Size: px
Start display at page:

Download ""

Transcription

1

2 1 K O TO (J-PARC E14 ) BHCV K O TO J-PARC K L π ν ν BHCV BHCV K L π ν ν BHCV 99.5% BHCV CF 4 MWPC BHCV 99.8% BHCV

3 2 1 K O TO K L π ν ν BHCV( ) BHCV BHCV BHCV BHCV (CF 4 ) BHCV BHCV BHCV PMT

4 BHCV BHCV

5 4 1 K O TO K O TO(K at TOkai) J-PARC K O TO BHCV( ) 1.1 K O TO K L π ν ν K L π ν ν Wolfenstein η Wolfenstein η 1 η B K L π ν ν (MSSM) [1] K O TO 1.2 K L π ν ν K L π ν ν Br(KL π ν ν) = (2.49 ±.39) 1 11 (1.1) [2] K L π ν ν K L π ν ν (KEK) KEK-PS E391a Br(KL π ν ν) < (1.2) [3] 3 K O TO K O TO J-PARC J-PARC 1.1 3GeV K L 1.2 K O TO K L

6 1 K O TO 5 K L 1.1: J-PARC (J-PARC ) K O TO 5GeV 3GeV p KL 1.2: K O TO mm J-PARC 5GeV 16 K O TO 1 2 K O TO 2 ( 21m) 1.1 K L

7 1 K O TO 6 1.1: (.7 ) E (E >.1GeV) 2 MHz (E > 2MeV) 13 MHz K L 7 MHz K L Counts 7 Entries 1 6 Mean 1.73 RMS Momentum [GeV/c] 1.3: K L 2GeV Counts 5 1 Entries Mean RMS.8949 Counts Entries 1 Mean.5159 RMS Momentum [GeV/c] Momentum [GeV/c] 1.4: 1.5: K O TO K L π ν ν 2 K L π ν ν π 99% K L K L π ν ν

8 1 K O TO 7 1.2: K L [4] K L K L π ± e ν e π ± µ ν µ π π π π + π π π ± e ν e γ π + π π π γγ π ± µ ν µ γ π π ± e ν π + π γ e + e γ π 2γ e + e γγ µ + µ γ π + π e + e e + e e + e π γe + e µ + µ γγ µ + µ µ + µ e + e e + e K O TO 1.6 K L K L π ν ν K L ( Veto ) K L π ν ν [5] ν γ K L K L π γ K L ν 1.6: K O TO K L K L K L K O TO 1.7 CsI (CsI) (FB, MB) CsI CsI 2576 ( 1.8) 1.6 Veto CsI 2 (BCV, CV)

9 1 K O TO 8 BHCV K L 1.7: K O TO K L BHCV 2 K O TO KEK-PS E391a 1.8: CsI cm 3 CsI cm 3 CsI 1.4 BHCV( ) K L BHCV( :Beam Hole Charged Veto) K L 1.3 K L BHCV K L π +, π, µ +, µ, e +, e BHCV K L BHCV 11m (K O TO ) BHCV 2cm 2cm BHCV 1.9 π K L π ( 1.2) 1.1 BHCV

10 - - 1 K O TO 9 7Hz/cm MeV 7MeV 75MeV BHCV Number of Hits RMS Entries π + π e+ e- µ + µ Particle Name 1.9: BHCV π Hit Rate [Hz/cm 2 ] Y [mm ] X [mm] : BHCV X Y 126kHz 4cm K L

11 1 K O TO 1 Counts Entries Mean RMS RMS Momentum [MeV/c] (a) Counts Entries 3664 Mean 71.2 RMS Momentum [MeV/c] (b) Counts Entries 3699 Mean RMS RMS Momentum [MeV/c] (c) 1.11: BHCV (a)π ± (b)e ± (c)µ ± (a)916mev/c (b)71mev/c (c)749mev/c

12 11 2 BHCV K O TO K L π ν ν K L π ν ν K L π ν ν Veto K L π ν ν ( ) BHCV( ) 2.1 BHCV K O TO BHCV Geant4[6] K O TO Veto ( ) K L K L K L ABC... 1, 2,..., n Veto (CsI ) I 1, I 2,..., I n CsI 1, 2,..., m (x 1, p 1 ), (x 2, p 2 ),..., (x m, p m ) CsI 2 ( K L π ν ν ) 1, 2 CsI 2 (1 I 1 )(1 I 2 ) 2 CsI I 3 I 4... I n 3, 4,..., n Veto N sel K L ABC... N sel N BG (K L ABC... ) = N Br(K L ABC... ) (1 I j 1 )(1 Ij 2 )Ij 3 Ij 4... Ij n j (2.1) j=1 N K L Br(K L ABC... ) K L ABC...

13 2 BHCV 12 BHCV j 1, j 2,... I j1, I j2,... N BG (K L ABC... ) BHCV BHCV K L π + π π 2 ( 1.2) BHCV K L π + π π K L K L π + π π N BG (K L π + π π ) = I BHCV (2.2) I BHCV BHCV N sel BHCV 2 IBHCV 2 BHCV 11 I BHCV BHCV.2 I BHCV BHCV I BHCV < (2.3) 2.2 BHCV Veto K L K L π ν ν Veto K L π ν ν K O TO CsI 2 Veto BHCV T BHCV K L R BHCV BHCV T T 2.3 BHCV 2.3 R BHCV BHCV P AL = 1 exp{ R(T + τ)} (2.4)

14 2 BHCV 13 τ BHCV 2.1 BHCV BHCV T T τ 2.1: T 2.4 R T τ P AL BHCV R T τ BHCV Geant4[6] BHCV BHCV 11m (K O TO ) K L BHCV 2 BHCV 2.1 K L π + π π K L π + π π BHCV N in BHCV E E th N( E < E th ) E th N( E < E th ) N in = (2.5) K L ( ) BHCV E E th N( E > E th ) K O TO 2.2 PMT( ) 16

15 2 BHCV 14 3mm 2cm 2cm 2.2: BHCV (a) K L π + π π 2.5 E th = 41keV

16 2 BHCV 15 Counts Counts Deposit Energy [MeV] Deposit Energy [MeV] (a) (b ) Counts 3 25 Counts Deposit Energy [MeV] (c) Deposit Energy [MeV] (d) 2.3: BHCV (a)k L π + π π (b)k L (c) (d) E th = 41keV (a) (b) 2 2 (b) K L K L (c) (d) 2.1 R = 2.9MHz 2.1 K L

17 2 BHCV : BHCV E th = 41keV K L 1.8 MHz 1. MHz 13 khz 2.9 MHz BHCV BHCV 5mm 25µm 3µm 4 2cm CF4 2cm 2.4: BHCV MWPC( ) CF (a) K L π + π π 2.5 E th =.6keV

18 2 BHCV 17 Counts 3 Counts Deposit Energy [MeV] (a) Deposit Energy [MeV] (b) Counts 6 Counts Deposit Energy [MeV] (c) Deposit Energy [MeV] (d) 2.5: BHCV (a)k L π + π π (b)k L (c) (d) E th =.6keV (b) K L K L 2.2 R = 15kHz K L 2.2: BHCV E th =.6keV K L 27 khz 27 khz 98 khz 15 khz

