(Microsoft PowerPoint - \212\356\214\244entangle.pptx)

Size: px
Start display at page:

Download "(Microsoft PowerPoint - \212\356\214\244entangle.pptx)"

Transcription

1 非専門家のための AdS/CFT 対応入門 京都大学大学院理学研究科中村真 基礎物理学研究所研究会 : 量子多体系のエンタングルメントとくりこみ群 0 年 月 4 日 AdS/CFT 対応の日本語解説記事 中村が 素粒子論の専門家で AdS/CFT 対応の非専門家である方々向けに行った講義の講義録は : 素粒子論研究電子版 Volume 7 (0 年 3 月 7 日発行 ) 項目 4 第 5 回新潟 山形合宿報告 における解説記事 schedule/niiyama00/niiyama-nakamura.pdf また 上記内容を改定 拡充したものとしては 中村真 ホログラフィック ゲージ理論入門 --- 超弦理論がつなぐ高次元重力理論とハドロン物理 --- 原子核研究 56- (0) 3. 他に 日本語で素粒子の非専門家向けに書かれた記事としては例えば 中村真 夏梅誠 超弦理論がつなぐブラックホールと流体力学 物性研究 94-3(00)350 素粒子論研究 8-(00)63 ( 物性研究記事の転載 ) 夏梅誠 線形応答理論で学ぶ AdS/CFT 双対性 原子核研究 54-3(00)0. などがあります 素粒子の専門家向けの記事としては他に今村洋介 AdS5/CFT4 correspondence 素粒子論研究 98-6(999)09 などがあります

2 講演予定 AdS/CFT 対応とは? ブラックホールで 感じる AdS/CFT 対応 ゲージ理論 D-braneを経由する考え方 余分な次元の意味 ħ=c=k B =の単位系を用います 単に 次元 と述べた場合 時間方向を含んでいる場合があります AdS/CFT 対応とは?

3 AdS/CFT 対応とは何か この研究会に適した説明 : ある微視的理論の多粒子系を粗視化しエントロピーなどの巨視的概念を抽出してくれる理論的な しくみ である AdS/CFT 対応とは何か この研究会に適した説明 : ある理論の長さ ( エネルギー ) スケールを空間の新たな次元として可視化するプリズムのようなものである CFT 注目する理論 : 様々なスケールの物理が混在 AdS/CFT 対応する理論には : あらたな次元方向があらわれ スケールごとに住み分けがなされる AdS

4 AdS とは何か? AdS: Anti de Sitter 時空 曲率が負で一定の時空 ( の一つ ) ds: de Sitter 時空 ( 曲率 : 正 ) 時空 : Einstein の一般相対性理論では 時間と空間は時空という一種の多様体であって 重力理論は時空の幾何学で記述される 曲率とは? 本の平行線について : 平坦 : 正曲率 : 負曲率 : 負曲率 の場合 平行線に沿って進むにつれ 互いの距離が離れていくような方向 ( 右上図の上下方向 ) があり 本の平行線間の距離が無限大となる点を 境界 と呼ぶ Picture:

5 AdS とは何か? AdS: Anti de Sitter 時空 曲率が負で一定の時空 ( の一つ ) AdS 時空には境界 (boundary) が存在する CFT とは何か? CFT: Conformal Field Theory ( 共形場理論 ) AdS/CFT 対応では 共形不変性のある強結合ゲージ理論が登場する場合が多い

6 コメント 歴史的には AdS 時空と CFT ゲージ理論の対応が最初に発見された (Maldacena, 997) しかし 現在では AdS でない 時空と CFT でない 理論の対応も多く知られている AdS/CFT 対応ゲージ 重力対応ゲージ string 対応 Holography Maldacena conjecture AdS/CFT 対応に関する迷信 AdS/CFT の名前は提案当初の歴史的経緯による など 様々な名前で呼ばれる CFT に対してしか用いることができない? こうでない version もある 共形不変なゲージ理論 量子論 相互作用は強い AdS/CFT 対応とは = 等価であると主張 AdS 時空上の一般相対性理論 古典論 ( 超重力理論 ) d+ 次元 (d+)+ 次元 * 相互作用は弱い ミクロな量子論の相互作用を含んだ困難な計算が 重力の古典力学で容易に計算できる * 正確には 9+ 次元もしくは 0+ 次元

7 正確な具体例 SU(Nc) large-ncn=4 Super Yang-Mills (SYM) 理論 ( 超対称ゲージ理論 ) で t Hooft 結合 λ=g YM Nc >> の量子場理論 ( 平坦な 3+ 次元時空上の理論 ) 等価 Maldacena 次元の AdS 5 S 5 時空上の type IIB Super-gravity 理論 ( 超重力理論 = 一般相対性理論を一般化した理論 ) の古典論 ( ただし時空の曲率が十分小さい極限をとる ) この対応はどのように得られるのか? この formalism は超弦理論に立脚している 超弦理論は重力理論とゲージ理論を統一的に扱うことの出来る理論であるため 両者を結び付けることが可能となった 具体的には D-brane と呼ばれる 弦の soliton 解 を通じて 対応を 見つける ことができる ( ただし数学的証明はなく 予想 である )

8 ブラックホールの物理学から AdS/CFT 対応の香りを感じる こうでない version もある 共形不変なゲージ理論 量子論 相互作用は強い AdS/CFT 対応とは = AdS 時空上の一般相対性理論 等価であると主張 d+ 次元 (d+)+ 次元 * 古典論 相互作用は弱い 問い : どうして次元の異なる理論がミクロな量子論の等価となり得るのか重力の古典力学で? 相互作用を含んだ容易に計算できる 困難な計算が * 正確には 9+ 次元もしくは 0+ 次元

9 ブラックホールと熱力学 ブラックホールとは? Einstein 方程式の解であって 強い重力のため 光でさえ脱出できない領域 が存在する時空 もともと AdS/CFT 対応の提案 (997 年 ) 以前より ブラックホールの物理学と熱力学の類似性が Hawking や Bekenstein により指摘されていた (973 年 ) ブラックホール Einstein 方程式の解の一つ 重力が強い 重力が弱い radial direction 光は脱出できない (trapped region) Horizon (Apparent horizon) 光が脱出できる (un-trapped region)

10 ブラックホールと熱力学の法則 熱力学ブラックホール 第 0 法則 熱平衡では温度が一定 定常解では表面重力 κ (Tに対応) が一定 第 法則 de=t ds+μdn dm=[κ/(8πg N )]da+μdn ( 第 項は各運動量や電荷に対応 する項 ) 第 法則 第 3 法則 エントロピーは減少しない ホライズンの面積 A は減少しない 物理過程で温度をゼロにできない (Nernst) 物理過程で表面重力をゼロにできない 各法則について対応が成立している T κ =, S = π A 4 G G N : ニュートン定数 T κ =, π S = A 4 G しかし ここで BH のエントロピーが 何等かの 3+ 次元多自由度系のエントロピーに対応しているものと仮定してみよう エントロピーは示量性 : 系の 体積 に比例するべき 空間 3 次元の熱力学に対応させたければ A はホライズンの 面積 というよりも 3 次元 体積 BH の定義のために 3 次元ホライズンに垂直方向が必要 第 5 番目の座標が 重力理論側には必要

