60 (W30)? 1. ( ) 2. ( ) web site URL ( :41 ) 1/ 77

Similar documents
kubostat2017j p.2 CSV CSV (!) d2.csv d2.csv,, 286,0,A 85,0,B 378,1,A 148,1,B ( :27 ) 10/ 51 kubostat2017j (

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM

12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or

/ 55 2 : : (GLM) 1. 1/23 ( )? GLM? (GLM ) 2.! 1/25 ( ) ffset (GLM )

/ 60 : 1. GLM? 2. A: (pwer functin) x y?

講義のーと : データ解析のための統計モデリング. 第3回

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :

kubo2015ngt6 p.2 ( ( (MLE 8 y i L(q q log L(q q 0 ˆq log L(q / q = 0 q ˆq = = = * ˆq = 0.46 ( 8 y 0.46 y y y i kubo (ht

k2 ( :35 ) ( k2) (GLM) web web 1 :

kubostat7f p GLM! logistic regression as usual? N? GLM GLM doesn t work! GLM!! probabilit distribution binomial distribution : : β + β x i link functi

講義のーと : データ解析のための統計モデリング. 第5回

kubo2017sep16a p.1 ( 1 ) : : :55 kubo ( ( 1 ) / 10

kubostat1g p. MCMC binomial distribution q MCMC : i N i y i p(y i q = ( Ni y i q y i (1 q N i y i, q {y i } q likelihood q L(q {y i } = i=1 p(y i q 1

/22 R MCMC R R MCMC? 3. Gibbs sampler : kubo/

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i

/ *1 *1 c Mike Gonzalez, October 14, Wikimedia Commons.

: Bradley-Terry Burczyk

: (GLMM) (pseudo replication) ( ) ( ) & Markov Chain Monte Carlo (MCMC)? /30

(2/24) : 1. R R R

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation :

今回 次回の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ Danger!! (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか これは次回)

1 15 R Part : website:

講義のーと : データ解析のための統計モデリング. 第2回

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i

今日の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか

kubostat2018a p.1 統計モデリング入門 2018 (a) The main language of this class is 生物多様性学特論 Japanese Sorry An overview: Statistical Modeling 観測されたパターンを説明する統計モデル

統計モデリング入門 2018 (a) 生物多様性学特論 An overview: Statistical Modeling 観測されたパターンを説明する統計モデル 久保拓弥 (北海道大 環境科学) 統計モデリング入門 2018a 1


ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

日本内科学会雑誌第97巻第7号

日本内科学会雑誌第98巻第4号

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

²¾ÁÛ¾õ¶·É¾²ÁË¡¤Î¤¿¤á¤Î¥Ñ¥Ã¥±¡¼¥¸DCchoice ¡Ê»ÃÄêÈÇ¡Ë

Use R

2 / 39

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

(lm) lm AIC 2 / 1

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

最小2乗法

1 Tokyo Daily Rainfall (mm) Days (mm)

1 環境統計学ぷらす 第 5 回 一般 ( 化 ) 線形混合モデル 高木俊 2013/11/21

H22 BioS t (i) treat1 treat2 data d1; input patno treat1 treat2; cards; ; run; 1 (i) treat = 1 treat =

第13回:交差項を含む回帰・弾力性の推定

tokei01.dvi

untitled

10:30 12:00 P.G. vs vs vs 2

Excelにおける回帰分析(最小二乗法)の手順と出力

Ł\”ƒ-2005

Dirichlet process mixture Dirichlet process mixture 2 /40 MIRU2008 :

untitled

第90回日本感染症学会学術講演会抄録(I)

日本内科学会雑誌第102巻第4号

スライド 1

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp


みっちりGLM

こんにちは由美子です


(pdf) (cdf) Matlab χ ( ) F t

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G (

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

201711grade1ouyou.pdf

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

09基礎分析講習会

分布

プログラム

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

untitled

Microsoft PowerPoint - GLMMexample_ver pptx

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

自由集会時系列part2web.key

1 2 Visual SLAM 2 Visual SLAM

日本内科学会雑誌第101巻第12号

: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99


GLM PROC GLM y = Xβ + ε y X β ε ε σ 2 E[ε] = 0 var[ε] = σ 2 I σ 2 0 σ 2 =... 0 σ 2 σ 2 I ε σ 2 y E[y] =Xβ var[y] =σ 2 I PROC GLM

H22 BioS (i) I treat1 II treat2 data d1; input group patno treat1 treat2; cards; ; run; I

プログラム

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

2. 2 I,II,III) 2 x expx) = lim + x 3) ) expx) e x 3) x. ) {a } a a 2 a 3...) a b b {a } α : lim a = α b) ) [] 2 ) f x) = + x ) 4) x > 0 {f x)} x > 0,