19 2 BHCV K L BHCV ( ) BHCV T 2.1 K L π + π π t BHCV t BHCV = (BHCV ) (CsI ) (2.6) CsI 2 t BHCV 2.6 Counts 1 3 Entries 2554 Mean 2.92 RMS Time [ns] 2.6: K L π + π π BHCV ns τ 2ns T 2+1=3ns P AL = 1 exp{ R(T + τ)} = 1 exp{ 2.4MHz (3ns + 2ns)} = 14% (2.7) P AL = 1 exp{ 15kHz (T + τ)} < 14% (2.8) (T + τ) < 93ns T = τ + 1ns τ τ < 46ns 4 BHCV 2.3

20 2 BHCV 19 3

21 2 3 BHCV 3.1 ( ) (PMT) ( 3.1) PMT 3.1: (1) (2) (3) (4) (5) (6) ( ) (5) (7)

22 3 21 (5) (6) 3.2 N e M P C e Q P C = em P C N e (3.1) PMT 1 λ n ph (λ) n ph (λ) A P MT (λ) PMT Γ P MT (λ) PMT M P MT Q GSP = em P MT M P C N e Γ P MT (λ)a P MT (λ)n ph (λ)dλ (3.2) Q GSP = M P MT Γ P MT (λ)a P MT (λ)n ph (λ)dλ (3.3) Q P C n ph (λ)dλ.1 A P MT (λ).1 Γ P MT (λ).2 M P MT 1 7 Q GSP Q P C 2 (3.4) PMT M P C N e ΓP MT A P MT n ph dλ 1 PMT Q GSP = M P C N e ΓP MT A P MT n ph dλ 1 N e M P C M P C N e

23 3 22 2in. PMT 2in. PMT 5mm 1mm SHV 1mm 5mm 3.2: PMT 3.3: 3.1: 5 cm 1 cm β 1 cm 3 µm.75 pf/cm PMT /4π 2.8% 3.4 PMT

24 3 23 T [%] λ n λ µ 3.4: ( ) PMT( R2256) PMT PMT β 5pF 2MΩ 1MΩ 1pF 1MΩ 1MΩ 1pF 3.5: 1µs

25 3 24 PMT 3.6: 9 Sr PMT -24V PMT M P MT cc/min 9 Sr β ( 2.28MeV) PMT Proportinal Counter Pre-Amp PMT PMT Discriminator Coincidence Shaping Amp Veto Gate & Delay Gate & Delay Stop Gate Gate CS ADC Output Reg. CAMAC PH ADC 3.7: ADC PMT ADC

26 ( ) ( ),BHCV 3.8 (a) (b) 3.8: Xe 24V (a) (b) ADC PMT (b) N M P C 1 λ n ph (λ) A cath (λ) E w = 2π c/λ pe Γ cath (λ) N 1 N 1 = N M P C λ<λ pe Γ cath (λ)a cath (λ)n ph (λ)dλ (3.5) T drift T drift M P C η = M P C Γ cath (λ)a cath (λ)n ph (λ)dλ (3.6) λ<λ pe 2 N 2 N 2 = N 1 η = N η 2

27 N 3 = N η 3, N 4 = N η 4,... η < 1 PMT T drift ( 3.8(b)) η : [17] [ev] [nm] Al C Fe λ pe = 25nm 3 Ar+N 2 Xe 2 λ pe ( ) 3.5 (Ar+N 2 ) (Xe) (CF 4 ) % 3.3: 1.4 mg/cm 3 2, 1 atm de/dx 2.4 kev/cm 2, 1 atm, MIP W 1 26 ev [7] 125 nm [8, 9], Ar µs [1] Ar 2 3.4:.81 mg/cm 3 2, 1 atm de/dx 2. kev/cm 2, 1 atm, MIP W 35 ev [7] nm [11, 12] 1 1

28 µs ( 3.6 ) 3.9: Ar 15V ADC PMT 1 4µs PMT % 1% 1% 2% PMT 3.12 N p.e. /N c.e. 3.2 Γ P MT A P MT n ph dλ N p.e. /N c.e. n ph [7] Number of Photoelectrons Ar:N2=1: Ar:N2=99:1 Ar:N2=98:2 Ar:N2=9:1 Ar:N2=8:2 Ar:N2=5:5 Ar:N2=: Anode Voltage [V] Collected Charge [fc] 3.11: 3.1: PMT Ar+N 2 Ar+N Ar:N2=1: Ar:N2=99:1 Ar:N2=98:2 Ar:N2=9:1 Ar:N2=8:2 Ar:N2=5:5 Ar:N2=: Anode Voltage [V]

29 3 28 Np.e./Nc.e Ar:N2=1: Ar:N2=99:1 Ar:N2=98:2 Ar:N2=9:1 Ar:N2=8:2 Ar:N2=5:5 Ar:N2=: Anode Voltage [V] 3.12: PMT N p.e. N c.e. Ar+N 2 2% 15V PMT 1 1 Q GSP /Q P C Q GSP = e ( ) 1 = Q P C 1fC % 3.5: 3. mg/cm 3 2, 1 atm de/dx 6.8 kev/cm 2, 1 atm, MIP W 22 ev [7] 175 nm [8, 9], Xe 2 1 ns [13] Xe µs BHCV

30 : Xe 17V ADC PMT 1 1µs PMT PMT 3.16 N p.e. /N c.e. 1 Number of Photoelectrons Collected Charge [fc] Anode Voltage [V] Anode Voltage [V] 3.14: PMT 3.15: Xe Xe

31 3 3 Np.e./Nc.e Anode Voltage [V] 3.16: PMT N p.e. N c.e. Xe (CF 4 ) (CF 4 ) CF CF % 3.6: CF mg/cm 3 2, 1 atm de/dx 6.7 kev/cm 2, 1 atm, MIP W 33 ev [16] 3 nm [14] 9 ns [15] ns (3.6 ) CF 4

32 : CF 4 29V ADC PMT 1 4ns PMT -16dB PMT (c) PMT

33 Entries 1 Mean 295 RMS Entries 1 Mean 448. RMS Number of Photoelectons (a) Collected Charge [fc] (b) PMT [a.u.] PC [a.u.] (c) 3.18: PMT CF 4 29V (a)pmt (b) (c)pmt PMT PMT PMT 3.21 N p.e. /N c.e. 1 4

34 3 33 Number of Photoelectrons Collected Charge [fc] Anode Voltage [V] Anode Voltage [V] 3.2: 3.19: PMT CF CF 4 4 Np.e./Nc.e Anode Voltage [V] 3.21: PMT N p.e. N c.e. CF 4 BHCV CF PMT PMT r E(r) E(r) = V a r ln(r c /r a ) (3.7) V a r c r a.5 3kV 4.3 1kV/cm

35 3 34 Electric Field [kv/cm] Va=.5kV Va=1kV Va=1.5kV Va=2kV Va=2.5kV Va=3kV Radius [cm] 3.22: V a kV/cm atm w Ar : w(e) =.3 [cm/µs] +.18 [cm 2 /kv µs]e (3.8) Xe : w(e) =.1 [cm/µs] +.92 [cm 2 /kv µs]e (3.9) CF 4 : w(e) = 3. [cm/µs] ln( [cm/kv]e) (3.1) 3.23: Ar [18] 45 Ar