11 ブラックホール Einstein 方程式の解の一つ 重力が強い 重力が弱い 3+ d radial direction 5th direction 光は脱出できない (trapped region) Horizon (Apparent horizon) 光が脱出できる (un-trapped region) さらに 平坦な時空に埋め込まれた BH ( 通常の Schwarzschild BH) の比熱を計算すると 負になる 熱力学的に ill-defined しかし 例えば AdS 時空に BH を埋め込むと比熱を正にできる

12 もし BH から考察を出発すると 4+ d AdS-BH?? T=0 limit 何らかの 3+ d 有限温度系 ゲージ理論 4+ d AdS 何らかの 3+ d 系 ( ゼロ温度 )? 超弦理論により この矢印を厳密化したのが AdS/CFT 対応であるとも言える ゲージ理論 AdS/CFT 対応で登場するゲージ理論は クォーク グルーオンの物理を記述する QCD( 量子色力学 ) に類似した非可換ゲージ理論である そこで QCD について復習しておく

13 QCD( 量子色力学 ) クォーク 陽子 中性子などの核子 中間子 原子核の内部 グルーオン クォーク 反クォーク クォーク グルーオンをつかさどる理論 :QCD 量子電磁理論 (QED) に例えると クォークは電子 反クォークは陽電子 ( あるいは hole) に対応し グルーオンは光子に対応する QED: U() ゲージ理論 QCD: SU(3) ゲージ理論 カラーと呼ばれる 3 つの自由度が存在する QCD の理想化 QCD: クォークとグルーオンの理論 SU(3) ゲージ理論 クォークを取り除く SU(Nc) Nc=3 Nc= もとの SU(3) 理論の微細構造定数 4π Yang-Mills(YM) 理論グルーオンのみの理論 (SU(3) Yang-Mills 理論 ) large-ncym 理論 (SU( ) Yang-Mills 理論 ) λ=g YM Nc ( t Hooft 結合と呼ぶ ) が相互作用定数となっており Nc の極限で λ は固定する

14 QCD の理想化 ( 続き ) large-ncym 理論 グルーオンのみの理論 large-ncsuper-ym 理論 超対称 YM 理論 グルーオンと同質量のフェルミオンを ボゾン フェルミオンの入れ替え対称性 ( 超対称性 ) を保つ形で導入した理論 QCD の理想化 ( 続き ) Super-YM 理論 超対称性の数 ( ボゾンとフェルミオンの入れ替えの方法の数 ) を N とすると 3+ 次元では N= N= N=4 が知られている Maldacena により 最初に重力理論との対応が発見されたのが SU(Nc)N=4 SYM (large-nc,λ>>) 理論 この理論は CFT( 共形場理論 ) である

15 現実の QCD との関係 超対称性 : 超対称性を破る技術が存在する クォーク : クォークを導入する技術が存在する Large-Nc: SU(Nc=3) 理論の物理量を /Nc=/3 で展開して leading order のみを議論しているという解釈 現時点では 超対称性のない large-ncqcd の重力対応が得られており QCD の実験と悪くない一致が得られている T. Sakai and S. Sugimoto, Prog.Theor.Phys. 3 (005) , arxiv:hep-th/044 Prog.Theor.Phys.4:083-8,005. arxiv:hep-th/ 正確な具体例 SU(Nc) large-ncn=4 Super Yang-Mills (SYM) 理論 ( 超対称ゲージ理論 ) で t Hooft 結合 λ=g YM Nc >> の量子場理論 ( 平坦な 3+ 次元時空上の理論 ) 等価 Maldacena 次元の AdS 5 S 5 時空上の type IIB Super-gravity 理論 ( 超重力理論 = 一般相対性理論を一般化した理論 ) の古典論 ( ただし時空の曲率が十分小さい極限をとる )

16 もし BH から考察を出発すると 4+ d AdS-BH?? T=0 limit 何らかの 3+ d 有限温度系 N=4 SYMである ゲージ理論 4+ d AdS 何らかの 3+ d 系 ( ゼロ温度 )? 超弦理論により この矢印を厳密化したのが AdS/CFT 対応であるとも言える D-brane を経由する考え方 ( 正統的な説明 )

17 こうでない version もある 共形不変なゲージ理論 量子論 相互作用は強い AdS/CFT 対応とは = AdS 時空上の一般相対性理論 等価であると主張 d+ 次元 (d+)+ 次元 * 問い : どうして計算の簡単化が起き得るのか古典論? 相互作用は弱い ミクロな量子論の相互作用を含んだ困難な計算が 重力の古典力学で容易に計算できる * 正確には 9+ 次元もしくは 0+ 次元 AdS/CFT 対応の考え方 同じ物理量を 異なる真空上で展開した摂動論で記述すると 計算結果は同じでも 計算過程が全く異なるものとなる 摂動論を展開する真空をうまく選ぶことで 複雑な計算が簡単になる場合がある まず 場の理論において そのような例を見てみたい

18 例 : 3 理論 L= ( φ m φ µ ) + tachyonic V(ϕ) λ 3 φ 3! φ = 0 p m 真空 A 真空 B ϕ m φ = λ p +m A まわりの摂動論しか知らない者が B まわりの物理を議論したいとする どうしたら良いか? A の視点では B において場が期待値を持っている これをどのようにしたら計算できるか? Consistency condition (Schwinger-Dyson eq.) m φ = λ L L Jφ δs[ J ] φ = δj J= 0 φ = + -λ +.. J J J m w w = m m = non-perturbative source を導入 ( 一点関数 tadpole) φ = = + λ m λ 4 w, w ( λ)! m w= w m

19 B まわりでの propagater( 点関数 ) = ) (... ) ( ) ( m p m m p m p m m p m p m m p m p λ λ λ λ λ λ B における propagater A まわりの摂動論の無限個の diagram の和が B まわりではたった 個の diagram で計算される p +m = 例 : 3 理論 3 3! ) ( φ λ φ φ µ + L= m tachyonic 真空 A 真空 B λ φ m = = 0 φ p +m p m A まわりの摂動論を用いて 無限個のダイヤグラムの足し合わせ ( 複雑な計算 ) をすることで B まわりの物理 ( 真空 B を知っていれば一発で計算可 ) を再現した V(ϕ) ϕ

20 この例で学んだこと 同じ物理量の計算でも 摂動論が立脚する真空を異なるものに選べば 計算手法が大幅に異なってくる 真空 B まわりの物理を記述する二つの方法 真空 A の視点 真空 B の視点 B における場の期待値 m /λ 0 Source あり (weight:-m 4 /λ) なし 点関数 ( 古典 ) Source を挿入した無限個の diagram の和 一本の diagram 複雑な計算 = 単純な計算 同じことを弦理論で行うと AdS/CFT 対応が見えてくる 弦理論への一般化 弦理論の構成要素は点粒子ではなく弦 平坦な時空上の摂動論は知られている 超弦理論は 0 次元で定式化されている closed string open string Diagram は 次元面となる 重力場など ゲージ場など string 長さが無視できる極限では このような点粒子と同定される source 一点関数は? D-brane?

