということを学ぶ 問 1 の [ ] に適切な数値または数式を入れ, 問 に答えよ 図 1 のように, 紙面に垂直で一様な磁界が 0 の領域だけにある場合について考える 磁束密度は Wb/m で, 磁界は紙面の表から裏へ向かっている 図のように,1 辺の長さが m の正方形のコイル を,

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 球面波 回折 (. グリーンの定理. キルヒホッフの積分定理 3. ホイヘンスの原理 4. キルヒホッフの回折公式 5. ゾンマーフェルトの放射条件 6. 補足 付録 (90~904 のアプローチ : 回折 (diffaction までの道標. 球面波 (pheical wave のみ対象 : スカラー表示. 虚数単位 i を使用する 3. お詫び : 自己流かつ説明が飛躍する場面があります

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

第1章 様々な運動

第1章 様々な運動 自己誘導と相互誘導 自己誘導 自己誘導起電力 ( 逆起電力 ) 図のように起電力 V V の電池, 抵抗値 R Ω の抵抗, スイッチS, コイルを直列につないだ回路を考える. コイルに電流が流れると, コイル自身が作る磁場による磁束がコイルを貫く. コイルに流れる電流が変化すると, コイルを貫く磁束も変化するのでコイルにはこの変化を妨げる方向に誘導起電力が生じる. この現象を自己誘導という. 自己誘導による起電力は電流変化を妨げる方向に生じるので逆起電力とも呼ばれる.

More information

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63> 1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です

More information

<4D F736F F F696E74202D2095A8979D90948A CE394BC A2E707074>

<4D F736F F F696E74202D2095A8979D90948A CE394BC A2E707074> 物理数学 1B( 後半部 ) 担当教員 : 山本貴博 講義内容 : ベクトル場における積分定理 第 1 回目講義 : 平面におけるグリーンの定理 ( 線積分 2 重積分 ) (12 月 11 日 ) 第 2 回目講義 : ガウスの定理 ( 面積分 体積分 ) (12 月 18 日 ) 第 3 回目講義 : ストークスの定理 ( 線積分 面積分 ) (1 月 15 日 ) 第 1 回目講義 : 平面におけるグリーンの定理

More information

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A 7 Lorentz 7.1 Ampère I 1 I 2 I 2 I 1 L I 1 I 2 21 12 L r 21 = 12 = µ 0 2π I 1 I 2 r L. (7.1) 7.1 µ 0 =4π 10 7 N A 2 (7.2) magnetic permiability I 1 I 2 I 1 I 2 12 21 12 21 7.1: 1m 95 96 7 1m =2 10 7 N

More information

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ]

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ] Tsor th-ordr tsor by dcl xprsso m m Lm m k m k L mk kk quott rul by symbolc xprsso Lk X thrd-ordr tsor cotrcto j j Copyrght s rsrvd. No prt of ths documt my b rproducd for proft. テンソル ( その ) テンソル ( その

More information

Microsoft Word - 9章(分子物性).doc

Microsoft Word - 9章(分子物性).doc 1/1/6 9 章分子物性 1 節電気双極子モーメント (Electric Dipole Moment) 電子双極子モーメント とは 微小な距離 a だけ離れて点電荷 q が存在する状態 絶対値は aq で 負電荷 q から正電荷 q へ向かうベクトルである 例えば 水分子は下右図のような向きの電気双極子モーメントをもち その大きさは約 1.85D である このように元々から持っている双極子モーメントを

More information

1 B () Ver 2014 0 2014/10 2015/1 http://www-cr.scphys.kyoto-u.ac.jp/member/tsuru/lecture/... 1. ( ) 2. 3. 3 1 7 1.1..................................................... 7 1.2.............................................

More information

Microsoft Word - EM_EHD_2010.doc

Microsoft Word - EM_EHD_2010.doc H のための電磁気学 機能材料工学科阿部洋 . 電磁気学電磁気学電磁気学電磁気学の基礎基礎基礎基礎 - マクスウェルマクスウェルマクスウェルマクスウェルの応力応力応力応力静電場の条件は e div ρ ( ) ot ( ) である 体積 V で電荷密度 ρ e に働く力はクーロン力から ρ dv F e ( 3) と表せる ( 3) 式に ( ) を代入すると ( ) dv div F ( 4) となる

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 米田 戸倉川月 7 限 193~21 西 5-19 応用数学 A 積分定理 Gaussの定理 divbd = B nds Stokesの定理 E bds = E dr Green の定理 g x f y dxdy = fdx + gdy = f e i + ge j dr Gauss の発散定理 S n FdS = Fd 1777-1855 ドイツ Johann arl Friedrich Gauss