36 : Xe [18] 3.25: CF 4 [19] r r a t(r) t(r) = r dr r a w(e(r )) (3.11) n n(t) n(t) = 2n w(e(r(t)))) (3.12) r(t) n(t) Ar CF 4

37 3 36 a.u. 1.8 Ar,Va=15V Xe,Va=17V a.u CF4,Va=29V Time [µs] Time [µs] 3.26: V a 3.27 Drift Time [µs] Ar Xe Anode Voltage [V] Drift Time [µs] CF Anode Voltage [V] 3.27:

38 37 4 BHCV BHCV 4.1 BHCV 2 BHCV 3 (1) (2) (3) ( ) (1) (2) [g/cm 2 ] (3) 3 BHCV 4.2 BHCV 4.1 BHCV 4.2 MWPC( ) PMT( )

39 第 4 章 BHCV 試作機の性能試験 38 2in. PMT 2in. PMT 石英ガラス 石英ガラス アルミナイズドマイラー ( カソード 4 mm アノードワイヤー ( 直径 3 µm 5 mm 5 mm 54 mm フィードスルー 石英ガラス 石英ガラス 2in. PMT 2in. PMT 正面断面図 側面断面図 図 4.1: BHCV 試作機の断面図 平行平板型 MWPC の上下に PMT が着いている (a) (b) 図 4.2: BHCV 試作機の写真 (a) 完成写真 (b) 内部の写真 アルミナイズドマイラーが光をよく反 射していることが見て取れる 試作機に電圧を印加したときに 内部にできる電気力線と等ポテンシャル面を図 4.3 に示す 荷電 粒子によって生成された電子は電気力線にそってドリフトし アノードに達する 各ワイヤーは自身 の上下 2.5mm の領域に生成された電子を収集する

40 4 BHCV 39 (a) (b) 4.3: 2V (a) (b) 3 Garfield [2] (1) 1 : (2) 5mm: (3) ( 25µm): (4) PMT : (4.4.2 ) (5) PMT : 4.1

41 4 BHCV 4 4.1: BHCV CF 4 5 cm 5cm 9.1 mg/cm 2 5 mm 9 3 µm 2.5 mm.1 pf/cm/ PMT1 /4π.61% PMT2 /4π.7% MWPC 4.4 1pF 1MΩ 1MΩ 1pF 2kΩ OPA355 Ch1 Ch2 1pF 1MΩ Ch9 H.V. 4.4: MWPC 9 2ns BHCV 1MeV 4MeV GeVγ (1) (2) (3)

42 4 BHCV 41 (4) : ( ) BHCV GeVγ STB ( ) 1.2GeV STB γ GeVγ GeVγ ( 4.5 RTAGX) BHCV : 4 6 MeV 4 cm / 9 s / 12 s ( ) 5 Hz/cm 2, 4 khz/cm

43 第 4 章 BHCV 試作機の性能試験 42 PMT1 試作機 1cm Ch1 陽電子ビーム Ch5 Ch9 プラスチック シンチレータ PMT2 図 4.6: ビームテストのセットアップの鉛直方向断面図 プラスチックシンチレータのコインシデン スをデータ取得のトリガーとした ビームは直径 4cm にひろがって入射しているが プラスチック シンチレータの高さは 1cm であるので この 1cm に入ったビームによるイベントのみが記録される PMT1 トリガー用 プラスチックシンチレータ 試作機 PMT2 トリガー用 プラスチックシンチレータ 図 4.7: ビームテストのセットアップの写真 試作機は光漏れを防ぐため マイラー窓やフランジ間 などをブラックテープとブラックシートで遮光している 右奥からビームが来る ビーム上流に置い た 2 つのプラスチックシンチレータは写っていない 上側の PMT を PMT1 下側の PMT を PMT2 と呼ぶことにする 試作機のアノードワ イヤーは上から MWPC Ch1 MWPC Ch9 と呼ぶことにする 中央のアノードワイヤーが MWPC Ch5 である 試作機のビーム上流側に 3 つ 下流側に 1 つのプラスチックシンチレータ (1cm 1cm, 厚さ 5mm) を配置した これらの信号のコインシデンスをデータ取得のトリガーとし た 試作機は水平方向を移動ステージで 鉛直方向を 1cm 厚のアクリル板の着脱により移動できる

44 4 BHCV 43 CF 4 6cc/min 4.8 PMT1 BHCV Prototype PMT PMT PMT PMT2 PMT Divider Pre-Amp. Discriminator Divider Inverting Trans. Divider Divider Veto Coincidence Attenuator Discriminator Discriminator Gate & Delay Gate & Delay Stop Gate Start Output Reg. CS ADC CAMAC TDC 4.8: Inverting Trans. CS ADC PMT 2 ADC Ch1 OP V PMT 5ns

45 4 BHCV 44 (a) (b) 4.9: 5Hz/cm 2 MWPC Ch5 (a) 27V (b) 3V ADC PMT1 MWPC Ch5 1 1ns 3.6 PMT PMT 1 1 CF 4 4ns ( 3.17) 3V ( 4.9(b)) PMT MWPC Hz/cm 2 4kHz/cm 2 PMT MWPC ( 3.21) N p.e. /N c.e. 1 PMT ( ) PMT 3 N p.e. /N c.e. 26V N p.e. /N c.e.

46 4 BHCV 45 Mean Number of Photoelectrons Rate: 5Hz/cm 2 Rate: 4kHz/cm Anode Voltage [V] Collected Charge [fc] Rate: 5Hz/cm 2 Rate: 4kHz/cm Anode Voltage [V] 4.1: PMT 4.11: MWPC PMT1 PMT2 MWPC Ch2 MWPC Ch9 MWPC Ch5 MWPC Ch5 Np.e./Nc.e Anode Voltage [V] 4.12: PMT N p.e. MWPC N c.e. 5Hz/cm 2 MWPC Ch PMT (MWPC Ch5 ) PMT MWPC 4.13 MWPC PMT 3.18(c)

47 4 BHCV : PMT MWPC 26V 5Hz/cm 2 PMT1 PMT2 MWPC Ch4 MWPC Ch5 MWPC Ch6 MWPC Ch5 MWPC 4.14 PMT1 PMT PMT

48 4 BHCV 47 PMT1 6mm 6mm Ch5 3µm.32mm PMT1 4.14: PMT1 PMT1 5mm 4.3(a) 4.14 PMT MWPC Ch4 PMT1-MWPC Ch4 PMT2-MWPC Ch4 PMT2 PMT1 MWPC Ch6 PMT1 PMT2 MWPC Ch5 PMT MWPC I PMT1 PMT2 N th I = (PMT1 PMT2 N th ) ( ) 26V PMT p.e. N th Hz/cm 2 26V 3p.e V 1 p.e. PMT PMT MWPC MWPC (4.1)

49 4 BHCV 48 Count 1 Entries Mean 1721 RMS Count PMT Sum [p.e.] PMT Sum [p.e.] 4.15: PMT 26V 5Hz/cm 2 PMT1 PMT2 Inefficiency p.e Threshold 1p.e Threshold 2p.e Threshold 3p.e Threshold Anode Voltage [V] 4.16: 5Hz/cm 2