21 Dp-brane closed string の一点関数 closed string の diagram が終端することのできる p+ 次元の超平面 ( 部分空間 ) ここの weight(tension) はどう計算できるのだろうか? p+ 次元 Dp-brane 0 次元 tension =weight Consistency condition (Modular invariance) D-brane = + closed string が propagate していると考えても良いし open string が loop を描いていると考えても良い 二つの考え方に基づく計算が一致する条件から tension を計算できる tension = p+ p ( π) g l l : string length s s s string coupling g s の逆数に比例 : 非摂動的 4 m m w =, φ = w= λ m λ

22 D-brane これを open string の loop diagram だと見ると.. この open string の端点は D-brane に終端している D-brane 上には open string が存在する 重力 ゲージ場 D-brane 上にはゲージ理論が存在している ゲージ理論の coupling g YM を D3-brane の tension から読み取ると = YM g πg s Analogy 真空 A の視点 真空 B の視点 場の期待値 m /λ 0 Source あり (weight:-4m 4 /λ) なし 点関数 ( 古典 ) Source を挿入した無限個の diagram の和 複雑な計算 一本の diagram 単純な計算 弦理論 平坦な時空の視点 曲がった時空の視点 Graviton の期待値あり 0 D-brane あり (tension:g s - に比例 ) なし 点関数 ( 古典 ) D-brane を挿入した無限個の diagram の和 複雑な計算 一本の ( 曲がった時空上の )diagram 単純な計算 平坦な 0 次元時空 +D-brane で構成した弦の摂動論 同じ物理の書き換え D-brane の無い曲った 0 次元時空で構成した弦の摂動論

23 真空 B, 曲がった時空 は? Closed string の場の理論は 完全には知られていないが 平坦な時空上の IIB 超弦理論に D3-brane を導入した理論 弦の長さが無視できる低エネルギー極限では black 3-brane 時空上の IIB 超重力理論を再現するための一点関数を提供 IIB 超重力理論 ( 良く知られている ) 弦の長さが無視できる低エネルギー極限では この理論には平坦な時空以外の解として black 3-brane 時空という解もある black 3-brane の tension/charge は D3-brane のそれと厳密に一致する ds = H Black 3-brane 解 N 枚の重なった D3-brane に対応する 超重力理論の解 Black 3-brane 解 / r / ( dt + dx ) + H ( dr + r dω ) 4 r0 H = + r 4 0 = π r 3+ 次元方向の Poincare 不変性 4 ( 4 gs c) / ls r=0 に horizon がある ( 一種のブラックホール ) ADM 質量は r 04 に比例する すなわち N に比例する この他に 4 階反対称テンソル場 (Ramond-Ramondfield) の flux が存在し この ブラックホール は D3-brane と同じ RR charge を持つ この他に scalar 場 (dilaton 場 ) も存在する 5 string length string coupling

24 D-brane vs. curved space IIB 超重力理論の black 3-brane 解に相当 IIB 超弦理論の D3-brane この上の open string を調べると N=4 SYM 理論を構成している 弦の長さが無視できる低エネルギー極限では 4 次元の N=4 SYM 理論 + 平坦な 0 次元時空上の超重力理論 black 3-brane 解まわりの 0 次元超重力理論 これがいらないので 除きたい D3-brane black 3-brane ゲージ理論はここに局在 0 次元超重力理論 (flat 時空 ) +D3-brane 上の 4 次元 SYM 4 次元 YM だけ抽出 r 0 極限 正確には注意が必要 0 次元超重力理論 ( 曲った時空 ) ゲージ理論の自由度はこの近傍 (r~0) に局在しているのではないか? Horizon 近傍の情報のみを抽出する r 0 極限をとった black 3-brane 解の上の超重力理論

25 Black 3-brane ds = H / r / ( dt + dx ) + H ( dr + r dω ) 4 r0 H = + r 4 0 = π r 4 ( 4 gs c) / ls 5 r 0 極限 (near-horizon limit) ( 正確には r/ls を固定しながら ) ds r r r = 0d r r 0 ( ) 0 dt + dx + dr + r Ω S 5 5 AdS 5 3+ 次元 N=4 SYM 理論 AdS 5 S 5 上の超重力理論 等価? 等価というからには理論の持つ対称性くらいは一致していないと困る 本当に一致しているか? N=4 SYM 理論の対称性 ϕ N=4 SYM 理論の場 4 種類の超対称変換を組み換える自由度 :R-symmetry A µ λλ λ3λ 4 ϕϕ 3ϕ 4ϕ 5ϕ 6 6 個の scalar 場を組み換える自由度に対応 SO(6) N=4 SYM 理論は CFT であることが知られている (β=0) 3+ 次元の conformal group は SO(,4)

26 ds 重力側の対称性 0 r r0 ( dt + dx ) + dr + r Ω r = 0d r r AdS 5 時空は時間が つあるような 4+ 次元 Minkowski 空間内の偽球面として構成できるので 対称性は SO(,4) AdS 5 S 5 SO(,4) SO(6) 5 ここの回転対称性が SO(6) たしかに一致している! 結論 N=4 SU(N c ) large-n c SYM 理論の λ>> 極限の量子論 等価 曲率 << の AdS 5 S 5 上の IIB 超重力理論の古典論 であると予想するに足る十分な理由が超弦理論にはある Maldacena(997) citation: 7933 の部分 : 対応をより精密に計算可能とするための条件

27 3+ d CFT 予想をさらに進めると 多くの場合 ここを 忘れて も差支えない N=4 SYM AdS 5 S 5 上の重力理論 4+ d AdS 予想ではあるが D-brane を通じた考察により かなり具体的かつ精密な map を見つけることができた さらに予想を一歩進め 一般に この意味は? ( 何らかの )d 次元 CFT d+ 次元 AdS 上の重力理論 の対応が成立しているのではないかと考えられている 余分な次元の意味

28 どう等価なのか? 重力側とゲージ理論側の対応関係の辞書をどのように作ったら良いか? Black 3-brane 時空 D-brane の picture に立ち返ることが重要 Supergravity 反応が戻ってくる重力波 AdS flat 同じ反応のはず D3-brane + flat な時空 Supergravity SYM flat 重力波 反応が戻ってくる SYM の視点からは外場 (source) の役割を果たす Near-horizon limit 後では AdS 時空に境界があった Horizon AdS Boundary 境界上のモード ( つまり境界条件 ) が外場 source に対応する 何に対する source?