JMP V4 による生存時間分析

°ÌÁê¿ô³ØII

201711grade2.pdf

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

Microsoft PowerPoint - Rを利用した回帰分析.pptx

p.1/22

TOP URL 1

確率論と統計学の資料

untitled

Ł\”ƒ.dvi

報告書

URL

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

2 1,, x = 1 a i f i = i i a i f i. media ( ): x 1, x 2,..., x,. mode ( ): x 1, x 2,..., x,., ( ). 2., : box plot ( ): x variace ( ): σ 2 = 1 (x k x) 2

Transcription:

60 (W30)? 1. ( ) kubo@ees.hokudai.ac.jp 2. ( ) web site URL http://goo.gl/e1cja!! 2013 03 07 (2013 03 07 17 :41 ) 1/ 77

! : :? 2013 03 07 (2013 03 07 17 :41 ) 2/ 77

2013 03 07 (2013 03 07 17 :41 ) 3/ 77!!

2013 03 07 (2013 03 07 17 :41 ) 4/ 77 ( )!

2013 03 07 (2013 03 07 17 :41 ) 5/ 77 : offset : :???

2013 03 07 (2013 03 07 17 :41 ) 6/ 77 GLM

2013 03 07 (2013 03 07 17 :41 ) 7/ 77 : R http://www.r-project.org/ OS free software S http://goo.gl/ufq2 R http://goo.gl/cki2h

2013 03 07 (2013 03 07 17 :41 ) 8/ 77

2013 03 07 (2013 03 07 17 :41 ) 9/ 77

2013 03 07 (2013 03 07 17 :41 ) 10/ 77

2013 03 07 (2013 03 07 17 :41 ) 11/ 77

2013 03 07 (2013 03 07 17 :41 ) 12/ 77

2013 03 07 (2013 03 07 17 :41 ) 13/ 77

2013 03 07 (2013 03 07 17 :41 ) 14/ 77

: : ( ) 2013 03 07 (2013 03 07 17 :41 ) 15/ 77

2013 03 07 (2013 03 07 17 :41 ) 16/ 77 ( http://goo.gl/76c4i)? : offset

何でも割算! 1. 2. 3. 4. 1, 2, 3! x /x 2013 03 07 (2013 03 07 17 :41 ) 17/ 77

? /? : 10 3 200 60 3? ( ) 2013 03 07 (2013 03 07 17 :41 ) 18/ 77

2013 03 07 (2013 03 07 17 :41 ) 19/ 77 : specific leaf area (SLA) : offset : N k :

2013 03 07 (2013 03 07 17 :41 ) 20/ 77 (1) offset

2013 03 07 (2013 03 07 17 :41 ) 21/ 77 :? x {0.1, 0.2,, 1.0} 10 glm(..., family = poisson)

?!! x A = /! glm() offset 2013 03 07 (2013 03 07 17 :41 ) 22/ 77

2013 03 07 (2013 03 07 17 :41 ) 23/ 77 vs plot(d$x, d$y / d$area) d$y/d$area 0 5 10 15 0.2 0.4 0.6 0.8 1.0 d$x

GLM! family: poisson, link : "log" : y ~ x offset : log(area) z = a + b x + log(area) a, b λ log(λ) = z λ = exp(z) = exp(a + b x + log(area)) λ : 2013 03 07 (2013 03 07 17 :41 ) 24/ 77

2013 03 07 (2013 03 07 17 :41 ) 25/ 77 (2)

2013 03 07 (2013 03 07 17 :41 ) 26/ 77 (1 = ) 1.0 0.8 0.6 0.4 0.2 0.0 0 2 4 6 8 10 seed size [ ] ( )

2013 03 07 (2013 03 07 17 :41 ) 27/ 77 ( ) 1.0 0.8 0.6 0.4 0.2 1.0 0.5 0.0 0.0 0 2 4 6 8 10 seed size 0 2 4 6 8 10 seed size 1. ( 4 ) 2. ; {0, 1} 3. ( or or & )

2013 03 07 (2013 03 07 17 :41 ) 28/ 77? 1 / 2 100 / 200! 1.0 0.5 0.0 0 2 4 6 8 10 seed size? 1? (? )

2013 03 07 (2013 03 07 17 :41 ) 29/ 77 R glm() : 1.0 0.8 0.6 0.4 0.2 0.0 0 2 4 6 8 10 seed size (x) or q q = 1 1 + exp( (a + bx)) (logistic ) a b R glm() ( )