50 4 BHCV 49 Counts MWPC Sum [fc] PMT Sum [p.e.] PMT Sum [p.e.] Counts MWPC Sum [fc] PMT Sum [p.e.] PMT Sum [p.e.] Counts MWPC Sum [fc ] PMT Sum [p.e.] PMT Sum [p.e.] Counts MWPC Sum [fc] PMT Sum [p.e. ] PMT Sum [p.e. ] 4.17: PMT PMT MWPC 5Hz/cm 2 24V 26V 28V 3V kHz/cm

51 4 BHCV 5 Inefficiency 1-2 1p.e Threshold 2p.e Threshold 1p.e Threshold 1-3 3p.e Threshold Anode Voltage [V] 4.18: 4kHz/cm Hz/cm 2 4kHz/cm 2 5kHz/cm 2 ( 2.2) cm cm< X <1.5cm X 1cm ( 4.1) BHCV 1cm

52 4 BHCV 51 Inefficiency X [cm] Y [cm] 4.19: 5Hz/cm 2 27V 1p.e. X ( ) Y (TDC ) 4.2 5ns 2.2 T ( ) + ( ) = 5ns + 5ns = 1ns 5 T Count 3 1 Entries Mean Entries Mean RMS RMS Count 3 1 Entries Entries Mean 3.8 Mean RMS 13. RMS Time [ns] (a) (b ) Time [ns] 4.2: 5Hz/cm 2 26V (a)pmt1 (b)pmt2 22ns Discriminator

53 52 5 BHCV 4 BHCV 5.1 BHCV BHCV 5.1 PMT PMT 5mm 25µm 3µm 4 2cm CF 4 2cm PMT 5.1: BHCV BHCV PMT ( 4.1) ( 5.1) =.9

54 5 BHCV : BHCV CF 4 2 cm 2cm 9.1 mg/cm 2 5 mm 4 3 µm 2.5 mm ( ) PMT /4π.59% PMT 26V 3p.e BHCV R 14kHz ( 2.2) T T = ( ) + ( ) +( τ) (5.1) T = 1ns + 5ns + 5ns = 11ns (5.2) P AL = 1 exp{ R(T + τ)} = 1 exp{ 15kHz (11ns + 5ns)} = 2.4% (5.3) P AL = 14% BHCV

55 54 6 K O TO (J-PARC E14 ) (BHCV) K O TO K L π + π π BHCV K L π ν ν BHCV BHCV BHCV BHCV

56 55 3 ROOT? K K SciBooNE 2 K O TO K L π ν ν

57 56 [1] A. J. Buras, T. Ewerth, S. Jager, and J. Rosiek, The Rare Decay K + π + ν ν at the Nextto-Leading Order and Beyond, Nucl. Phys. B (25) [2] F. Mescia and C. Smith, Improved estimates of rare K decay matrix elements from K l3 decays, Phys. Rev. D (27) [3] J. K. Ahn et al, Search for the Decay K L π ν ν, Phys. Rev. Lett (28) [4] W-M Yao et al, J. Phys. G: Nucl. Part. Phys (26) [5], E14, (28) [6] J.Allison et al, Geant4 developments and applications, IEEE Trans. Nucl. Sci (26) [7] F.Sauli Principles of Operation of Multiwire Proportional and Drift Chambers, CERN 77-9 (1977) [8] Y.Tanaka, A. S. Jursa, and F. J. LeBlanc Continuous Emission Spectra of Rare Gases in the Vacuum Ultraviolet Region. 2. Neon and Helium, J. Opt. Soc. Am (1957) [9] M. Suzuki and S. Kubota, Mechanism of Proportional Scintillation in Argon, Krypton and Xenon, Nucl. Instr. Meth (1979) [1] L. Colli, Ultraviolet Photons in the Decay of Metastable Argon Atoms, Phys. Rev (1953) [11] A. J. P. L. Policarpo, M. A. F. Alves and C. A. N. Conde, The Argon-Nitrogen Proportional Scintillation Counter, Nucl. Instr. and Meth (1967) [12] T. D. Strickler and E. T. Arakawa, Optical Emission from Argon Excited by Alpha Particles: Quenching Studies, J. Chem. Phys (1964) [13] J. W. Keto et al, Collisional Mixing of The Lowest Bound Molecular States in Xenon and Argon, Chem. Phys. Lett (1976) [14] L. C. Lee, Xiuyan Wang and Masako Suto, Fluorescence from extreme ultraviolet photoexcitation of CF 4, J. Chem. Phys (1986) [15] J. E. Hesser and K. Dressler, Radiative Lifetimes of Ultraviolet Emission Systems Excited in BF 3, CF 4, and SiF 4, J. Chem. Phys (1967) [16] R. Cooper and R. M. Mooring, Ionization Current Measurements in Gases Using An Internal Tritium β Source, Aust. J. Chem (1972)

58 57 [17] H. B. Michaelson, The work function of the elements and its periodicity, J. Appl. Phys (1977) [18] J. C. Bowe, Drift Velocity of Electrons in Nitrogen, Helium, Neon, Argon, Krypton, and Xenon, Phys. Rev (196) [19] J. Va vra et al, Measurement of electron drift parameters for helium, Nucl. Instr. and Meth. A (1993) [2]

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

Muon Muon Muon lif

Muon Muon Muon lif 2005 2005 3 23 1 2 2 2 2.1 Muon.......................................... 2 2.2 Muon........................... 2 2.3................................. 3 2.4 Muon life time.........................................

More information

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( )

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( ) ( ) TA 2234 oda@phys.kyushu-u.ac.jp TA (M1) 2161 sumi@epp.phys.kyushu-u.ac.jp TA (M1) 2161 takada@epp.phys.kyushu-u.ac.jp TA (M1) 2254 tanaka@epp.phys.kyushu-u.ac.jp µ ( ) 1 2 1.1...............................................

More information

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

25 3 4

25 3 4 25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W

More information

main.dvi

main.dvi CeF 3 1 1 3 1.1 KEK E391a... 3 1.1.1 KL 0 π0 νν... 3 1.1.2 E391a... 4 1.1.3... 5 1.2... 6 2 8 2.1... 8 2.2... 10 2.3 CeF 3... 12 2.4... 13 3 15 3.1... 15 3.2... 15 3.3... 18 3.4... 22 4 23 4.1... 23 4.2...

More information

main.dvi

main.dvi MICE Sci-Fi 2 15 3 7 1 1 5 1.1 MICE(Muon Ionization Cooling Experiment)............. 5 1.1.1........................... 5 1.1.2............................... 7 1.1.3 MICE.......................... 10

More information

24 10 10 1 2 1.1............................ 2 2 3 3 8 3.1............................ 8 3.2............................ 8 3.3.............................. 11 3.4........................ 12 3.5.........................

