1 y x y = α + x β+ε (1) x y (2) x y (1) (2) (1) y (2) x y (1) (2) y x y ε x 12 x y 3 3 β x β x 1 1 β 3 1

Similar documents
2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

2 Tobin (1958) 2 limited dependent variables: LDV 2 corner solution 2 truncated censored x top coding censor from above censor from below 2 Heck

Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F(

第11回:線形回帰モデルのOLS推定

最小2乗法

% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr

4 OLS 4 OLS 4.1 nurseries dual c dual i = c + βnurseries i + ε i (1) 1. OLS Workfile Quick - Estimate Equation OK Equation specification dual c nurser

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim

Microsoft Word - 計量研修テキスト_第5版).doc

計量経済分析 2011 年度夏学期期末試験 担当 : 別所俊一郎 以下のすべてに答えなさい. 回答は日本語か英語でおこなうこと. 1. 次のそれぞれの記述が正しいかどうか判定し, 誤りである場合には理由, あるいはより適切な 記述はどのようなものかを述べなさい. (1) You have to wo

<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63>

BR001

.. est table TwoSLS1 TwoSLS2 GMM het,b(%9.5f) se Variable TwoSLS1 TwoSLS2 GMM_het hi_empunion totchr


第13回:交差項を含む回帰・弾力性の推定

卒業論文

k2 ( :35 ) ( k2) (GLM) web web 1 :

9 1 (1) (2) (3) (4) (5) (1)-(5) (i) (i + 1) 4 (1) (2) (3) (4) (5) (1)-(2) (1)-(5) (5) 1

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k

28

Microsoft Word - 計量研修テキスト_第5版).doc

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.

151021slide.dvi

Microsoft Word - 計量研修テキスト_第5版).doc

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.

2 2 2 (Poisson Distribution) P (y = j) = e λ λ j λ > 0, j = 0, 1, 2... j! j! j E(y) = V ar(y) = λ λ y x λ = λ(x iβ) f(y i x iβ) = exp( exp(x i β)) exp

5 : 1 1

(p.2 ( ) 1 2 ( ) Fisher, Ronald A.1932, 1971, 1973a, 1973b) treatment group controll group (error function) 2 (Legendre, Adrian

こんにちは由美子です

1 Tokyo Daily Rainfall (mm) Days (mm)

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0

Microsoft Word - 計量研修テキスト_第5版).doc

Stata 11 whitepaper mwp 4 mwp mwp-028 / 41 mwp mwp mwp-079 functions 72 mwp-076 insheet 89 mwp-030 recode 94 mwp-033 reshape wide


kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :

7. フィリップス曲線 経済統計分析 (2014 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推

わが国企業による資金調達方法の選択問題

講義のーと : データ解析のための統計モデリング. 第5回

「スウェーデン企業におけるワーク・ライフ・バランス調査 」報告書

カルマンフィルターによるベータ推定( )

(lm) lm AIC 2 / 1

オーストラリア研究紀要 36号(P)☆/3.橋本

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i

1 15 R Part : website:

µ i ν it IN(0, σ 2 ) 1 i ȳ i = β x i + µ i + ν i (2) 12 y it ȳ i = β(x it x i ) + (ν it ν i ) (3) 3 β 1 µ i µ i = ȳ i β x i (4) (least square d

untitled

Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理

講義のーと : データ解析のための統計モデリング. 第3回

untitled

Ishi

03.Œk’ì

9 8 7 (x-1.0)*(x-1.0) *(x-1.0) (a) f(a) (b) f(a) Figure 1: f(a) a =1.0 (1) a 1.0 f(1.0)

082_rev2_utf8.pdf

取引銀行の破綻が企業経営に及ぼす影響について-阪和銀行破綻の事例分析-

untitled

事例研究(ミクロ経済政策・問題分析III) -規制産業と料金・価格制度-

1 Stata SEM LightStone 1 5 SEM Stata Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. Introduc

Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI

Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 s

Use R

TS002

Stata 11 Stata VAR VEC whitepaper mwp 4 mwp-084 var VAR 14 mwp-004 varbasic VAR 25 mwp-005 svar VAR 31 mwp-007 vec intro VEC 47 mwp-008 vec VEC 75 mwp