29 D-brane picture では T ij SYM T ij ( x ( x () () ) ) 重力波 g ij 重力波 g ij これは何? 入射した重力理論のモードが D-brane 上の YM の どのモードを励起するか調べれば良い 例えば 重力 (3+ 次元成分 metric g ij ) は D-brane 上の YM 理論の energy-momentum tensor と線形に結合する ということは 重力波 g ij 重力波 g ij Horizon AdS Boundary T ij ( x () ) T ij ( x () ) 曲った時空上の重力の古典的 Green 関数が 平らな時空上の YM 理論の stress tensor のあらゆる planar diagram を取り入れた 点関数を与える

30 紫外 vs. 赤外 あくまで直観的な説明に過ぎないが 外場の間の 3+ 次元的距離 AdS z= Boundary Z=0 AdS z= Boundary Z=0 YM 側で short distance を考えると 重力側では boundary 近傍を考えることに対応する 先ほどの BH の例では 4+ d AdS-BH 有限温度に戻ってみると T=0 limit 何らかの 3+ d 有限温度系 具体的には N=4 SYM であることが判明した 4+ d AdS 何らかの 3+ d 系 ( ゼロ温度 ) 実は このブラックホールの面積から読み取られるエントロピーは N=4 SYM の有限温度におけるゲージ粒子の多体系のエントロピーであった

31 5 番目の座標の意味 そもそも AdS 5 と 4 次元 SYM が対応する と言った時に 5 番目の方向の意味を問うのは自然な質問であった 厳密な正確性を無視して言えば 5 番目の座標はYM 理論の言葉ではエネルギースケールの方向であり 非常に大雑把には非常に大雑把には 異なるエネルギースケールの物理が5 番目方向の異なる場所に住み分けしている というイメージを持つこともできる IR UV Horizon ( または origin) 5 次元目の方向 Boundary 実際 巨視的物理に関連した物理量 ( エントロピーなど ) は horizon で与えられる AdS/CFT 対応とは何か この研究会に適した説明 : 理論の長さ ( エネルギー ) スケールを空間の新たな次元として可視化するプリズムのようなものである どの 熱力学的概念が現れる場合 (BH) があった この部分は曲がった時空上の高次元の重力理論であり 余分な次元 ( のひとつ ) がCFT 側のスケールに対応していた さらに長距離側において多自由度系のエントロピーな CFT 注目する理論 : 様々なスケールの物理が混在 AdS/CFT 弦理論による書き換え 対応する理論には : あらたな次元方向があらわれ スケールごとに住み分けがなされる AdS

32 この研究会の趣旨の一つ エンタングルメント エントロピーの AdS/CFT 対応による記述 計算 繰り込み群など 理論のスケール変換に関する 重力 時空の視点からの理解 本講演が これらの入り口となれば幸いです

Microsoft Word - 素粒子物理学I.doc

Microsoft Word - 素粒子物理学I.doc 6. 自発的対称性の破れとヒッグス機構 : 素粒子の標準模型 Dc 方程式.5 を導くラグランジアンは ϕ ϕ mϕϕ 6. である [H] Eu-nn 方程式 を使って 6. のラグランジア ンから Dc 方程式が導かれることを示せ 6. ゲージ対称性 6.. U 対称性 :QED ディラック粒子の複素場 ψに対する位相変換 ϕ ϕ 6. に対して ラグランジアンが不変であることを要請する これは簡単に示せる

More information

YITP50.dvi

YITP50.dvi 1 70 80 90 50 2 3 3 84 first revolution 4 94 second revolution 5 6 2 1: 1 3 consistent 1-loop Feynman 1-loop Feynman loop loop loop Feynman 2 3 2: 1-loop Feynman loop 3 cycle 4 = 3: 4: 4 cycle loop Feynman

More information

Microsoft Word - note02.doc

Microsoft Word - note02.doc 年度 物理化学 Ⅱ 講義ノート. 二原子分子の振動. 調和振動子近似 モデル 分子 = 理想的なバネでつながった原子 r : 核間距離, r e : 平衡核間距離, : 変位 ( = r r e ), k f : 力の定数ポテンシャルエネルギー ( ) k V = f (.) 古典運動方程式 [ 振動数 ] 3.3 d kf (.) dt μ : 換算質量 (m, m : 原子, の質量 ) mm

More information

: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ =

: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ = 1 11 11.1 ψ e iα ψ, ψ ψe iα (11.1) *1) L = ψ(x)(γ µ i µ m)ψ(x) ) ( ) ψ e iα(x) ψ(x), ψ(x) ψ(x)e iα(x) (11.3) µ µ + iqa µ (x) (11.4) A µ (x) A µ(x) = A µ (x) + 1 q µα(x) (11.5) 11.1.1 ( ) ( 11.1 ) * 1)

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

ニュートン重力理論.pptx

ニュートン重力理論.pptx 3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間

More information

中央大学セミナー.ppt

中央大学セミナー.ppt String Gas Cosmology References Brandenberger & Vafa, Superstrings in the early universe, Nucl.Phys.B316(1988) 391. Tseytlin & Vafa, Elements of string cosmology, Nucl.Phys.B372 (1992) 443. Brandenberger,

More information

橡超弦理論はブラックホールの謎を解けるか?

橡超弦理論はブラックホールの謎を解けるか? 1999 3 (Can String Theory Solve the Puzzles of Black Holes?) 305-0801 1-1 makoto.natsuume@kek.jp D-brane 1 Schwarzschild 60 80 2 [1] 1 1 1 2 2 [2] 25 2.2 2 2.1 [7,8] Schwarzschild 2GM/c 2 Schwarzschild

More information

余剰次元のモデルとLHC

余剰次元のモデルとLHC 余剰次元のモデルと LHC 松本重貴 ( 東北大学 ) 1.TeraScale の物理と余剰次元のモデル.LHC における ( 各 ) 余剰次元モデル の典型的なシグナルについて TeraScale の物理と余剰次元のモデル Standard Model ほとんどの実験結果を説明可能な模型 でも問題点もある ( Hierarchy problem, neutrino mass, CKM matrix,

More information

有限密度での非一様なカイラル凝縮と クォーク質量による影響

有限密度での非一様なカイラル凝縮と  クォーク質量による影響 空間的に非一様なカイラル凝縮に対する current quark mass の影響 東京高専 前段眞治 東京理科大学セミナー 2010.9.6 1 1.Introduction 低温 高密度における QCD の振る舞い 中性子星 compact star クォーク物質の理解に重要 T 0 での QCD の基底状態 カイラル対称性の破れた相 カラー超伝導相 μ 2 有限密度において fermionic