More information

Thick-GEM 06S2026A 22 3

Thick-GEM 06S2026A 22 3 Thick-GEM 06S2026A 22 3 (MWPC-Multi Wire Proportional Chamber) MPGD(Micro Pattern Gas Detector) MPGD MPGD MPGD MPGD GEM(Gas Electron Multiplier) GEM GEM GEM Thick-GEM GEM Thick-GEM 10 4 Thick-GEM 1 Introduction

More information

2005 4 18 3 31 1 1 8 1.1.................................. 8 1.2............................... 8 1.3.......................... 8 1.4.............................. 9 1.5.............................. 9

More information

untitled

untitled MPPC 18 2 16 MPPC(Multi Pixel Photon Counter), MPPC T2K MPPC T2K (HPK) CPTA, MPPC T2K p,π T2K > 5 10 5 < 1MHz > 15% 200p.e. MIP 5p.e. p/π MPPC HPK MPPC 2 1 MPPC 5 1.1...................................

More information

soturon.dvi

soturon.dvi Stopped Muon 94S2003J 11 3 10 1 2 2 3 2.1 Muon : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2.2 : : : : : : : : 4 2.3 : : : : : : : : : : : : : 6 3 7 3.1 : : : : : : : : : : : : : : : :

More information

CdTe γ 02cb059e :

CdTe γ 02cb059e : CdTe γ 02cb059e : 2006 5 2 i 1 1 1.1............................................ 1 1.2............................................. 2 1.3............................................. 2 2 3 2.1....................................

More information

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 19 Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 1 1 1.1 γ ΛN................. 1 1.2 KEK J-PARC................................ 2 1.2.1 J-PARC....................................

More information

thesis.dvi

thesis.dvi 3 17 03SA210A 2005 3 1 introduction 1 1.1 Positronium............ 1 1.2 Positronium....................... 4 1.2.1 moderation....................... 5 1.2.2..................... 6 1.2.3...................

More information

Donald Carl J. Choi, β ( )

Donald Carl J. Choi, β ( ) :: α β γ 200612296 20 10 17 1 3 2 α 3 2.1................................... 3 2.2................................... 4 2.3....................................... 6 2.4.......................................

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary Measurements of Galactic and Atmospheric Cosmic-Ray Absolute Fluxes BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary Introduction 90% 9% 100~10 6

More information

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT

SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT 3 SPECT SJ SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT 9ch MPPC array 3 3 9 3 3 9.mm(sigma) . SPECT..................................................................3............

More information

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete J-PARC E15 (TGEM-TPC) TGEM M1 ( ) J-PARC E15 TPC TGEM TGEM J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

untitled

untitled masato@icrr.u-tokyo.ac.jp 996 Start 997 998 999 000 00 00 003 004 005 006 007 008 SK-I Accident Partial Reconstruction SK-II Full reconstruction ( SK-III ( ),46 (40%) 5,8 (9%),9 (40%) 5MeV 7MeV 4MeV(plan)

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

[ ] [ ] [ ] [ ] [ ] [ ] ADC

[ ] [ ] [ ] [ ] [ ] [ ] ADC [ ] [ ] [ ] [ ] [ ] [ ] ADC BS1 m1 PMT m2 BS2 PMT1 PMT ADC PMT2 α PMT α α = n ω n n Pn TMath::Poisson(x,[0]) 0.35 0.3 0.25 0.2 0.15 λ 1.5 ω n 2 = ( α 2 ) n n! e α 2 α 2 = λ = λn n! e λ Poisson Pn 0.1

More information

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 23 1 Section 1.1 1 ( ) ( ) ( 46 ) 2 3 235, 238( 235,238 U) 232( 232 Th) 40( 40 K, 0.0118% ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4 2 ( )2 4( 4 He) 12 3 16 12 56( 56 Fe) 4 56( 56 Ni)

More information

LEPS

LEPS LEPS2 2016 2 17 LEPS2 SPring-8 γ 3 GeV γ 10 Mcps LEPS2 7 120 LEPS Λ(1405) LEPS2 LEPS2 Silicon Strip Detector (SSD) SSD 100 µm 512 ch 6 cm 3 x y 2 SSD 6 3072 ch APV25-s1 APVDAQ VME APV25-s1 SSD 128 ch

More information

陽電子科学 第4号 (2015) 3-8

陽電子科学 第4号 (2015) 3-8 4 (2015) 3 8 Japanese Positron Science Society Positron annihilation age momentum correlation (AMOC) measurement Abstract: Positron annihilation Age-MOmentum Correlation (AMOC) measurement is the coincidence

More information

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索  第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智 µ COMET LFV esys clfv (Charged Lepton Flavor Violation) J-PARC µ COMET ( ) ( ) ( ) ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B 2016 J- PARC µ KEK 3 3 3 3 3 3 3 3 3 3 3 clfv clfv clfv clfv clfv clfv clfv

More information

306 [7] GeV TeV PAMELA 100 GeV PAMELA AMS GeV [8] TeV [9] PAMELA[10] AMS BESS-Polar 95 [11]AMS 1.3 AMS AMS rigidity TOFTime Of Flight TRDE

306 [7] GeV TeV PAMELA 100 GeV PAMELA AMS GeV [8] TeV [9] PAMELA[10] AMS BESS-Polar 95 [11]AMS 1.3 AMS AMS rigidity TOFTime Of Flight TRDE 305 Alpha Magnetic Spectrometer (AMS) Sadakazu.Haino@cern.ch 2013 2 28 1 AMS 1.1 AMS AMS 60 600 1976 LEP L3 LEP GeV TeV 2011 5 AMS ISS ISS 2020 20 BESS [2] HEAT[3] AMS PAMELA [4] Fermi [5] 10 GeV 100 GeV

More information

1 5 1.1................................ 5 1.2 MPGD.......................................... 6 1.2.1 GEM...................................... 6 1.2.2

1 5 1.1................................ 5 1.2 MPGD.......................................... 6 1.2.1 GEM...................................... 6 1.2.2 19 GEM 2 2008/3/13 1 5 1.1................................ 5 1.2 MPGD.......................................... 6 1.2.1 GEM...................................... 6 1.2.2 MICROMEGAS................................

More information

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................

More information

FPWS2018講義千代

FPWS2018講義千代 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 3つの究極の 宗教や神話 哲学や科学が行き着く人間にとって究極の問い 宇宙 世界 はどのように始まり どのように終わるのか 全てをつかさどる究極原理は何か 今日はこれを考えます 人類はどういう存在なのか Wikipediaより 4 /72 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 電子レンジ 可視光では中が透け

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

大面積Micro Pixel Chamberの開発 9

大面積Micro Pixel Chamberの開発 9 Introduction µ-pic と電場構造 ガス増幅 Simulation 信号波形の再現 まとめと今後 京都大学宇宙線研究室髙田淳史 2 次元ガスイメージング検出器プリント基板技術で製作ピクセル間隔 :4 μm 個々のピクセルでガス増幅大面積 : cm 2 and 3 3 cm 2 大きな増幅率 :max ~15 高い位置分解能 :RMS ~12 μm 均一な応答 :RMS ~5% ( cm

More information

KamLAND (µ) ν e RSFP + ν e RSFP(Resonant Spin Flavor Precession) ν e RSFP 1. ν e ν µ ν e RSFP.ν e νµ ν e νe µ KamLAND νe KamLAND (ʼ4). kton-day 8.3 < E ν < 14.8 MeV candidates Φ(νe) < 37 cm - s -1 P(νe