II (2011 ) ( ) α β û i R

Presentation Title Goes Here

GLM PROC GLM y = Xβ + ε y X β ε ε σ 2 E[ε] = 0 var[ε] = σ 2 I σ 2 0 σ 2 =... 0 σ 2 σ 2 I ε σ 2 y E[y] =Xβ var[y] =σ 2 I PROC GLM

Stata User Group Meeting in Kyoto / ( / ) Stata User Group Meeting in Kyoto / 21

kubostat7f p GLM! logistic regression as usual? N? GLM GLM doesn t work! GLM!! probabilit distribution binomial distribution : : β + β x i link functi

Microsoft Word - 計量研修テキスト_第5版).doc

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

seminar0220a.dvi

JFE.dvi

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM

ECCS. ECCS,. ( 2. Mac Do-file Editor. Mac Do-file Editor Windows Do-file Editor Top Do-file e

³ÎΨÏÀ

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

untitled

2 2 natural experiments y y 1 y 0 y 1 y 0 y 1 y 0 counterfactual y 1 y 0 d treatment indicator d = 1 (treatment group) d = 0 control group average tre

インターネットを活用した経済分析 - フリーソフト Rを使おう

yamadaiR(cEFA).pdf

10:30 12:00 P.G. vs vs vs 2

chap10.dvi

untitled

DAA09

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation :

dvi

The effect of smoking habit on the labor productivities

untitled

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G (

!!! 2!

ウェーブレット分数を用いた金融時系列の長期記憶性の分析

国土技術政策総合研究所資料

untitled

Microsoft Word - 表紙.docx

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

6.1 (P (P (P (P (P (P (, P (, P.

Transcription:

1 y x y = α + x β+ε (1) x y (2) x y (1) (2) (1) y (2) x y (1) (2) y x y ε x 12 x y 3 3 β x β x 1 1 β 3 1

2 2 N y(n 1 ) x(n K ) y = E(y x) + u E(y x) y u(n 1 ) y = x β + u β Ordinary Least Squares:OLS (min u 2 ) Absolute Error Loss Minimization min u median 2 Asymmetric Absolute Loss Minimization:min(1 α) u if u < 0, min α u if u 0 α 0.5 Quantile Regression

3 2.1 y = α + x β + u min u 2 = min(y α x β) 2E(u) = 0 2E(xu) = 0 E(u) = 0 Cov(x, u) = 0 β = (V ar(x)) 1 Cov(x, y) = (x x) 1 x y α = E(y) E(x) β V ar(x) x x x nonsingular) Cov(x, y) x y Best Linear Unbiased Estimator: BLUE E(u x) = 0 y E(y x) = α + x β β (unbiased) 2 Goodness of Fit Coefficient of Determination R 2 R 2 = 1 n t=1û2 t n t=1 (y t y) 2 adjr 2 = 1 1 n n k t=1û2 t 1 n 1 n t=1 (y t y) 2 k 2 Amemiya (1985) 1991

4 t t t βi = β i β i0 (V ( β i )) 1/2 β i β i0 0 V ( β i ) ( β i β i0 ) V ar( β i ) n k t βi t t 2.2 conditionally heteroskedastic V (u i x i ) = E(u 2 i x i) = σi 2 x i Breusch and Pagan (1979) û 2 i = d 1 + d 2 z i2 + d 3 z i3 + d 4 z i4 +... + d l z il + v i û 2 i d j = 0 j = 2, 3, 4,...l z j ŷ i 3 White (1980) M xωx = p lim N 1 N i=1 u2 i x ix i u i û i = y i x i β 3 STATA Breusch-Pagan/Cook-Weisberg test for heteroskedasticity hettest z Davidson and MacKinnon (2004, p.269)