More information

ひも理論で探る ブラックホールの謎

ひも理論で探る ブラックホールの謎 第 34 回知の拠点セミナー 2014 年 7 月 18 日於京都大学東京オフィス 超ひも理論のフロンティア : ブラックホールから ホログラフィー原理へ 高柳 匡 京都大学基礎物理学研究所 京都大学基礎物理研究所 当研究所は 湯川秀樹博士のノーベル物理学賞を記念して 1953 年に我が国初の共同利用研究所として創設されました 理論物理学のほぼすべての分野 ( 素粒子 原子核 宇宙 物性 ) の第一線の研究者が揃っております

More information

             論文の内容の要旨

             論文の内容の要旨 論文の内容の要旨 論文題目 Superposition of macroscopically distinct states in quantum many-body systems ( 量子多体系におけるマクロに異なる状態の重ね合わせ ) 氏名森前智行 本論文では 量子多体系におけるマクロに異なる状態の重ねあわせを研究する 状態の重ね合わせ というのは古典論には無い量子論独特の概念であり 数学的には

More information

Microsoft PowerPoint - qchem3-9

Microsoft PowerPoint - qchem3-9 008 年度冬学期 量子化学 Ⅲ 章量子化学の応用 4.4. 相対論的効果 009 年 月 8 日 担当 : 常田貴夫准教授 相対性理論 A. Einstein 特殊相対論 (905 年 ) 相対性原理: ローレンツ変換に対して物理法則の形は不変 光速度不変 : 互いに等速運動する座標系で光速度は常に一定 ミンコフスキーの4 次元空間座標系 ( 等速系のみ ) 一般相対論 (96 年 ) 等価原理

More information

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回 素粒子物理学 素粒子物理学序論B 010年度講義第4回 レプトン数の保存 崩壊モード 寿命(sec) n e ν 890 崩壊比 100% Λ π.6 x 10-10 64% π + µ+ νµ.6 x 10-8 100% π + e+ νe 同上 1. x 10-4 Le +1 for νe, elμ +1 for νμ, μlτ +1 for ντ, τレプトン数はそれぞれの香りで独立に保存

More information

第2回 星の一生 星は生まれてから死ぬまでに元素を造りばらまく

第2回 星の一生  星は生まれてから死ぬまでに元素を造りばらまく 素粒子世界の物理 物質を形作るミクロの 世界の不思議 1. 素粒子の世界 2. 素粒子の標準模型 3. 標準模型の困難 : ニュートリノ質量と暗黒物質 4. 統一理論 1. 素粒子の世界 自然界のあらゆる物質は原子に分解される しかし 原子は最小の構成要素ではなく さらに原子核と電子に分解できる 原子核はさらに下部構造を持っており 現在 我々が到達可能な究極の構成要素が素粒子である 素粒子の世界の構造と物理は

More information

Microsoft PowerPoint - 小路田俊子 [互換モード]

Microsoft PowerPoint - 小路田俊子 [互換モード] Wining number in String fiel theory @ 名古屋大学 京大理小路田俊子 畑氏との共同研究 bae on arxiv:.89 内容 開弦の場の理論 Cubic SFT と Chern-Simon 理論の類似性に着目し 位相的不変量である Wining 数を CSFT において実現できるのか調べる S CS k M Wining 数 S N [ g] gg 4 M M

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

ssastro2016_shiromizu

ssastro2016_shiromizu 26 th July 2016 / 1991(M1)-1995(D3), 2005( ) 26 th July 2016 / 1. 2. 3. 4. . ( ) 1960-70 1963 Kerr 1965 BH Penrose 1967 Hawking BH Israel 1971 (Carter)-75(Robinson) BH 1972 BH theorem(,, ) Hawk 1975 Hawking

More information

プランクの公式と量子化

プランクの公式と量子化 Planck の公式と量子化 埼玉大学理学部物理学科 久保宗弘 序論 一般に 量子力学 と表現すると Schrödinger の量子力学などの 後期量子力学 を指すことが多い 本当の量子概念 には どうアプローチ? 何故 エネルギーが量子化されるか という根本的な問いにどうこたえるか? どのように 量子 の扉は叩かれたのか? 序論 統計力学 熱力学 がことの始まり 総括的な動き を表現するための学問である

More information

高次元一般相対論とブラックホール

高次元一般相対論とブラックホール 第 8 回湯川記念財団 木村利栄理論物理学賞受賞記念講演 2015 年 1 月 21 日於京都大学基礎物理学研究所 高次元の一般相対論とブラックホール 石橋明浩 近畿大学理工学部 お話しすること 何に興味をもってきたか 何をやっているのか これから ( 高次元 ) 一般相対論研究の進展 1916: Schwarzschild 解 1963: Kerr 解 1965~1970: 特異点定理 1992:

More information

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする 相対性理論入門 Lorentz 変換 光がどのような座標系に対しても同一の速さ で進むことから導かれる座標の一次変換である. x, y, z, t ) の座標系が x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとすると, x A x wt) y y z z t Bx + Dt 弨弱弩弨弲弩弨弳弩弨弴弩 が成立する. 図 : 相対速度

More information

弦の場の理論における 位相的構造と反転対称性

弦の場の理論における 位相的構造と反転対称性 弦の場の理論における 位相的構造と反転対称性 小路田俊子 with 畑氏 京都大学 25.4.9 益川塾セミナー 目次 弦の場の理論とは Cubic String Field Theory 弦の場の理論の位相的構造 相関関数の反転対称性 結論 弦の場の理論 p 弦理論には原理が無い固定された背景時空中の on-shell 振幅の摂動論的ルール 弦の場の理論 弦理論の off-shell かつ非摂動論的定式化

More information

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使

1/12 平成 29 年 3 月 24 日午後 1 時 1 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使 / 平成 9 年 3 月 4 日午後 時 分第 3 章測地線 第 3 章測地線 Ⅰ. 変分法と運動方程式最小作用の原理に基づくラグランジュの方法により 重力場中の粒子の運動方程式が求められる これは 力が未知の時に有効な方法であり 今のような 一般相対性理論における力を求めるのに使う事ができる 最小作用の原理 : 粒子が時刻 から の間に移動したとき 位置 と速度 v = するのが ラグランジュ関数

More information

Microsoft PowerPoint - hiei_MasterThesis

Microsoft PowerPoint - hiei_MasterThesis LHC 加速器での鉛鉛衝突における中性 πおよびω 中間子測定の最適化 日栄綾子 M081043 クォーク物理学研究室 目的 概要 目的 LHC 加速器における TeV 領域の鉛鉛衝突実験における中性 π および ω 中間子の測定の実現可能性の検証 および実際の測定へ向けた最適化 何故鉛鉛衝突を利用して 何を知りたいのか中性 πおよびω 中間子測定の魅力 ALICE 実験検出器群 概要予想される統計量およびバックグランドに対するシグナルの有意性を見積もった

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 有効理論を用いた vector like クォーク模型に対する B 中間子稀崩壊からの制限 (Work in progre) 広大院理 高橋隼也 共同研究者 : 広大院理, 広大 CORE-U 広大院理 島根大総合理工 両角卓也 清水勇介 梅枝宏之 導入 標準模型 (SM) のクォーク 標準模型は 6 種類のクォークの存在を仮定 アップタイプ ダウンタイプ u c t d 更にクォークが存在する可能性は?