More information

π + e + ν e

π + e + ν e π + e + ν e 2 2013 2 5 π + e + ν e π + µ + ν µ R = Γ(π + e + ν e )/Γ(π + µ + ν µ ) 0.1% PIENU 2009 TRIUMF R 0.01% 10 R 0.1% 1000TeV PIENU 0.1% 1980 TRIUMF π + e + ν e π + µ + ν µ KEK COPPER 500MHz Flash

More information

500 6 LHC ALICE ( 25 ) µsec MeV QGP

500 6 LHC ALICE ( 25 ) µsec MeV QGP 5 6 LHC ALICE shigaki@hiroshima-u.ac.jp chujo.tatsuya.fw@u.tsukuba.ac.jp gunji@cns.s.u-tokyo.ac.jp 3 ( 5 ) 5. µsec MeV QGP 98 RHIC QGP CERN LHC. LHC ALICE LHC p+p RHIC QGP ALICE 3 5 36 3, [, ] ALICE [,

More information

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE 21 2 27 Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE ) Bethe-Bloch 1 0.1..............................

More information

JPS2016_Aut_Takahashi_ver4

JPS2016_Aut_Takahashi_ver4 CTA 111: CTA 7 A B A C D A E F G D H I J K H H J L H I A C B I A J I H A M H D G Dang Viet Tan G Daniela Hadasch A Daniel Mazin A C CTA-Japan A, B, Max-Planck-Inst. fuer Phys. C, D, ISEE E, F, G, H, I,

More information

From Evans Application Notes

From Evans Application Notes 3 From Evans Application Notes http://www.eaglabs.com From Evans Application Notes http://www.eaglabs.com XPS AES ISS SSIMS ATR-IR 1-10keV µ 1 V() r = kx 2 = 2π µν x mm 1 2 µ= m + m 1 2 1 k ν = OSC 2

More information

2004 A1 10 4 1 2 2 3 2.1................................................ 3 2.2............................................. 4 2.3.................................................. 5 2.3.1.......................

More information

untitled

untitled TOF ENMA JAEA-RMS) TOF Pre-scission JAERI-RMS (m-state 16 O + 27 Al 150MeV d TOF Nucl. Phys. A444, 349-364 (1985). l = m d Pre-scission Scission 10-19 (Post_scission) (Pre-scission) Proton_fission Alpha_fission

More information

Canvas-tr01(title).cv3

Canvas-tr01(title).cv3 Working Group DaiMaJin DaiRittaikaku Multiparticle Jiki-Bunnsekiki Samurai7 Superconducting Analyser for Multi particles from RadioIsotope Beams with 7Tm of bending power (γ,n) softgdr, GDR non resonant

More information

X線分析の進歩36 別刷

X線分析の進歩36 別刷 X X X-Ray Fluorescence Analysis on Environmental Standard Reference Materials with a Dry Battery X-Ray Generator Hideshi ISHII, Hiroya MIYAUCHI, Tadashi HIOKI and Jun KAWAI Copyright The Discussion Group

More information

0.1 I I : 0.2 I

0.1 I I : 0.2 I 1, 14 12 4 1 : 1 436 (445-6585), E-mail : sxiida@sci.toyama-u.ac.jp 0.1 I I 1. 2. 3. + 10 11 4. 12 1: 0.2 I + 0.3 2 1 109 1 14 3,4 0.6 ( 10 10, 2 11 10, 12/6( ) 3 12 4, 4 14 4 ) 0.6.1 I 1. 2. 3. 0.4 (1)

More information

GEMを使った 中性子画像検出器の開発

GEMを使った 中性子画像検出器の開発 GEM を用いた検出器の開発 千葉研究室修士 2 年 杉山史憲 発表の流れ 研究目的 GEMを用いた中性子画像検出器の原理 基本特性 ビームテスト 今後の実験 研究目的 1. 中性子検出の必要性 2. 中性子捕獲 3. 現在の中性子検出器 中性子検出の必要性 中性子の特徴 - スピンが 1/2 - 電荷がゼロ X 線で見た構造 中性子で見た構造 構造解析 窒素 炭素 酸素 水素たんぱく質 ( ミオグロビン

More information

Undulator.dvi

Undulator.dvi X X 1 1 2 Free Electron Laser: FEL 2.1 2 2 3 SACLA 4 SACLA [1]-[6] [7] 1: S N λ [9] XFEL OHO 13 X [8] 2 2.1 2(a) (c) z y y (a) S N 90 λ u 4 [10, 11] Halbach (b) 2: (a) (b) (c) (c) 1 2 [11] B y = n=1 B

More information

PET. PET, PET., PET 1, TPC 3.,. TPC,,.

PET. PET, PET., PET 1, TPC 3.,. TPC,,. PET TPC 21 2 9 PET. PET, PET., PET 1, TPC 3.,. TPC,,. 1 6 2 PET 7 2.1........................... 7 2.1.1 PET..................... 7 2.1.2.......................... 10 2.2..............................

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

JPS2012spring

JPS2012spring BelleII 実験用 TOP カウンターの性能評価 2012.7.7( 土 ) 名古屋大学高エネルギー物理学研究室 (N 研究室 ) 有田義宣 BelleII に搭載する粒子識別装置 TOP カウンター 2 BelleII 実験 もっとも識別の難しい π/k 識別 BelleⅡ 実験は Belle 実験をさらに高輝度化 (40 倍 ) し 大量の B 中間子からの稀崩壊現象を探る電子陽電子コライダー

More information

B

B B07557 0 0 (AGN) AGN AGN X X AGN AGN Geant4 AGN X X X (AGN) AGN AGN X AGN. AGN AGN Seyfert Seyfert Seyfert AGN 94 Carl Seyfert Seyfert Seyfert z < 0. Seyfert I II I 000 km/s 00 km/s II AGN (BLR) (NLR)

More information

Activation and Control of Electron-Transfer Reactions by Noncovalent Bond

Activation and Control of Electron-Transfer Reactions by Noncovalent Bond 2 + 4e- + 4 + hν 2 2 1 2 20 J. Am. Chem. oc. Angew. Chem. Int. Ed. umber of Papers 15 10 5 0 1998 1999 2000 2001 2002 2003 Year : J. Am. Chem. oc. (Trost, B. M.; tanford University, UA) 3 π 1/2 k ET =

More information

STB-Ring(Stretcher-Booster Ring) 1.2 GeV Tagging System Tagging System Efficiency rate rate rate Efficiency 1 STB-Ring 2 rate Efficiency 3 Efficiency

STB-Ring(Stretcher-Booster Ring) 1.2 GeV Tagging System Tagging System Efficiency rate rate rate Efficiency 1 STB-Ring 2 rate Efficiency 3 Efficiency STB-Ring Tagging Efficiency Study GEANT4 2010 3 STB-Ring(Stretcher-Booster Ring) 1.2 GeV Tagging System Tagging System Efficiency rate rate rate Efficiency 1 STB-Ring 2 rate Efficiency 3 Efficiency ( )

More information

放射線化学, 92, 39 (2011)

放射線化学, 92, 39 (2011) V. M. S. V. 1 Contents of the lecture note by Prof. V. M. Byakov and Dr. S. V. Stepanov (Institute of Theoretical and Experimental Physics, Russia) are described in a series of articles. The first article

More information

3 1 4 1.1......................... 4 1.1.1....................... 4 1.1.2.................. 4 1.1.3 Coulomb potential.............. 5 1.2.............