More information

2. コンデンサー 極板面積 S m 2, 極板間隔 d m で, 極板間の誘電率が ε F/m の平行板コンデンサー 容量 C F は C = ( )(23) 容量 C のコンデンサーの極板間に電圧をかけたとき 蓄えられる電荷 Q C Q = ( )(24) 蓄えられる静電エネルギー U J U

2. コンデンサー 極板面積 S m 2, 極板間隔 d m で, 極板間の誘電率が ε F/m の平行板コンデンサー 容量 C F は C = ( )(23) 容量 C のコンデンサーの極板間に電圧をかけたとき 蓄えられる電荷 Q C Q = ( )(24) 蓄えられる静電エネルギー U J U 折戸の物理 簡単復習プリント 電磁気 1 基本事項の簡単な復習電磁気 1. 電場 クーロンの法則 電気量 q1,q2 C の電荷が距離 r m で置かれているとき働く 静電気力 F N は, クーロンの法則の比例定数を k N m 2 /s 2 として 電場 F = ( )(1) 力の向きは,q1,q2 が, 同符号の時 ( )(2) 異符号の時 ( )(3) 大きさ E V/m の電場に, 電気量

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 電子スピン共鳴 :Electron pin Reonance (ER) 1. 歳差運動 (preceion). スピン角運動量 : 電子 3. ゼーマン効果 : スピン 4. 平行 反平行状態 5. ラーモア歳差運動 6. 電子スピン共鳴 7. 緩和過程 注意 1. 本付録 : 電子スピン共鳴 について 原理 概略を説明. 但し 電子スピン共鳴装置 の特徴や使用法の説明はしません

More information

DVIOUT-概論II_電磁気パー

DVIOUT-概論II_電磁気パー 物理学概論 II 電磁気学の部分 百科全書 初版 Dynamique 動力学 の頁 高知大学附属図書館蔵 高知大学理学部理学科物理科学 津江保彦 Yasuhiko TSUE ホームページは, http://www..kohi-u.a.jp/ tsue/ 目次 1 章数学的準備ーベクトル解析の初歩ー 2 1.1 勾配 発散 回転...........................................

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 準備 : 非線形光学効果 (). 絵解き : 第二高調波発生. 基本波の波動方程式 3. 第二高調波の波動方程式 4. 二倍分極振動 : ブランコ 5. 結合波動方程式へ 6. 補足 : 非線形電気感受率 ( 複素数 ) 付録 43 のアプローチ. 分極振動とは振動電場に誘われて伸縮する電気双極子の集団運動. 電気感受率と波動方程式の関係を明らかにする 3.

More information

<4D F736F F F696E74202D E8EA58FEA82C982E682E997CD82C68EA590AB91CC>

<4D F736F F F696E74202D E8EA58FEA82C982E682E997CD82C68EA590AB91CC> 第 25 章磁場による力と磁性体 ローレンツ力 磁界の強さ 磁界と電界の違いは? 電界 単位面積当たりの電気力線の本数に比例 力 = 電荷 電界の強さ F = qe 磁界 単位面積当たりの磁力線の本数に比例 力 = 磁荷? 磁界の強さ F = qvb ( 後述 ) 電界と力の関係から調べてみる 磁界中のコイルと磁束 S B S B S: コイルの断面積 : コイルを貫く磁力線 ( 磁束 ) : コイル面と磁界のなす角

More information

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

木村の物理小ネタ   ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

Microsoft PowerPoint - 夏の学校(CFD).pptx

Microsoft PowerPoint - 夏の学校(CFD).pptx /9/5 FD( 計算流体力学 ) の基礎理論 性能 運動分野 夏の学校 神戸大学大学院海事科学研究科勝井辰博 流体の質量保存 流体要素内の質量の増加率 [ 単位時間当たりの増加量 ] 単位時間に流体要素に流入する質量 流体要素 Fl lm (orol olm) v ( ) ガウスの定理 v( ) /9/5 = =( ) b=b =(b b b ) b= b = b + b + b アインシュタイン表記

More information

電磁気学 A 練習問題 ( 改 ) 計 5 ページ ( 以下の問題およびその類題から 3 題程度を定期試験の問題として出題します ) 以下の設問で特に断らない限り真空中であることが仮定されているものとする 1. 以下の量を 3 次元極座標 r,, ベクトル e, e, e r 用いて表せ (1) g

電磁気学 A 練習問題 ( 改 ) 計 5 ページ ( 以下の問題およびその類題から 3 題程度を定期試験の問題として出題します ) 以下の設問で特に断らない限り真空中であることが仮定されているものとする 1. 以下の量を 3 次元極座標 r,, ベクトル e, e, e r 用いて表せ (1) g 電磁気学 A 練習問題 ( 改 ) 計 5 ページ ( 以下の問題およびその類題から 題程度を定期試験の問題として出題します ) 以下の設問で特に断らない限り真空中であることが仮定されているものとする. 以下の量を 次元極座標,, ベクトル e, e, e 用いて表せ () gad () ot A (). 以下の量を 次元円柱座標,, z 位ベクトル e e, e, z 用いて表せ () gad ()