2013 03 07 (2013 03 07 17 :41 ) 30/ 77 (binomial distribution)? y i {0, 1, 2,, N} (paramter: q, N) ( ) N q y (1 q) N y y Nq Nq(1 q) probability 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0.30 prob = 0.2 prob = 0.5 prob = 0.8 0.30 0.25 0.20 0.15 0.10 0.05 0.00 : N y 0.25 0.20 0.15 0.10 0.05 0.00 0 2 4 6 8 10 y

2013 03 07 (2013 03 07 17 :41 ) 31/ 77 R glm() :? ( z): x link : logit family: binomial,

2013 03 07 (2013 03 07 17 :41 ) 32/ 77 ( ) Ending 1.0 germination prob. 0.8 0.6 0.4 0.2 0.0 0 2 4 6 8 10 seed size!!? :!

2013 03 07 (2013 03 07 17 :41 ) 33/ 77 (ESJ59 http://goo.gl/qq1ok) : glm()

: OK http://en.wikipedia.org/wiki/poisson_distribution 2013 03 07 (2013 03 07 17 :41 ) 34/ 77

2013 03 07 (2013 03 07 17 :41 ) 35/ 77 (Poisson distribution)? lambda = 1.4 y {0, 1, 2,, } (paramter: λ) 0.3 0.2 0.1 λ y exp( λ) 0.0 lambda = 3.2 0.3 y! probability 0.2 0.1 λ λ lambda = 6.5 0.0 0.3 : 0.2 0.1 0.0 0 2 4 6 8 10 12 y

2013 03 07 (2013 03 07 17 :41 ) 36/ 77 2 2 glm() log-linear model

: > d2 <- read.csv("d2.csv") # > (ct2 <- xtabs(y ~ x + Spc, data = d2)) Spc x A B 0 286 85 1 378 148 > plot(ct2, col = c("orange", "blue")) ct2 0 1 B Spc A 2013 03 07 (2013 03 07 17 :41 ) 37/ 77 x

GLM ( ) A ( ) y A,x Pois(λ A,x) log(λ A,x) = α A + β A x > summary(glm(y ~ x, data = d2[d2$spc == "A",], family = poisson) > # SpcA (......) Estimate Std. Error z value Pr(> z ) (Intercept) 5.6560 0.0591 95.65 < 2e-16 x 0.2789 0.0784 3.56 0.00037 2013 03 07 (2013 03 07 17 :41 ) 38/ 77

2013 03 07 (2013 03 07 17 :41 ) 39/ 77 GLM ( ) B y B,x Pois(λ B,x) log(λ B,x) = α B + β B x > summary(glm(y ~ x, data = d2[d2$spc == "B",], family = poisson) > # SpcB (......) Estimate Std. Error z value Pr(> z ) (Intercept) 4.443 0.108 40.96 < 2e-16 x 0.555 0.136 4.07 4.6e-05?

2013 03 07 (2013 03 07 17 :41 ) 40/ 77 log(λ A,x ) = 5.66 + 0.279x log(λ B,x ) = 4.44 + 0.555x lambda_a 0 100 200 300 400 500 lambda_b 0 100 200 300 400 500 0 1 0 1 x x AIC AIC λ A,x = α A + β A x 19.3 λ B,x = α B + β B x 17.1 λ A,x = α A 30.1 λ B,x = α B 32.4!

2013 03 07 (2013 03 07 17 :41 ) 41/ 77 GLM GLM GLM: logit(q A,x) = a A + b A x 1 q A,x = 1 + exp[ (a A + b A x)] : log(λ A,x) = α A + β A x λ A,x = exp(α A + β A x) λ B,x = exp(α B + β B x) A? λ A,x λ A,x + λ B,x = = exp(α A + β A x) exp(α A + β A x) + exp(α B + β B x) 1 1 + exp[α B α A + (β B β A )x]

: GLM GLM GLM q A,x = 1 1 + exp[ (a A + b A x)] GLM ( ) λ A,x λ A,x + λ B,x = 1 1 + exp[α B α A + (β B β A )x] GLM GLM a A = α A α B b A = β A β B 2013 03 07 (2013 03 07 17 :41 ) 42/ 77

: GLM GLM GLM a A = 1.213 = α A α B b A = -0.276 = β A β B > GLM (A ) > glm(ct2 ~ c(0, 1), data = d2, family = binomial) (Intercept) c(0, 1) 1.213-0.276 > GLM (A ) > glm(y ~ x, data = d2[d2$spc == "A",], family = poisson) (Intercept) x 5.656 0.279 > GLM (B ) > glm(y ~ x, data = d2[d2$spc == "B",], family = poisson) (Intercept) x 4.443 0.555 2013 03 07 (2013 03 07 17 :41 ) 43/ 77