3 1 4 1.1......................... 4 1.1.1....................... 4 1.1.2.................. 4 1.1.3 Coulomb potential.............. 5 1.2............. Fe muonic atom X 25 5 21 3 1 4 1.1......................... 4 1.1.1....................... 4 1.1.2.................. 4 1.1.3 Coulomb potential.............. 5 1.2.......................... 6 1.2.1...................

More information

1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21

1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21 1 3 KamLAND shimizu@awa.tohoku.ac.jp 014 ( 6 ) 1 31 1 KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR.1 ν e ν µ ν τ ν 1 ν ν 3 3 3 MNS m 1 = 7.5 10 5 ev m 31 m 3 =.3 10 3 ev 100 m ν e [1] 71 Ga SAGEGallex

More information

NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter L

NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter L 19 P6 γ 2 3 27 NaI(Tl) CsI(Tl) GSO(Ce) LaBr 3 (Ce) γ Photo Multiplier Tube PMT PIN PIN Photo Diode PIN PD Avalanche Photo Diode APD MPPC Multi-Pixel Photon Counter LaBr 3 (Ce) PMT 662keV 2.9% CsI(Tl) 7.1%

More information

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

反D中間子と核子のエキゾチックな   束縛状態と散乱状態の解析 .... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2 . Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state? . D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

news

news ETL NEWS 1999.9 ETL NEWS 1999.11 Establishment of an Evaluation Technique for Laser Pulse Timing Fluctuations Optoelectronics Division Hidemi Tsuchida e-mail:tsuchida@etl.go.jp A new technique has been

More information

1-x x µ (+) +z µ ( ) Co 2p 3d µ = µ (+) µ ( ) W. Grange et al., PRB 58, 6298 (1998). 1.0 0.5 0.0 2 1 XMCD 0-1 -2-3x10-3 7.1 7.2 7.7 7.8 8.3 8.4 up E down ρ + (E) ρ (E) H, M µ f + f E F f + f f + f X L

More information

03J_sources.key

03J_sources.key Radiation Detection & Measurement (1) (2) (3) (4)1 MeV ( ) 10 9 m 10 7 m 10 10 m < 10 18 m X 10 15 m 10 15 m ......... (isotope)...... (isotone)......... (isobar) 1 1 1 0 1 2 1 2 3 99.985% 0.015% ~0% E

More information

実験セットアップ 輸送ソレノイド36 出口 ミューオン停止標的 マグネシウム 大きさ 37mm 8mm 厚さ 2mm Bz = 2. T 双極磁場 By=+.4 T トリガーカウンター プラスチックシンチレーター 磁場に耐性のあるMPPCで読み出し 厚さ 3.5mm μビーム μ ミューオンX線 ビーム中負ミューオンの位置分布 シミュレーション 遮 Mg標的の位置 9 X線検出器 ゲルマニウム検出器

More information

T2K アップグレードに向けた高性能ファイバートラッカーの開発 ì 京都 大学平本綾綾美 第 22 回 ICEPP シンポジウム

T2K アップグレードに向けた高性能ファイバートラッカーの開発 ì 京都 大学平本綾綾美 第 22 回 ICEPP シンポジウム T2K アップグレードに向けた高性能ファイバートラッカーの開発 ì 1 2016.03.01 京都 大学平本綾綾美 (M1) @ 第 22 回 ICEPP シンポジウム 2 T2K experiment v J- PARCからのニュートリノビームによる反応を前置検出器 (ND280) および後置検出器 (SK) で観測することで ニュートリノ振動のパラメータ (θ 23, δ cp ) を測定している

More information

miyazaki_mthesis.pdf

miyazaki_mthesis.pdf 23 1 25 i,. 2,.. 1, 5σ, 60%.,.,. ii,.,...,..,..,,,..,. pick-off,,.,...,.,..,,, Khaw K. Siang,,,,,..,,,,,,,,..,... iii ii 1 1 1.1... 1 1.2... 2 1.3... 4 1.4... 7 1.4.1... 7 1.4.2... 8 1.5... 11 1.5.1...

More information

Ws shojia 2016x mini

Ws shojia 2016x mini 16 -Feb 2017 ILC 飛跡測定器における GEM 型ゲート装置の特性評価 Characteristic evaluation of Gating GEM in ILC track measuring instrument 平成 28 年度修士論文審査会 Master's thesis presentation 岩手大学大学院工学研究科電気電子 情報システム工学専攻 博士前期課程 2 年

More information

rcnp01may-2

rcnp01may-2 E22 RCP Ring-Cyclotron 97 953 K beam K-atom HF X K, +,K + e,e K + -spectroscopy OK U U I= First-order -exchange - coupling I= U LS U LS Meson-exchange model /5/ I= Symmetric LS Anti-symmetric LS ( σ Λ

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

tsuchiya_090307

tsuchiya_090307 2/26 雷活動からのX線やガンマ線(1) 短時間バースト 継続時間:ミリ秒かそれ以下 自然の雷放電および誘来放電からの観測 衛星による大気上層からの観測(TGFs) Dwyer et al. 2003 Smith et al. 2005 長時間バースト もんじゅ 継続時間:数秒から数分 もんじゅHPより 雷放電に必ずしも同期しない おもに雷雲中 日本海側の冬季や高山で観測 される McCarthy

More information

1 3 1.1 PET..................................... 3 1.1.1......................................... 3 1.1.2 PET................................. 4 1.2..

1 3 1.1 PET..................................... 3 1.1.1......................................... 3 1.1.2 PET................................. 4 1.2.. 21 PET 06S2037G 2010 3 1 3 1.1 PET..................................... 3 1.1.1......................................... 3 1.1.2 PET................................. 4 1.2........................................

More information

untitled

untitled BELLE B J/ψ + K 12 1 1 2 BELLE 3 2.1 BELLE... 3 2.1.1 CP... 3 2.1.2 CKM... 4 2.1.3... 6 2.1.4 B CP... 8 2.2 KEKB... 13 2.3 BELLE... 16 2.3.1 SVD... 19 2.3.2 CDC.................. 2 2.3.3 ACC... 21 2.3.4

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

- γ 1929 γ - SI γ 137 Cs 662 kev γ NaI active target NaI γ NaI 2 NaI γ NaI(Tl) γ 2 NaI γ γ γ

- γ 1929 γ - SI γ 137 Cs 662 kev γ NaI active target NaI γ NaI 2 NaI γ NaI(Tl) γ 2 NaI γ γ γ - 28 2 15 - γ 1929 γ - SI γ 137 Cs 662 kev γ NaI active target NaI γ NaI 2 NaI γ NaI(Tl) γ 2 NaI γ γ 10 3 4 γ 1 3 2 γ 5 2.1..................................... 5 2.1.1.................... 5 2.1.2..............................