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

多次元レーザー分光で探る凝縮分子系の超高速動力学

多次元レーザー分光で探る凝縮分子系の超高速動力学 波動方程式と量子力学 谷村吉隆 京都大学理学研究科化学専攻 http:theochem.kuchem.kyoto-u.ac.jp TA: 岩元佑樹 iwamoto.y@kuchem.kyoto-u.ac.jp ベクトルと行列の作法 A 列ベクトル c = c c 行ベクトル A = [ c c c ] 転置ベクトル T A = [ c c c ] AA 内積 c AA = [ c c c ] c =

More information

ハートレー近似(Hartree aproximation)

ハートレー近似(Hartree aproximation) ハートリー近似 ( 量子多体系の平均場近似 1) 0. ハミルトニアンの期待値の変分がシュレディンガー方程式と等価であること 1. 独立粒子近似という考え方. 電子系におけるハートリー近似 3.3 電子系におけるハートリー近似 Mde by R. Okmoto (Kyushu Institute of Technology) filenme=rtree080609.ppt (0) ハミルトニアンの期待値の変分と

More information

北陸合宿講義トラペ

北陸合宿講義トラペ 2007 年 5 月 29 日 @ 本郷初期宇宙研究会 超弦理論屋の見た初期宇宙 : ブレーン 宇宙の次元 宇宙ひも 東大駒場 素粒子論研究室 橋本幸士 目次 1 弦理論と初期宇宙 : 現状と問題意識 2 弦理論と宇宙の次元 3 弦理論と宇宙観測 1 弦理論と初期宇宙 : 現状と問題意識 現在の高次元宇宙論 高次元重力理論では 5 次元時空中の 4 次元ブレーンワールド模型が積極的に調べられている

More information

あ Supersymmetry non-renormalization theorem from a computer and the AdS/CFT correspondence 総研大 D1 本多正純 伊敷吾郎氏 ( CQUeST ), Sang-Woo Kim 氏 ( KEK ), 西村淳氏 ( KEK& 総研大 ), 土屋麻人氏 ( 静岡大 ) との共同研究に基づく 2010/7/23 基研研究会

More information

物理学 II( 熱力学 ) 期末試験問題 (2) 問 (2) : 以下のカルノーサイクルの p V 線図に関して以下の問題に答えなさい. (a) "! (a) p V 線図の各過程 ( ) の名称とそのと (& きの仕事 W の面積を図示せよ. # " %&! (' $! #! " $ %'!!!

物理学 II( 熱力学 ) 期末試験問題 (2) 問 (2) : 以下のカルノーサイクルの p V 線図に関して以下の問題に答えなさい. (a) ! (a) p V 線図の各過程 ( ) の名称とそのと (& きの仕事 W の面積を図示せよ. #  %&! (' $! #!  $ %'!!! 物理学 II( 熱力学 ) 期末試験問題 & 解答 (1) 問 (1): 以下の文章の空欄に相応しい用語あるいは文字式を記入しなさい. 温度とは物体の熱さ冷たさを表す概念である. 物体は外部の影響を受けなければ, 十分な時間が経過すると全体が一様な温度の定常的な熱平衡状態となる. 物体 と物体 が熱平衡にあり, 物体 と物体 が熱平衡にあるならば, 物体 と物体 も熱平衡にある. これを熱力学第 0

More information

Microsoft Word - 素粒子物理学I.doc

Microsoft Word - 素粒子物理学I.doc . 序論本講義は高エネルギー物理学 素粒子実験物理学 の観点から 素粒子物理学の概要 特に電磁相互作用 QD の基礎と現象論的観点からの弱い相互作用 強い相互作用及び電弱統一理論について講義します 小林さん要チェック 後期は理論的な発展を中心に クォークモデル 量子色力学 大統一理論について講義されます. 素粒子とは世界を構成する最小の基本単位 つまり世界は何からできているかという 素朴な疑問に答える学問が素粒子物理学です

More information

超伝導状態の輸送方程式におけるゲージ不変性とホール効果

超伝導状態の輸送方程式におけるゲージ不変性とホール効果 超伝導状態の輸送方程式におけるゲージ不変性とホール項 輸送方程式について 研究の歴史 微視的導出法 問題点 - 項 超伝導体の 効果の実験 北大 理 物理北孝文 非平衡状態の摂動論 の方法 輸送方程式の微視的導出と問題点 ゲージ不変性とホール項 まとめ バイロイト 月 - 月 カールスルーエ 月 - 月 カールスルーエのお城 モーゼル渓谷 ザルツカンマ - グート ( オーストリア ) バイロイト近郊

More information

AdS/CFT Correspondence and Entanglement Entropy

AdS/CFT Correspondence  and Entanglement Entropy 京大基研研究会 量子多体系のエンタングルメントとくりこみ群, 011 年 1 月 /CFT 対応とエンタングルメント エントロピー 高柳匡 ( 東京大学 IPMU) 本講演と直接関係する論文 Ryu-TT, hep-th/0603001, PRL96(006)18160. Ryu-TT, hep-th/0605073, JHEP0608:045,006. Nishioka-TT, hep-th/0611035,

More information

領域シンポ発表

領域シンポ発表 1 次元の減衰運動の中の強制振動 ) ( f d d d d d e f e ce ) ( si ) ( 1 ) ( cos ω =ω -γ とおくと 一般解は 外力 f()=f siω の場合 f d d d d si f ce f ce si ) cos( cos si ) cos( この一般解は 1 φ は外力と変位との間の位相差で a 時間が経つと 第 1 項は無視できる この場合の振幅を

More information

解析力学B - 第11回: 正準変換

解析力学B - 第11回: 正準変換 解析力学 B 第 11 回 : 正準変換 神戸大 : 陰山聡 ホームページ ( 第 6 回から今回までの講義ノート ) http://tinyurl.com/kage2010 2011.01.27 正準変換 バネ問題 ( あえて下手に座標をとった ) ハミルトニアンを考える q 正準方程式は H = p2 2m + k 2 (q l 0) 2 q = H p = p m ṗ = H q = k(q

More information

Large N Reduction for Gauge Theories on 3-sphere

Large  N  Reduction  for   Gauge  Theories  on  3-sphere 伊敷吾郎 ( 大阪大学 & KEK) 以下の論文に基づく arxiv:0807.2352[hep-th], Phys. Rev. D78:106001,2008. T.Ishii (Osaka U.), GI, S. Shimasaki (Osaka U.) and A. Tsuchiya (Shizuoka U.) arxiv:0810.2884[hep-th], to appear in PRL.