5 û i u i M xωx = N 1 N i=1û2 i x i x i = N 1 x Ωx Ω = Diag(û 2 i ) M xx = N 1 x x β V ( β OLS ) = (x x) 1 x Ωx(x x) 1 = ( N i=1 x ix i) 1 N i=1û2 i x i x i( N i=1 x ix i) 1 White(1980) heteroskedasticityrobust standard error t 2.3 y = x β + u E(uu ) = Ω Ω Ω nonsingular Ω = σ 2 I Ω σ 2 I Ψ Ω 1 = ΨΨ Ψ y = Ψ x β + Ψ u

6 β GLS = (x ΨΨ x) 1 x ΨΨ y = (x Ω 1 x) 1 x Ω 1 y Generalized Least Squares: GLS E(Ψ uu Ψ) = Ψ E(uu )Ψ = Ψ ΩΨ = Ψ (ΨΨ ) 1 Ψ = Ψ (Ψ ) 1 Ψ 1 Ψ = I Ω = Ω( β) β Feasible Generalizaed Least Squares: FGLS β F GLS = (x Ω 1 x) 1 x Ω 1 y Ω Σ Weighted Least Squares:WLS) β W LS = (x Σ 1 x) 1 x Σ 1 y Σ Ω WLS GLS FGLS GDP GDP 2.4

7 Quantile Regression 4 y q µ q y µ q q q = Pr(y µ q ) = F y (µ q ) F y y µ q = Fy 1 (q) y = x β + u µ q (x) = F 1 y x (q) q β q β Q N (β q ) = N i:y i x βq y i x iβ q + N i i:y i <x β(1 q) y i x iβ q i 5 3 Winklemann and Boes (2005) http://www.sts.uzh.ch/data/cobb.html (1959-95) Wooldridge (2003) 4 Koenker (2005) Koenker(2005) 5

8 (http://www.msu.edu/ ec/faculty/wooldridge/book2.htm) Living Standard Measurement Study 1997 5006 Cameron and Trivedi (2005) (http://cameron.econ.ucdavis.edu/mmabook/mma.html) 3.1 y = F (K, L) = AK α L β y A K L α + β 1 α + β > 1 α + β = 1 α + β < 1 ln y = ln A + α ln K + β ln L + u 1 OLS WLS GLS Genaralized Linear Model: GLM) OLS WLS GLS lnk t 1 Ramsey RESET test omitted variable 6 α + β = 1 F α + β < 1 1 (x, y) = (K/L, y/l) 1 1 6 y = x β + u z y = x β + z t + v t = 0 z y 2 x 2

9 3.2 3 c i = a + by i + u i ln c i = d + e ln y i + fi3 + v i ln c i = g + h ln y i + ε i c y i3 3 ln c = gc ln y = gy 2 1 0.997 0.779 2 0.998 0.956-0.002 2 2 3 h 0 2 0.571 7 3 2 Durbin-Watson 2 2 7

10 3 2 3 8 3 OLS ln hhex12m = 0.935 + 0.573 ln hh exp 1 ln hhex12m ln hh exp 1 0.57 OLS 3 10% 50% 90% 10% 0.151 t 2.74 50% 0.621(t 16.00) 90% 0.80(t 15.47) 4 8

11 5 STATA /**Production Function**/ use cobb.dta, clear /**data generation**/ gen k=exp(lnk) gen l=exp(lnl) gen y=exp(lny) gen pery=y/l gen perk=k/l /*Ordinary Least Squares:OLS */ reg lny lnk lnl test lnk+ lnl=1 hettest estimates store olssual reg lny lnk lnl, robust test lnk+ lnl=1 estimates store olsrobust /*Weighted Least Squares:WLS */ gen abslnk=abs(lnk)