: GLM GLM GLM (A ) GLM (B ) lambda_a 0 100 200 300 400 500 0 1 x lambda_* 0 100 200 300 400 500 + = lambda_b 0 100 200 300 400 500 0 1 x 0 1 x = q_a 0 1 GLM (A + B ) 0 1 x 2013 03 07 (2013 03 07 17 :41 ) 44/ 77

2013 03 07 (2013 03 07 17 :41 ) 45/ 77 2 3 glm() GLM R package

: 2 3 Spc x A B C 0 286 85 7 1 378 148 17 > plot(ct3, col = c("orange", "blue", "green")) ct3 0 1 C B Spc A 2013 03 07 (2013 03 07 17 :41 ) 46/ 77 x

2013 03 07 (2013 03 07 17 :41 ) 47/ 77 GLM ( ) > glm(y ~ x * Spc, data = d3, family = poisson) (......) Coefficients: (Intercept) x SpcB SpcC x:spcb x:spcc 5.656 0.279-1.213-3.710 0.276 0.608 GLM y A,x Pois(λ A,x ) log(λ A,x ) = α A + β A x α A = 5.66 α B = 5.66 1.21 α C = 5.66 3.71 β A = 0.279 β B = 0.279 + 0.276 β C = 0.279 + 0.608

GLM GLM lambda_a 0 100 200 300 400 500 (A ) (B ) (C ) 0 1 x + + lambda_* 0 100 200 300 400 500 lambda_b 0 100 200 300 400 500 0 1 x = 0 1 x lambda_b 0 100 200 300 400 500 = 0 1 x lambda_* 0 1 GLM 0 1 x 2013 03 07 (2013 03 07 17 :41 ) 48/ 77

2013 03 07 (2013 03 07 17 :41 ) 49/ 77 2 9 GLM GLMM!

: 3 9! Spc x A B C D E F G H I 0 62 21 14 11 10 10 2 0 2 1 48 34 22 17 16 7 2 1 1 > plot(ct9, col = c( )) cts 0 1 IHG F E D C Spc B A 2013 03 07 (2013 03 07 17 :41 ) 50/ 77 x

GLM ( ) > ct9 Spc x A B C D E F G H I 0 62 21 14 11 10 10 2 0 2 1 48 34 22 17 16 7 2 1 1 > summary(glm(y ~ x * Spc, data = d9, family = poisson)) (Intercept) x SpcB SpcC 4.127-0.256-1.083-1.488 SpcD SpcE SpcF SpcG -1.729-1.825-1.825-3.434 SpcH SpcI x:spcb x:spcc -26.430-3.434 0.738 0.708 x:spcd x:spce x:spcf x:spcg 0.691 0.726-0.101 0.256 x:spch x:spci 22.559-0.437 H! 2013 03 07 (2013 03 07 17 :41 ) 51/ 77

2013 03 07 (2013 03 07 17 :41 ) 52/ 77 glm() GLMM!??! Spc?: 9 Spc ( )

2013 03 07 (2013 03 07 17 :41 ) 53/ 77 σ best GLMM > (fit.glmm <- glmmml(y ~ x, data = d9, cluster = Spc, family = poisson)) ( ) > fit.glmm$posterior.modes [1] 1.926862 1.230935 0.807098 0.557225 0.483854 [6] 0.067305-1.218522-2.005846-1.426968 individual 1 2 3 small posterior prior σ large σ

( ) データ ( 応答変数 ) 各個体の種子数 Y[i] 個 ポアソン分布平均 lambda[i] 全個体共通 a0 無情報事前分布 b0 データ ( 説明変数 ) X[i] 傾きの差 b[spc[i]] 切片の差 a[spc[i]] 階層事前分布 s[1] 切片差のばらつき 階層事前分布 s[2] 傾き差のばらつき 無情報事前分布 ( 超事前分布 ) WinBUGS (MCMC ) BUGS WinBUGS R 2013 03 07 (2013 03 07 17 :41 ) 54/ 77

2013 03 07 (2013 03 07 17 :41 ) 55/ 77 ( )??