More information

J-PARC October 14-15, 2005 KEK

J-PARC October 14-15, 2005 KEK J-PARC October 14-15, 2005 KEK 目次 ミューオン 電子転換過程の紹介 MECO実験 PRISM/PRIME実験 @J-PARC まとめ GIM-like mixing! µ! e W e 3 SUSY-GUT Large top Yukawa couplings result in sizable off-diagonal components in a slepton

More information

natMg+86Krの反応による生成核からのβ線の測定とGEANTによるシミュレーションとの比較

natMg+86Krの反応による生成核からのβ線の測定とGEANTによるシミュレーションとの比較 nat Mg+ 86 Kr の反応による生成核からの β 線の測定と GEANT によるシミュレーションとの比較 田尻邦彦倉健一朗 下田研究室 目次 実験の目的 nat Mg+ 86 Kr 生成核からの β 線の測定 @RCNP 実験方法 実験結果 GEANT によるシミュレーション 解析 結果 まとめ 今後の課題 実験の目的 偏極した中性子過剰 Na アイソトープの β-γ-γ 同時測定実験を TRIUMF

More information

液体アルゴン3次元飛跡イメージング検出器

液体アルゴン3次元飛跡イメージング検出器 液 体 アルゴン3 次 元 飛 跡 イメー ジング 検 出 器 丸 山 和 純 (KEK) 液 体 アルゴン3 次 元 飛 跡 イメージング 検 出 器 現 代 版 電 子 泡 箱 検 出 器 高 位 置 分 解 能 飛 跡 検 出 器 (~1mm 分 解 能 ) 正 確 な 事 象 形 態 を 測 定 できる 低 い 運 動 量 の 粒 子 から 測 定 可 能 局 所 的 なエネルギー 損 失

More information

ohpr.dvi

ohpr.dvi 2003-08-04 1984 VP-1001 CPU, 250 MFLOPS, 128 MB 2004ASCI Purple (LLNL)64 CPU 197, 100 TFLOPS, 50 TB, 4.5 MW PC 2 CPU 16, 4 GFLOPS, 32 GB, 3.2 kw 20028 CPU 640, 40 TFLOPS, 10 TB, 10 MW (ASCI: Accelerated

More information

untitled

untitled 71 7 3,000 1 MeV t = 1 MeV = c 1 MeV c 200 MeV fm 1 MeV 3.0 10 8 10 15 fm/s 0.67 10 21 s (1) 1fm t = 1fm c 1fm 3.0 10 8 10 15 fm/s 0.33 10 23 s (2) 10 22 s 7.1 ( ) a + b + B(+X +...) (3) a b B( X,...)

More information

VUV MPPC study

VUV MPPC study VUV MPPC の性能評価 2014/12/5 B02 班主催第 2 回若手研究者ミニ研究会 @ 名古屋大学 早大寄田研 ANKOK 実験 M2 鷲見貴生 暗黒物質 (WIMP) とその直接探索 暗黒物質存在の示唆 宇宙論的観測 ( 宇宙背景輻射 大規模構造 etc.) 天文学的観測 ( 銀河の回転曲線 重力レンズ etc.) 標準模型を超える理論 (SUSY, 超弦理論 etc.) 暗黒物質の存在はほとんど揺るぎない事実

More information

2

2 Rb Rb Rb :10256010 2 3 1 5 1.1....................................... 5 1.2............................................. 5 1.3........................................ 6 2 7 2.1.........................................

More information

pp * Yw; Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Departm

pp * Yw; Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Departm 73 7 2017 pp. 447 454 447 * 43.25.Yw; 78.60.Mq 1. 1L 20 cc [1] Sonoluminescence: Light emission from acoustic cavitation bubble. Pak-Kon Choi (Department of Physics, Meiji University, Kawasaki, 214 8571)

More information

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

ELECTRONIC IMAGING IN ASTRONOMY  Detectors and Instrumentation   5 Instrumentation and detectors ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors 4 2017/5/10 Contents 5.4 Interferometers 5.4.1 The Fourier Transform Spectrometer (FTS) 5.4.2 The Fabry-Perot

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq 2007 2007 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 2007 2 4 5 6 6 2 2.1 1: KEK Web page 1 1 1 10 16 cm λ λ = h/p p ( ) λ = 10 16 cm E pc [ev] 2.2 quark lepton 2 2.2.1 u d c s t b + 2 3 e 1 3e electric charge

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

nenmatsu5c19_web.key

nenmatsu5c19_web.key KL π ± e νe + e - (Ke3ee) Ke3ee ν e + e - Ke3 K 0 γ e + π - Ke3 KL ; 40.67(%) Ke3ee K 0 ν γ e + π - Ke3 KL ; 40.67(%) Me + e - 10 4 10 3 10 2 : MC Ke3γ : data K L real γ e detector matter e e 10 1 0 0.02

More information

Introduction MPPC is new semiconductor photon sensor Technology is very similar to SiPM. Under development by Hamamatsu Photonics (HPK) MPPC have not

Introduction MPPC is new semiconductor photon sensor Technology is very similar to SiPM. Under development by Hamamatsu Photonics (HPK) MPPC have not Multi Pixel Photon Counter T. Nakadaira KEK Introduction MPPC is new semiconductor photon sensor Technology is very similar to SiPM. Under development by Hamamatsu Photonics (HPK) MPPC have not been listed

More information

スライド 1

スライド 1 実験 III 素粒子テーマ 素粒子物理学とは 物質の究極の構造 ( 素粒子 ), 素粒子間に働く力 ( 相互作用 ) 時空の構造, 対称性を探求する分野です 担当教員 : 佐藤 TA: 和田 内山連絡先 : 自然学系棟 D208 (x4270) ksato@hep.px.tsukuba.ac.jp 実験スケジュール 第 1 回 : 素粒子物理概説,μ 粒子寿命測定法, 同軸ケーブルとインピーダンス,NIMモジュールの機能.

More information

目次 2 1. イントロダクション 2. 実験原理 3. データ取得 4. データ解析 5. 結果 考察 まとめ

目次 2 1. イントロダクション 2. 実験原理 3. データ取得 4. データ解析 5. 結果 考察 まとめ オルソポジトロニウムの寿命測定による QED の実験的検証 課題演習 A2 2016 年後期 大田力也鯉渕駿龍澤誠之 羽田野真友喜松尾一輝三野裕哉 目次 2 1. イントロダクション 2. 実験原理 3. データ取得 4. データ解析 5. 結果 考察 まとめ 第 1 章イントロダクション 実験の目的 4 ポジトロニウム ( 後述 ) の崩壊を観測 オルソポジトロニウム ( スピン 1 状態 ) の寿命を測定

More information

untitled

untitled 27.2.9 TOF-SIMS SIMS TOF-SIMS SIMS Mass Spectrometer ABCDE + ABC+ DE + Primary Ions: 1 12 ions/cm 2 Molecular Fragmentation Region ABCDE ABCDE 1 15 atoms/cm 2 Molecular Desorption Region Why TOF-SIMS?

More information

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law) ( ) ( ) 2002.11 1 1 1.1 (Blackbody Radiation).............................. 1 1.2 (Stefan-Boltzmann s Law)................ 1 1.3 (Wien s Displacement Law)....................... 2 1.4 (Kirchhoff s Law)...........................

More information