More information

Microsoft PowerPoint - 学内講演会.ppt

Microsoft PowerPoint - 学内講演会.ppt Force-free トルクと縦磁界効果 超伝導体内の電磁現象 大学院情報工学研究院松下照男 2009 年 6 月 17 日 内容 はじめに 横磁界下の電磁現象 通常の超伝導体内の電磁現象 縦磁界下の電磁現象 従来の考え方新しい考え方 超伝導と電磁気学 まとめ 1. はじめに 通常の横磁界下の超伝導体に電流を流す場合磁束に歪が生じ 復元力 (Lorentz 力 J B ) が働く ( 金属でも同様

More information

i

i 007 0 1 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................ 3 0.4............................................. 3 1

More information

Microsoft PowerPoint - 04.誘導起電力 [互換モード]

Microsoft PowerPoint - 04.誘導起電力 [互換モード] 第 4 章誘導起電力 Φ 磁界中のコイルと磁束 ( 復習 ) : コイルの断面積 Φ : コイルを貫く磁 力線 ( 磁束 ) B B θ : コイル面と磁界 Φ θ のなす角 B: 磁束密度 a) 磁界に対して垂直 b) 傾きθ の位置図 a) のように, 面積 の1 回巻きコイルをΦ の磁力線が貫くときを考える このような磁力線の数を磁束 (magnetic flux) と呼び,[Wb( ウェーバー

More information

Microsoft Word

Microsoft Word 第 9 回工学基礎ミニマム物理試験問題.. 日立 水戸 正解は各問の選択肢 (,, ) の中からつだけ選び, その番号をマークシートにマークせよ この際,HBまたはBの鉛筆またはシャープペンシルを使うこと ボールペンは不可 正解が数値の場合には, 選択肢の中から最も近い値を選ぶこと 正解が選択肢の中に無い場合には, 番号ゼロを選択せよ 学生番号, 氏名を指定された方法でマークシートの所定の欄に記入せよ

More information

.....Z...^.[.......\..

.....Z...^.[.......\.. 15 10 16 42 55 55 56 60 62 199310 1995 134 10 8 15 1 13 1311 a s d f 141412 2 g h j 376104 3 104102 232 4 5 51 30 53 27 36 6 Y 7 8 9 10 8686 86 11 1310 15 12 Z 13 14 15 16 102193 23 1712 60 27 17 18 Z

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

Xamテスト作成用テンプレート

Xamテスト作成用テンプレート 電場と電位 00 年度本試験物理 IB 第 5 問 A A 図 のように,x 軸上の原点に電気量 Q の正の点電荷を, また, x d Q の位置に電気量の正の点電荷を固定した 問 図 の x 軸を含む平面内の等電位線はどのようになるか 最も適当なものを, 次の~のうちから一つ選べ ただし, 図中の左の黒丸 Q は電気量 Q の点電荷の位置を示し, 右の黒丸は電気量の点電荷の 位置を示す 電場と電位

More information

技術者のための電磁気学入門 コロナ社

技術者のための電磁気学入門 コロナ社 技術者のための電磁気学入門 まえがき MRI LAN D ii H B Web http://wwwcoronashacojp/np/isbn// 目 次 iv v DRAM AED vi vii viii MRI CT 1 電荷と電場 乾燥した日には紙束の紙どうしがくっついてしまい, なかなか紙の枚数が数え られなかったり, 衣服が体にまとわりついたりすることがある これらの現象 は, 物質の原子レベルで生ずるクーロン力という力によるものである

More information

Taro-F25理論 印刷原稿

Taro-F25理論 印刷原稿 第 種理論 A 問題 ( 配点は 問題当たり小問各 点, 計 0 点 ) 問 次の文章は, 真空中の静電界に関する諸法則の微分形に関する記述である 文中の に当てはまるものを解答群の中から選びなさい 図のように, 直交座標系において電界の z 軸成分が零となるような電界について, y 平面の二次元で電位や電界を考える ここで,4 点 (h,0),(0,h), (- h,0),(0,-h) の電位がそれぞれ

More information

5-仮想仕事式と種々の応力.ppt

5-仮想仕事式と種々の応力.ppt 1 以上, 運動の変数についての話を終える. 次は再び力の変数に戻る. その前に, まず次の話が唐突と思われないように 以下は前置き. 先に, 力の変数と運動の変数には対応関係があって, 適当な内積演算によって仕事量を表す ことを述べた. 実は,Cauchy 応力と速度勾配テンソル ( あるいは変位勾配テンソル ) を用いると, それらの内積は内部仮想仕事を表していて, そして, それは外力がなす仮想仕事に等しいという