More information

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード]

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード] 熱力学 Ⅱ 第 章自由エネルギー システム情報工学研究科 構造エネルギー工学専攻 金子暁子 問題 ( 解答 ). 熱量 Q をある系に与えたところ, 系の体積は膨張し, 温度は上昇した. () 熱量 Q は何に変化したか. () またこのとき系の体積がV よりV に変化した.( 圧力は変化無し.) 内部エネルギーはどのように表されるか. また, このときのp-V 線図を示しなさい.. 不可逆過程の例を

More information

Microsoft Word - 5章摂動法.doc

Microsoft Word - 5章摂動法.doc 5 章摂動法 ( 次の Moller-Plesset (MP) 法のために ) // 水素原子など 電子系を除いては 原子系の Schrödiger 方程式を解析的に解くことはできない 分子系の Schrödiger 方程式の正確な数値解を求めることも困難である そこで Hartree-Fock(H-F) 法を導入した H-F 法は Schrödiger 方程式が与える全エネルギーの 99% を再現することができる優れた近似方法である

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

1

1 http://www.is.oit.ac.jp/~shinkai/ 1 2 3 一般相対性理論 重力場の方程式 1916 空間の曲がりがモノの運動を決める アインシュタイン曲率テンソル 空間の歪み モノがあると空間が曲がる エネルギー運動量テンソル モノの分布 4 一般相対性理論 重力場の方程式 1916 空間の曲がりがモノの運動を決める モノがあると空間が曲がる 定常的な宇宙モデルをつくるために

More information

2018/6/12 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位 1. ショックレー状態 ( 準位 ) 2. タム状態 ( 準位 ) 3. 鏡像状態 ( 準位 ) 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテン

2018/6/12 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位 1. ショックレー状態 ( 準位 ) 2. タム状態 ( 準位 ) 3. 鏡像状態 ( 準位 ) 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテン 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位. ショックレー状態 ( 準位. タム状態 ( 準位 3. 鏡像状態 ( 準位 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテンシャル e F z ( z z e V ( z ( Fz dz 4z e V ( z 4z ( z > ( z < のときの電子の運動を考える

More information

τ-→K-π-π+ν τ崩壊における CP対称性の破れの探索

τ-→K-π-π+ν τ崩壊における CP対称性の破れの探索 τ - K - π - π + ν τ 崩壊における CP 対称性の破れの探索 奈良女子大学大学院人間文化研究科 物理科学専攻高エネルギー物理学研究室 近藤麻由 1 目次 はじめに - τ 粒子の概要 - τ - K - π - π + ν τ 崩壊における CP 対称性の破れ 実験装置 事象選別 τ - K - π - π + ν τ 崩壊の不変質量分布 CP 非対称度の解析 - モンテカルロシミュレーションによるテスト

More information

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38 ( ) 2011 5 14 at 1 / 38 Introduction? = String Field Theory = SFT 2 / 38 String Field : ϕ(x, t) x ϕ x / ( ) X ( σ) (string field): Φ[X(σ), t] X(σ) Φ (Φ X(σ) ) X(σ) & / 3 / 38 SFT with Lorentz & Gauge Invariance

More information

Microsoft PowerPoint - Setouchi-AdSCFT-1.pptx

Microsoft PowerPoint - Setouchi-AdSCFT-1.pptx ゲージ 重 力 対 応 とその 応 用 基 本 的 考 え 方 を 中 心 に 京 都 大 学 大 学 院 理 学 研 究 科 中 村 真 00,Dec. 6 改 訂 Plan to talk Part :AdS/CFT 対 応 の 基 本 思 想 (AdS/CFT 対 応 は 難 しくない ) Part : AdS/CFTのテクニック (でも 真 面 目 に 計 算 しようとするといろいろある )

More information

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63> 1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です

More information

Microsoft PowerPoint - siryo7

Microsoft PowerPoint - siryo7 . 化学反応と溶液 - 遷移状態理論と溶液論 -.. 遷移状態理論 と溶液論 7 年 5 月 5 日 衝突論と遷移状態理論の比較 + 生成物 原子どうしの反応 活性錯体 ( 遷移状態 ) は 3つの並進 つの回転の自由度をもつ (1つの振動モードは分解に相当 ) 3/ [ ( m m) T] 8 IT q q π + π tansqot 3 h h との並進分配関数 [ πmt] 3/ [ ] 3/

More information

粒子と反粒子

粒子と反粒子 対称性の破れをめぐる 50 年の歩み 小林誠 1956 T.D.Lee and C.N.Yang パリティ対称性の破れ 反粒子とは? 粒子には対応する反粒子が存在する 粒子と反粒子の質量は等しい粒子と反粒子の電荷は符号が反対 電子 e - 陽電子 e 反粒子が実際に使われている例 PET( 陽電子放射断層写真 ) 脳研究やがん診断で活躍 ディラック方程式 反粒子発見のきっかけ 近代物理学の 本の柱

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

多体系の量子力学 ー同種の多体系ー

多体系の量子力学 ー同種の多体系ー スピンに依存する有効相互作用の発現と化学結合のしくみ 巨視的な物体の構造にとって 基本的な単位になるのは原子または分子であり 物性の基礎にあるのは原子または分子の性質である. ボルン オッペンハイマー近似. He 原子中の 電子状態 ( 中心 電子系 ) 外場の中の同種 粒子系ー. 電子間相互作用のない場合. 電子間相互作用がある場合.3 電子系の波動関数は全反対称.4 電子系のスピン演算子の固有関数と対称性.5

More information

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0

1/17 平成 29 年 3 月 25 日 ( 土 ) 午前 11 時 1 分量子力学とクライン ゴルドン方程式 ( 学部 3 年次秋学期向 ) 量子力学とクライン ゴルドン方程式 素粒子の満たす場 y ( x,t) の運動方程式 : クライン ゴルドン方程式 : æ 3 ö ç å è m= 0 /7 平成 9 年 月 5 日 ( 土 午前 時 分量子力学とクライン ゴルドン方程式 ( 学部 年次秋学期向 量子力学とクライン ゴルドン方程式 素粒子の満たす場 (,t の運動方程式 : クライン ゴルドン方程式 : æ ö ç å è = 0 c + ( t =, 0 (. = 0 ì æ = = = ö æ ö æ ö ç ì =,,,,,,, ç 0 = ç Ñ 0 = ç Ñ 0 Ñ Ñ

More information

ます この零エネルギーの輻射が量子もつれを共有できることから ブラックホールが極めて高温な防火壁で覆われているという仮説が論理的必然でないことを明らかにしました 本研究の成果は 米国物理学会誌 Physical Review Letters に 2018 年 5 月 4 日 ( 米国東部時間 ) オ

ます この零エネルギーの輻射が量子もつれを共有できることから ブラックホールが極めて高温な防火壁で覆われているという仮説が論理的必然でないことを明らかにしました 本研究の成果は 米国物理学会誌 Physical Review Letters に 2018 年 5 月 4 日 ( 米国東部時間 ) オ 平成 30 年 5 月 7 日 報道機関各位 東北大学大学院理学研究科 ブラックホールにおける量子もつれが既知の 限界 より強い可能性を明らかにホーキング博士の議論の穴を発見 発表のポイント 量子ビット ( 注 1) を用いた模型の理論的解析により ブラックホールの熱的エントロピー ( 注 2) の導入に用いられてきたホーキング博士の考え 方に穴がある可能性を指摘した 量子もつれ ( 注 3) に関する予想の不十分な点を見出し