12 reg lny lnk lnl [aweight=1/abslnk],robust/* */ test lnk+ lnl=1 estimates store wlsrobust gen abslnl=abs(lnl) reg lny lnk lnl [aweight=1/abslnl],robust/* */ test lnk+ lnl=1 /*Geleralized Least Squares:GLS */ gen lnksq=lnk*lnk reg lny lnk lnl [aweight=1/lnksq], robust/* */ predict lnyhat test lnk+ lnl=1 estimates store glsrobust gen lnlsq=lnl*lnl reg lny lnk lnl [aweight=1/lnlsq], robust/* */ test lnk+ lnl=1 /*Generalized Linear Models: GLM */ /*Maximum Likelihood Method*/ glm lny lnk lnl, family(gaussian) link(identity) glm lny lnk lnl, family(gaussian) link(identity) robust estimates store glmrobust /*table*/ estimates table olsrobust wlsrobust glsrobust, se stats(n r2) b(%7.3f) keep(lnk lnl cons) /*Graphics 1*/ twoway (scatter pery perk)(fpfit pery perk), /* */ytitle (Percapita Output) /* */xtitle(percapita Capital)/* */legend(label(1 Actual Percapita Output ) label(2 Predicted Percapita Output )) graph save Production.gph, replace /**Time series consumption function **/

13 use consump.dta, clear /**time series setting**/ tsset year /**regression**/ /*level regression*/ reg rcons i3 inf rdisp hettest dwstat reg c y predict chat hettest dwstat /*log linear regression*/ reg lc ly i3 predict lchat hettest dwstat /*dynamic linear regression*/ reg gc gy gc 1 gc 2 gy 1 gy 2 r3 r3 1 r3 2 hettest dwstat reg gc gy predict gcgy hettest dwstat /*graph*/ twoway (scatter lc ly)(line lchat ly) graph save consumption1.gph, replace /* */ twoway (scatter c y)(line chat y) graph save consumption0.gph, replace /* */

14 graph combine consumption0.gph consumption1.gph graph save TSconsumption.gph, replace /* */ /**Vietnam Living Standard Survey Data**/ use vietnam ex1.dta, clear reg lhhex12m lhhexp1 predict pols reg lhhex12m lhhexp1, robust twoway (scatter lhhex12m lhhexp1)(line pols lhhexp1), ytitle(log Household Total Expenditure) xtitle(log Household Medical Expenditure)/* */ legend(pos(11) ring(0) col(1)) legend(size(small)) /* */ legend( label(1 Actual Data ) label(2 Mean )) graph save consumption2.gph, replace /* */ * Bootstrap standard errors for OLS set seed 10101 * bs reg lnmed lntotal b[lntotal], reps(100) * (1) Quantile and median regression for quantiles 0.1, 0.5 and 0.9 * Save prediction to construct Figure 4.2. qreg lhhex12m lhhexp1, quant(.10) predict pqreg10 qreg lhhex12m lhhexp1, quant(.5) predict pqreg50 qreg lhhex12m lhhexp1, quant(.90) predict pqreg90 graph twoway (scatter lhhex12m lhhexp1) (lfit pqreg90 lhhexp1) /* */ (lfit pqreg50 lhhexp1) (lfit pqreg10 lhhexp1), /* */ xtitle( Log Household Medical Expenditure ) /* */ ytitle( Log Household Total Expenditure ) /* */ legend(pos(11) ring(0) col(1)) legend(size(small)) /* */ legend( label(1 Actual Data ) label(2 90th percentile ) /* */ label(3 Median ) label(4 10th percentile )) graph save consumption3.gph, replace /*Cameron and Trivedi (2005, Figure 4.2 p.90) 3 */ graph combine consumption2.gph consumption3.gph graph save CSconsumption.gph, replace /* */