More information

座標変換におけるテンソル成分の変換行列

座標変換におけるテンソル成分の変換行列 座標変換におけるテンソル成分の変換行列 座標変換におけるテンソル成分の変換関係は 次元数によらず階数によって定義される変換行列で整理することができる 位置ベクトルの変換行列を D としてそれを示そう D の行列式を ( = D ) とするとき 鏡映や回映といった pseudo rotation に対しては = -1 である が問題になる基底は 対称操作に含まれる pseudo rotation に依存する

More information

Microsoft PowerPoint - Ppt [読み取り専用]

Microsoft PowerPoint - Ppt [読み取り専用] 9 年 4 月 7 日 水 限 限 N-4 電気磁気学 Ⅲ は電気磁気学の集大成! 第 回電気磁気学 Ⅲ 竹内哲也 天野浩 竹内の HP アドレス 講義ノートへのアクセス方法 http://nitide.meijo-u.c.jp/tkeuchi/inde.html 電気磁気学 Ⅲ の目的 マクスウェル方程式の意味を確実に理解し その応用が出来る真の実力を身につけること 学習 教育目標 5 : 自然科学の基礎能力

More information

高校電磁気学 ~ 電磁誘導編 ~ 問題演習

高校電磁気学 ~ 電磁誘導編 ~ 問題演習 高校電磁気学 ~ 電磁誘導編 ~ 問題演習 問 1 磁場中を動く導体棒に関する問題 滑車 導体棒の間隔 L m a θ (1) おもりの落下速度が のとき 導体棒 a に生じる誘導起電力の 大きさを求めよ 滑車 導体棒の間隔 L m a θ 導体棒の速度 水平方向の速度 cosθ Δt の時間に回路を貫く磁束の変化 ΔΦ は ΔΦ = ΔS = LcosθΔt ΔΦ ファラデーの法則 V = N より

More information

em1_mat19-01

em1_mat19-01 < 平成 31 年度前期 > 内容 : 1. 序論 電磁気学 I 第 1 回 井上真澄 電磁気学 I の学び方概要, 目的, 授業予定, 他科目との関係, 注意点, ベクトル量の表記, など 電気とは 身の回りの電気電気の活躍する場, 日常の静電気現象, 静電気応用の工業製品 この授業について 科目名 : 電磁気学 I 開講対象 : メカトロニクス工学科 2 年生 授業の概要と目的 : メカトロニクスでは,

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション ベクトル ベクトル関数 ベクトル場とは何か t dt t d dt t d dt t d dt t d t dt t d dt t d dt t d dt t d t t t t t t t t t t t t v ベクトル関数 : ベクトル場スカラー関数 t : スカラー場東京理科大学 8 物理数学 ガイダンス 次元直角座標での ニュートンの運動方程式の積分 m p mv mv dt dt dv

More information

Microsoft PowerPoint - A1_vector_intro_slide.pptx

Microsoft PowerPoint - A1_vector_intro_slide.pptx v3.9 Ma.2018 1 ベクトル解析が必要な理由 2 ベクトル解析の基礎 - 内積と外積 回転と発散 - 1 st 2011/04/01 L st 2018/05/06 1. 電磁場 ( 電界と磁界 ) がベクトル量 ( 大きさだけでなく方向を有する物理量 ) であるため 2. 電磁界は自然法則 = マクスウェルの方程式で記述されるため 方程式を解くための計算において 重ね合わせや微分積分が出てくる

More information

Microsoft PowerPoint - em01.pptx

Microsoft PowerPoint - em01.pptx No. 基礎 ~ マクスウェルの方程式 ~ t t D H B E d t d d d t d D l H B l E 微分形積分形 電磁気学の知識からマクスウェルの方程式を導く No. ファラデーの法則 V d dt E dl t B d ストークスの定理を使って E d E ファラデー : 近接作用 界の概念を提唱 B t t B d アンペアの法則 I H rh I H dl d r dl V

More information

コロイド化学と界面化学

コロイド化学と界面化学 環境表面科学講義 http://res.tagen.tohoku.ac.jp/~liquid/mura/kogi/kaimen/ E-mail: mura@tagen.tohoku.ac.jp 村松淳司 分散と凝集 ( 平衡論的考察! 凝集! van der Waals 力による相互作用! 分散! 静電的反発力 凝集 分散! 粒子表面の電位による反発 分散と凝集 考え方! van der Waals

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://oritobuturi.co/ NO.5(009..16) 今日の目的 : 1 物理と微分 積分について 微分方程式について学ぶ 3 近似を学ぶ 10. 以下の文を読み,[ ア ]~[ ク ] の空欄に適当な式をいれよ 物体物体に一定の大きさの力を加えたときの, 物体の運動について考え よう 右図のように, なめらかな水平面上で質量 の物体に水平に一定の大きさ