2013 03 07 (2013 03 07 17 :41 ) 56/ 77 : λ = 30 λ = 20 30 30+20 = 0.60 5! p = {0.60, 0.40}

2013 03 07 (2013 03 07 17 :41 ) 57/ 77 : λ = 30 λ = 20 λ = 10 30 30+20+10 = 0.50 20 30+20+10 = 0.33 6! p = {0.50, 0.33, 0.17}

2013 03 07 (2013 03 07 17 :41 ) 58/ 77 (Gamma distribution)? y 0 (paramter: r, s) p(y s, r) = rs Γ(s) ys 1 exp( ry) s/r s/r 2

: 1 : (0.6, 0.4) (0.325, 0.675) : (0.5, 0.3, 0.1) (0.28, 0.54, 0.18) 0.6 a = 12, b = 8 a = 6, b = 4 a = 1.2, b = 0.8 a = 0.6, b = 0.4 0.0 0.5 1.0 y 0.0 0.5 1.0 y 0.0 0.5 1.0 y 0.0 0.5 1.0 y 2013 03 07 (2013 03 07 17 :41 ) 59/ 77

OK? 3 2 3 3+2 = 0.60 3.4 1.8 3.4 3.4+1.8 = 0.654 0.654? p = {0.60, 0.40} 2013 03 07 (2013 03 07 17 :41 ) 60/ 77

OK? 3 2 1 3.4 1.8 1.1 3 3+2+1 = 0.50 2 3+2+1 = 0.33 3.4 3.4+1.8+1.1 = 0.540 0.540, 0.286? p = {0.50, 0.33, 0.17} 2013 03 07 (2013 03 07 17 :41 ) 61/ 77

2013 03 07 (2013 03 07 17 :41 ) 62/ 77?? OK http://en.wikipedia.org/wiki/dirichlet_distribution : R glm(y ~ x, family = Gamma) ( ): θ = 1/r =

> ALake <- ArcticLake > ALake$Y <- DR_data(ALake[,1:3]) > DirichReg(Y ~ depth + I(depth^2), ALake) ---------------------------------------- Coefficients for variable no. 1: sand (Intercept) depth I(depth^2) 1.436197-0.007238 0.000132 ---------------------------------------- Coefficients for variable no. 2: silt (Intercept) depth I(depth^2) -0.025970 0.071745-0.000268 ---------------------------------------- Coefficients for variable no. 3: clay (Intercept) depth I(depth^2) -1.793149 0.110791-0.000487 ---------------------------------------- 2013 03 07 (2013 03 07 17 :41 ) 63/ 77 R library(dirichletreg) package GLM

2013 03 07 (2013 03 07 17 :41 ) 64/ 77 library(dirichletreg) 3 9 100 random effects?

2013 03 07 (2013 03 07 17 :41 ) 65/ 77 (ESJ57 http://goo.gl/pekdu)!

2013 03 07 (2013 03 07 17 :41 ) 66/ 77 : above ground mass Y 0 5 10 15 重量 y x 0 5 10 15 below ground mass X

2013 03 07 (2013 03 07 17 :41 ) 67/ 77 : q w 観測できない世界観測できる世界 parameter process observation 無情報事前分布 w q 1- q y x Y X 地上部地下部 階層的事前分布 個体差 測定時の誤差 重量 y x http://tech-jam.com

BUGS code (process ) for (i in 1:N) { Y[i] ~ dnorm(y[i], Tau.err) # X[i] ~ dnorm(x[i], Tau.err) # y[i] <- q[i] * w[i] x[i] <- (1 - q[i]) * w[i] # logit(q[i]) <- a + b * log.w[i] + re[i] w[i] <- exp(log.w[i]) # log.w[i] + log.w[i] ~ dnorm(0, Tau.noninformative) #!! ( ) 2013 03 07 (2013 03 07 17 :41 ) 68/ 77

2013 03 07 (2013 03 07 17 :41 ) 69/ 77 : MCMC 1. BUGS code (model1.txt) 2. R (runbus1.r) 3. R runbus1.r (source("runbugs1.r")) 4. R library(r2winbugs) WinBUGS 5. WinBUGS Markov chain Monte Carlo (MCMC) 6. R

2013 03 07 (2013 03 07 17 :41 ) 70/ 77 : w b MCMC

2013 03 07 (2013 03 07 17 :41 ) 71/ 77 above ground mass Y 0 5 10 15 重量 y x 0 5 10 15 below ground mass X (median) (95% CI)

2013 03 07 (2013 03 07 17 :41 ) 72/ 77

2013 03 07 (2013 03 07 17 :41 ) 73/ 77 C-N (coverage) GIS

2013 03 07 (2013 03 07 17 :41 ) 74/ 77 : offset : :??

2013 03 07 (2013 03 07 17 :41 ) 75/ 77

60 (W30)? 1. ( ) kubo@ees.hokudai.ac.jp 2. ( ) web site URL http://goo.gl/e1cja!! 2013 03 07 (2013 03 07 17 :41 ) 76/ 77

2013 03 07 (2013 03 07 17 :41 ) 77/ 77