15 [1] (2005) [2] 1991 [3] Amemiya, Takeshi.(1985) Advanced Econometrics, Blackwell. [4] Baum,Christopher F.(2006) An Introduction to Modern Econometrics using Stata, Stata Press. [5] Breusch, T.S. and Pagan,A.R.(1979) A Simple Test for Heteroskedasticity and Random Coefficient Variation, Econometrica, 47, pp.1287-1294. [6] Cameron, A.C. and Trivedi, P.K.(2005) Microeconometrics: Methods and Applications, Cambridge University Press. [7] Davidson, Russell and MacKinnon, James G.(2004) Econometric Theory and Methods, Oxford University Press. [8] Koenker, Roger. (2005) Quantile Regression, Cambridge University Press. [9] White, Hilbert.(1980) A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity, Econometrica, 48, pp.817-838, [10] Winklemann, Rainer and Boes, Stefan.(2005) Analysis of Microdata, Springer. [11] Wooldridge, Jeffrey. M.(2003) Econometric Analysis of Cross Section and Panel Data, The MIT Press

表 1 コブ ダグラス型生産関数の推定 被説明変数 :Iny OLS WLS GLS GLM Coef. Robust-t Coef. Robust-t Coef. Robust-t Coef. Robust-t 説明変数 lnk 0.347 7.75 0.343 7.96 0.340 8.14 0.347 8.03 lnl 0.414 11.75 0.407 11.03 0.397 10.23 0.414 12.18 _cons 0.450 1.53 0.509 1.71 0.571 1.91 0.450 1.58 観察値 30 30 30 30 F(2,27) 95.20 86.65 79.10 R-squared 0.875 0.88 0.882 Residual df 27 Scale prameter (1/df) Deviance (1/df) Pearson AIC BIC test Ink+Inl=1 Breusch-Pagan/Cook- Weisberg test for heteroskedasticity Ramsey RESET test F(1,27)=16.76 Prob>F=0.000 chi2(1)=0.25 Prob>chi2=0.6188 F(3,24)=1.48 Prob>F=0.246 F(1,27)=18.17 Prob>F=0.000 F(3,24)=1.76 Prob>F=0.182 F(1,27)=19.63 Prob>F=0.000 F(3,24)=2.10 Prob>F=0.127 0.240 0.240 0.240-0.802-91.187

表 2 時系列データによる消費関数の推定 説明変数 被説明変数 観察値 R-squared Adj R-squared Root MSE Breusch-Pagan/Cook- Weisberg test for heteroskedasticity Ramsey RESET test c lc gc Coef. t Coef. t Coef. t y 0.779 112.79 ly 0.956 109.03 i3-0.002-3.00 gy 0.571 8.47 _cons 463.179 4.69 0.229 2.81 0.008 4.25 Durbin-Watson statistic 37 0.997 0.997 133.09 chi2(1)=1.14 Prob>chi2=0.285 F(3,32)=10.02 Prob>F=0.000 37 0.998 0.998 0.011 chi2(1)=0.36 Prob>chi2=0.550 F(3,31)=10.02 Prob>F=0.000 (2,37)=0.804 (3,37)=0.686 36 0.679 0.669 0.007 chi2(1)=1.23 Prob>chi2=0.267 F(3,31)=3.67 Prob>F=0.023 (2,36)=2.115

図 1 一人当たり生産量 Percapita Output 0.5 1 1.5 0 2 4 6 8 Percapita Capital Actual Percapita Output Predicted Percapita Output

図 2 一人当たり消費量と可処分所得の関係 8000 10000 12000 14000 16000 8.8 9 9.2 9.4 9.6 8000 10000 12000 14000 16000 18000 per capita real disp. inc. 9 9.2 9.4 9.6 9.8 log(y) per capita real cons. Fitted values log(c) Fitted values

図 3 家計医療費支出と総家計消費支出の関係 Log Household Total Expenditure 0 5 10 15 Actual Data Mean Log Household Total Expenditure 0 5 10 15 Actual Data 90th percentile Median 10th percentile 6 8 10 12 Log Household Medical Expenditure 6 8 10 12 Log Household Medical Expenditure