More information

Microsoft Word - 第2章電磁気学編_

Microsoft Word - 第2章電磁気学編_ 第 章半導体工学のための電磁気学 半導体デバイスの働きを理解するためには 電磁気学の知識が必要である とりわけ 電荷の作る電界 電位の計算は必須である 多くの大学課程でこれらを計算するために 電気力線図を使って電界ベクトルをイメージし ガウスの式 電位と電界の関係式を積分を使って解くことを教わる しかし 半導体の世界では ガウスの式の微分形 ポアソン式を使って解くことになるため 初学者はかなりの混乱を伴う

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 5 回平面波の媒質への垂直および射入射と透過 柴田幸司 Bounda Plan Rgon ε μ Rgon Mdum ( ガラスなど ε μ z 平面波の反射と透過 垂直入射の場合 左図に示す様に 平面波が境界面に対して垂直に入射する場合を考える この時の入射波を とすると 入射波は境界において 透過波 と とに分解される この時の透過量を 反射量を Γ とおくと 領域 における媒質の誘電率に対して透過量

More information

Microsoft PowerPoint - elast.ppt [互換モード]

Microsoft PowerPoint - elast.ppt [互換モード] 弾性力学入門 年夏学期 中島研吾 科学技術計算 Ⅰ(48-7) コンピュータ科学特別講義 Ⅰ(48-4) elast 弾性力学 弾性力学の対象 応力 弾性力学の支配方程式 elast 3 弾性力学 連続体力学 (Continuum Mechanics) 固体力学 (Solid Mechanics) の一部 弾性体 (lastic Material) を対象 弾性論 (Theor of lasticit)

More information

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30 2.5 (Gauss) 2.5.1 (flux) v(r)( ) n v n v n (1) v n = v n = v, n. n n v v I(2012), ec. 2. 5 p. 1/30 i (2) lim v(r i ) i = v(r) d. i 0 i (flux) I(2012), ec. 2. 5 p. 2/30 2.5.2 ( ) ( ) q 1 r 2 E 2 q r 1 E

More information

Microsoft PowerPoint - 2_FrontISTRと利用可能なソフトウェア.pptx

Microsoft PowerPoint - 2_FrontISTRと利用可能なソフトウェア.pptx 東京大学本郷キャンパス 工学部8号館2階222中会議室 13:30-14:00 FrontISTRと利用可能なソフトウェア 2017年4月28日 第35回FrontISTR研究会 FrontISTRの並列計算ハンズオン 精度検証から並列性能評価まで 観測された物理現象 物理モデル ( 支配方程式 ) 連続体の運動を支配する偏微分方程式 離散化手法 ( 有限要素法, 差分法など ) 代数的な数理モデル

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

PowerPoint Presentation

PowerPoint Presentation 半導体電子工学 II 神戸大学工学部電気電子工学科 小川真人 11//'11 1 1. 復習 : 基本方程式 キャリア密度の式フェルミレベルの位置の計算ポアソン方程式電流密度の式 連続の式 ( 再結合 ). 接合. 接合の形成 b. 接合中のキャリア密度分布 c. 拡散電位. 空乏層幅 e. 電流 - 電圧特性 本日の内容 11//'11 基本方程式 ポアソン方程式 x x x 電子 正孔 キャリア密度の式

More information

s ss s ss = ε = = s ss s (3) と表される s の要素における s s = κ = κ, =,, (4) jωε jω s は複素比誘電率に相当する物理量であり ここで PML 媒質定数を次のように定義する すなわち κξ をPML 媒質の等価比誘電率 ξ をPML 媒質の

s ss s ss = ε = = s ss s (3) と表される s の要素における s s = κ = κ, =,, (4) jωε jω s は複素比誘電率に相当する物理量であり ここで PML 媒質定数を次のように定義する すなわち κξ をPML 媒質の等価比誘電率 ξ をPML 媒質の FDTD 解析法 (Matlab 版 2 次元 PML) プログラム解説 v2.11 1. 概要 FDTD 解析における吸収境界である完全整合層 (Perfectl Matched Laer, PML) の定式化とプログラミングを2 次元 TE 波について解説する PMLは異方性の損失をもつ仮想的な物質であり 侵入して来る電磁波を逃さず吸収する 通常の物質と接する界面でインピーダンスが整合しており

More information

オープン CAE 関東 数値流体力学 輪講 第 4 回 第 3 章 : 乱流とそのモデリング (3) [3.5~3.7.1 p.64~75] 日時 :2013 年 11 月 10 日 14:00~ 場所 : 日本 新宿 2013/11/10 数値流体力学 輪講第 4 回 1

オープン CAE 関東 数値流体力学 輪講 第 4 回 第 3 章 : 乱流とそのモデリング (3) [3.5~3.7.1 p.64~75] 日時 :2013 年 11 月 10 日 14:00~ 場所 : 日本 新宿 2013/11/10 数値流体力学 輪講第 4 回 1 オープン CAE 勉強会 @ 関東 数値流体力学 輪講 第 4 回 第 3 章 : 乱流とそのモデリング (3 [3.5~3.7.1 p.64~75] 日時 :2013 年 11 月 10 日 14:00~ 場所 : 日本 ESI@ 新宿 1 数値流体力学 輪講に関して 目的 数値流体力学の知識 ( 特に理論ベース を深め OpenFOAM の利用に役立てること 本輪講で学ぶもの 数値流体力学の理論や計算手法の概要

More information

科目概要 電磁気学 IV 第 1 回講義概要 これまでの復習 科目名 : 電磁気学 IV Electromagnetics IV 学部学科 : 電気電子工学科電子工学コース選択必修単位数 :2 単位担当教員 : 松嶋徹 工学部電気電子工学科松嶋徹 オフィスタイム : 毎週火曜と

科目概要 電磁気学 IV 第 1 回講義概要 これまでの復習 科目名 : 電磁気学 IV Electromagnetics IV 学部学科 : 電気電子工学科電子工学コース選択必修単位数 :2 単位担当教員 : 松嶋徹 工学部電気電子工学科松嶋徹 オフィスタイム : 毎週火曜と 科目概要 電磁気学 IV 2018.06.12 第 1 回講義概要 これまでの復習 科目名 : 電磁気学 IV Electromgnetics IV 学部学科 : 電気電子工学科電子工学コース選択必修単位数 :2 単位担当教員 : 松嶋徹 工学部電気電子工学科松嶋徹 オフィスタイム : 毎週火曜と金曜 10:00~12:00 オフィス場所 : 総合研究 1 号棟 E2-504 E-mil :mtsushim@ele.kutech.c.jp

More information

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074>

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074> 地盤数値解析学特論 防災環境地盤工学研究室村上哲 Mrakam, Satoh. 地盤挙動を把握するための基礎. 変位とひずみ. 力と応力. 地盤の変形と応力. 変位とひずみ 変形勾配テンソルひずみテンソル ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Green-Lagrange のひずみテンソルと Alman のひずみテンソル 微小変形状態でのひずみテンソル ひずみテンソルの物理的な意味

More information

<4D F736F F D20837D834E B95FB92F68EAE>

<4D F736F F D20837D834E B95FB92F68EAE> マクスウエルの方程式 Akio Arimoto, Monday, November, 7. イントロ長野 []p.4 に証明抜きで以下のような解説がある 次節以下これを証明していきたいと思う grad f «df d dx =,, rot «( i i), [ ] div «d ( dx dx + dx dx + dx dx ) æ f f f æ f f f rot grad f = rot( df

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

第1章 序論

第1章 序論 第 章 応力とその性質. 応力.. 垂直応力とせん断応力物体が外力 (external force) を受けているとき, 物体内部では断面に内力 (internal force) が働き, その断面で分離しないように抵抗している. つまり内力は断面を結合する力である. 断面に垂直な内力が働く場合, その単位面積当たりの値を垂直応力 (normal stress) という. 例えば図 -(a) に示すように,

More information

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし

交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし 交流 のための三角関数 1. 次の変数 t についての関数を微分しなさい ただし A および ω は定数とする 1 f(t) = sin t 2 f(t) = A sin t 3 f(t) = A sinωt 4 f(t) = A cosωt 2. 次の変数 t についての関数を積分しなさい ただし 積分定数を 0 とすること 1 f(t) = sin t 2 f(t) = A sin t 3 f(t)

More information

ベクトル公式.rtf

ベクトル公式.rtf 6 章ラプラシアン, ベクトル公式, 定理 6.1 ラプラシアン Laplacian φ はベクトル量である. そこでさらに発散をとると, φ はどういう形になるであろうか? φ = a + a + a φ a + a φ + a φ = φ + φ + φ = 2 φ + 2 φ 2 + 2 φ 2 2 φ = 2 φ 2 + 2 φ 2 + 2 φ 2 = 2 φ したがって,2 階の偏微分演算となる.

More information

<4D F736F F F696E74202D2094BC93B191CC82CC D B322E >

<4D F736F F F696E74202D2094BC93B191CC82CC D B322E > 半導体の数理モデル 龍谷大学理工学部数理情報学科 T070059 田中元基 T070117 吉田朱里 指導教授 飯田晋司 目次第 5 章半導体に流れる電流 5-1: ドリフト電流 5-: 拡散電流 5-3: ホール効果第 1 章はじめに第 6 章接合の物理第 章数理モデルとは? 6-1: 接合第 3 章半導体の性質 6-: ショットキー接合とオーミック接触 3-1: 半導体とは第 7 章ダイオードとトランジスタ

More information

em2_mat18-01

em2_mat18-01 平成 30 年度後期 内容 : 1. 序論 電磁気学 II 第 1 回 井上真澄 電磁気学 II の学び方概要, 目的, 授業予定, 他科目との関係, 注意点, など 様々な磁場発生源 電磁誘導に関する現象 応用現象, 応用 ( 変圧器, 誘導加熱 < 炊飯器, 電磁調理器, 結晶成長, 金属焼き入れ 焼鈍 >, 誘導モータ, 発電機, 非接触 IC カード RFID タグ ) 電磁波に関する現象

More information

II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y

More information

Microsoft PowerPoint - 基礎電気理論 07回目 11月30日

Microsoft PowerPoint - 基礎電気理論 07回目 11月30日 基礎電気理論 7 回目 月 30 日 ( 月 ) 時限 次回授業 時間 : 月 30 日 ( 月 )( 本日 )4 時限 場所 : B-3 L,, インピーダンス教科書 58 ページから 64 ページ http://ir.cs.yamanashi.ac.jp/~ysuzuki/kisodenki/ 授業評価アンケート ( 中間期評価 ) NS の授業のコミュニティに以下の項目について記入してください

More information

平面波

平面波 平面波 図.に示すように, 波源 ( 送信アンテナあるいは散乱点 ) から遠い位置で, 観測点 Pにおける波の状態を考えてみる. 遠いとは, 波長 λ に比べて距離 が十分大きいことを意味しており, 観測点 Pの近くでは, 等位相面が平面とみなせる状態にある. 平面波とは波の等位相面が平面になっている波のことである. 通信や計測を行うとき, 遠方における波の振舞いは平面波で近似できる. したがって平面波の性質を理解することが最も重要である.

More information

PowerPoint Presentation

PowerPoint Presentation Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /

More information

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1........................... 2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................

More information

発散.rtf

発散.rtf 4 章発散 発散は重要なベクトル演算の一つであり, 定義は A =diva = lim Δv 0 Δv A d (4.) である.Divergence( ダイバージェンス ) ともいう. この意味は, 微小体積 vを取り囲む全表面 ( 閉曲面という ) 上で, 外向きのベクトル法線成分をすべて加えあわせ, 全体としての量を調べるものである. ベクトルAはどのような向きでもかまわないが, 面ベクトルとの内積

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

スライド 1

スライド 1 物理学序論 2 ( 電磁気学入門 ) 第 10 講 151204 電磁誘導 1 電磁誘導 : ファラデーの法則回路を貫く磁場が時間的に変化すると回路に起電力が生じる F = il x B 電磁誘導を起こす 2 つの実験 1) 磁石を動かすと起電力発生 2) 回路で磁場を発生させる. スイッチ on-off 時に起電力発生起電力が発生して誘導電流が流れる. -------------------------------------------------------------------------------------

More information

(Microsoft Word - \216\221\227\277\201i\220\333\223\256\201jv2.doc)

(Microsoft Word - \216\221\227\277\201i\220\333\223\256\201jv2.doc) 宇宙工学基礎講義資料摂動 ( 松永担当分 ) ベクトル行列演算 ) 微分演算の定義 [ ] ) 微分公式 ( ベクトル記法と行列記法 ) E E ここで E は単位行列 チルダ演算は外積演算と等価の反対称行列を生成する演算 : ( ) ) 恒等演算式 : 次元列ベクトル ( ) ( ) ( ) ( ) ( ) E E ) ( ( )( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )

More information

重力渦動による反重力推進の可能性 ( 電磁型フォワード エンジンの検討 ) ToM Possibility of Antigravity Propulsion by Gravitational Vortex 1. 序論 R.L. フォワードは Guidelines to Antigravity (1

重力渦動による反重力推進の可能性 ( 電磁型フォワード エンジンの検討 ) ToM Possibility of Antigravity Propulsion by Gravitational Vortex 1. 序論 R.L. フォワードは Guidelines to Antigravity (1 重力渦動による反重力推進の可能性 ( 電磁型フォワード エンジンの検討 ) ToM Possibility of Antigravity Propulsion by Gravitational Vortex 1. 序論 R.L. フォワードは Guidelines to Antigravity (1) で 加速された大質量による非ニュートン的な重力効果を利用した 図 1に示す重力マシンの可能性について検討している

More information

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析

More information

Microsoft PowerPoint - zairiki_3

Microsoft PowerPoint - zairiki_3 材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,

More information

Microsoft PowerPoint - 03.磁気

Microsoft PowerPoint - 03.磁気 第 3 章磁気 磁界と ローレンツ力 ヘンドリック アントーン ローレンツ ( Hendrik Antoon Lorentz 1853 年 7 月 18 日 - 1928 年 2 月 4 日 ) 磁石 磁石による磁気の特性 磁極間に発生する磁力線 電荷の同極同士 (+ と + と ) と同じように 磁石の同極同士 (N と N S と S) は反発し合い 異極同士 (N と S) は引き寄せ合う N

More information

Microsoft PowerPoint _量子力学短大.pptx

Microsoft PowerPoint _量子力学短大.pptx . エネルギーギャップとrllouゾーン ブリルアン領域,t_8.. 周期ポテンシャル中の電子とエネルギーギャップ 簡単のため 次元に間隔 で原子が並んでいる結晶を考える 右方向に進行している電子の波は 間隔 で規則正しく並んでいる原子が作る格子によって散乱され 左向きに進行する波となる 波長 λ が の時 r の反射条件 式を満たし 両者の波が互いに強め合い 定在波を作る つまり 式 式を満たす波は

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

Laplace2.rtf

Laplace2.rtf =0 ラプラスの方程式は 階の微分方程式で, 一般的に3つの座標変数をもつ. ここでは, 直角座標系, 円筒座標系, 球座標系におけるラプラスの方程式の解き方を説明しよう. 座標変数ごとに方程式を分離し, それを解いていく方法は変数分離法と呼ばれる. 変数分離解と固有関数展開法. 直角座標系における 3 次元の偏微分方程式 = x + y + z =0 (.) を解くために,x, y, z について互いに独立な関数の積で成り立っていると考え,

More information

: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ =

: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ = 1 11 11.1 ψ e iα ψ, ψ ψe iα (11.1) *1) L = ψ(x)(γ µ i µ m)ψ(x) ) ( ) ψ e iα(x) ψ(x), ψ(x) ψ(x)e iα(x) (11.3) µ µ + iqa µ (x) (11.4) A µ (x) A µ(x) = A µ (x) + 1 q µα(x) (11.5) 11.1.1 ( ) ( 11.1 ) * 1)

More information

静的弾性問題の有限要素法解析アルゴリズム

静的弾性問題の有限要素法解析アルゴリズム 概要 基礎理論. 応力とひずみおよび平衡方程式. 降伏条件式. 構成式 ( 応力 - ひずみ関係式 ) 有限要素法. 有限要素法の概要. 仮想仕事の原理式と変分原理. 平面ひずみ弾性有限要素法定式化 FEM の基礎方程式平衡方程式. G G G ひずみ - 変位関係式 w w w. kl jkl j D 構成式応力 - ひずみ関係式 ) (. 変位の境界条件力の境界条件境界条件式 t S on V

More information

物理演習問題

物理演習問題 < 物理 > =0 問 ビルの高さを, ある速さ ( 初速 をとおく,において等加速度運動の公式より (- : -= t - t : -=- t - t (-, 式よりを消去すると t - t =- t - t ( + - ( + ( - =0 0 t t t t t t ( t + t - ( t - =0 t=t t=t t - 地面 ( t - t t +t 0 より, = 3 図 問 が最高点では速度が

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 位相整合 : 第二高調波発生. 位相整合. 擬似位相整合 (QPM: quasi-phase-matching) 3. 周期分極反転 (periodic poling) 4. 反転対象 非対称 付録 43 のアプローチ. 第二高調波発生 増幅に関する位相整合 位相不整合について検討する. 位相不整合を解消する考え方 擬似位相整合 とそれを実現するために必要な

More information

G:/SHIRAFUJI/テキスト類/EM1999/ALL/em99ps.dvi

G:/SHIRAFUJI/テキスト類/EM1999/ALL/em99ps.dvi 1999 1999 12 17 Contents 1 9 1.1........................ 9 1.2 (Cartesian )..................... 9 1.3........................ 10 1.4............................. 11 1.5............................. 12

More information

<4D F736F F D20824F B834E835882CC92E8979D814690FC90CF95AA82C696CA90CF95AA2E646F63>

<4D F736F F D20824F B834E835882CC92E8979D814690FC90CF95AA82C696CA90CF95AA2E646F63> 1/10 平成 23 年 6 月 1 日午後 4 時 33 分 07 ストークスの定理 : 線積分と面積分 07 ストークスの定理 : 線積分と面積分 ストークスの定理はガウスの定理とともに 非常に重要な定理であり 線積分と面積分の関係を表します つまり ガウスの定理 : 面積分と体積分 ( 体積を囲む閉じた面 = 表面 ) の関係 ストークスの定理 : 線積分と面積分 ( 面積を囲む外周の線 )

More information