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

kougiroku7_26.dvi

kougiroku7_26.dvi 2005 : D-brane tachyon : ( ) 2005 8 7 8 :,,,,,,, 1 2 1.1 Introduction............................... 2 1.2......................... 6 1.3 Second Revolution (1994 )................... 11 2 Type II 26 2.1

More information

<4D F736F F D FCD B90DB93AE96402E646F63>

<4D F736F F D FCD B90DB93AE96402E646F63> 7 章摂動法講義のメモ 式が複雑なので 黒板を何度も修正したし 間違ったことも書いたので メモを置きます 摂動論の式の導出無摂動系 先ず 厳密に解けている Schrödiger 方程式を考える,,,3,... 3,,,3,... は状態を区別する整数であり 状態 はエネルギー順に並んでいる 即ち は基底状態 は励起状態である { m } は相互に規格直交条件が成立する k m k mdx km k

More information

Microsoft PowerPoint - many-particle-quantum-summary090611c

Microsoft PowerPoint - many-particle-quantum-summary090611c 多体系の量子力学的記述 目次. 量子力学的多粒子系の種類. 粒子系の量子力学 3. 異種の粒子から構成される有限多粒子系 4. 同種粒子の不可識別性 5. スピン自由度をもつ同種の多粒子系の波動関数の ( 位置 スピン ) 交換に対する対称性 6. フェルミ粒子に対するパウリの排他原理 6. 電子の量子状態の占有の仕方 6. スレーター行列式 6.3 どのような場合に 反対称化が重要になるか? 7.

More information

Microsoft PowerPoint - elast.ppt [互換モード]

Microsoft PowerPoint - elast.ppt [互換モード] 弾性力学入門 年夏学期 中島研吾 科学技術計算 Ⅰ(48-7) コンピュータ科学特別講義 Ⅰ(48-4) elast 弾性力学 弾性力学の対象 応力 弾性力学の支配方程式 elast 3 弾性力学 連続体力学 (Continuum Mechanics) 固体力学 (Solid Mechanics) の一部 弾性体 (lastic Material) を対象 弾性論 (Theor of lasticit)

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

2014年度 名古屋大・理系数学

2014年度 名古屋大・理系数学 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ空間内にある半径 の球 ( 内部を含む ) を B とする 直線 と B が交わっており, その交わりは長さ の線分である () B の中心と との距離を求めよ () のまわりに B を 回転してできる立体の体積を求めよ 04 名古屋大学 ( 理系 ) 前期日程問題 解答解説のページへ 実数 t に対して 点 P( t, t ), Q(

More information

FPWS2018講義千代

FPWS2018講義千代 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 3つの究極の 宗教や神話 哲学や科学が行き着く人間にとって究極の問い 宇宙 世界 はどのように始まり どのように終わるのか 全てをつかさどる究極原理は何か 今日はこれを考えます 人類はどういう存在なのか Wikipediaより 4 /72 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 電子レンジ 可視光では中が透け

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 慣性モーメント -1/6 テーマ 01: 慣性モーメント (Momet of ietia) コマ回しをすると, 長い時間回転させるには重くて大きなコマを選ぶことや, ひもを早く引くことが重要であることが経験的にわかります. 遊びを通して, 回転の運動エネルギーを増やせば, 回転の勢いが増すことを学習できるので, 機械系の学生にとってコマ回しも大切な体験学習のひとつと言えます.

More information

Microsoft Word

Microsoft Word 第 9 回工学基礎ミニマム物理試験問題.. 日立 水戸 正解は各問の選択肢 (,, ) の中からつだけ選び, その番号をマークシートにマークせよ この際,HBまたはBの鉛筆またはシャープペンシルを使うこと ボールペンは不可 正解が数値の場合には, 選択肢の中から最も近い値を選ぶこと 正解が選択肢の中に無い場合には, 番号ゼロを選択せよ 学生番号, 氏名を指定された方法でマークシートの所定の欄に記入せよ

More information

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

木村の物理小ネタ   ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻

More information

SUSY DWs

SUSY DWs @ 2013 1 25 Supersymmetric Domain Walls Eric A. Bergshoeff, Axel Kleinschmidt, and Fabio Riccioni Phys. Rev. D86 (2012) 085043 (arxiv:1206.5697) ( ) Contents 1 2 SUSY Domain Walls Wess-Zumino Embedding

More information

s ss s ss = ε = = s ss s (3) と表される s の要素における s s = κ = κ, =,, (4) jωε jω s は複素比誘電率に相当する物理量であり ここで PML 媒質定数を次のように定義する すなわち κξ をPML 媒質の等価比誘電率 ξ をPML 媒質の

s ss s ss = ε = = s ss s (3) と表される s の要素における s s = κ = κ, =,, (4) jωε jω s は複素比誘電率に相当する物理量であり ここで PML 媒質定数を次のように定義する すなわち κξ をPML 媒質の等価比誘電率 ξ をPML 媒質の FDTD 解析法 (Matlab 版 2 次元 PML) プログラム解説 v2.11 1. 概要 FDTD 解析における吸収境界である完全整合層 (Perfectl Matched Laer, PML) の定式化とプログラミングを2 次元 TE 波について解説する PMLは異方性の損失をもつ仮想的な物質であり 侵入して来る電磁波を逃さず吸収する 通常の物質と接する界面でインピーダンスが整合しており

More information

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考 3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x = f x= x t f c x f = [1] c f x= x f x= x 2 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考える まず 初期時刻 t=t に f =R f exp [ik x ] [3] のような波動を与えたとき どのように時間変化するか調べる

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

格子数値計算を用いた S U ゲージ理論における共形相の研究 大木洋 名古屋大学素粒子宇宙起源研究機構 はじめに 数値計算において調べる事が目的である 素粒子現 素粒子物理の標準模型と呼ばれるものは 強い相 象論的観点からは 電弱対称性の破れの起源がゲー 互作用 電弱相互作用を含む理論であり その力

格子数値計算を用いた S U ゲージ理論における共形相の研究 大木洋 名古屋大学素粒子宇宙起源研究機構 はじめに 数値計算において調べる事が目的である 素粒子現 素粒子物理の標準模型と呼ばれるものは 強い相 象論的観点からは 電弱対称性の破れの起源がゲー 互作用 電弱相互作用を含む理論であり その力 Tte Athr 格子数値計算を用いた SU ゲージ理論における共形相の研究 大木 洋 Ctt サイバーメディア HPC ジャーナル P7-P e Dte 0-07 Text Ver pbher UR http:drg08907067 DO 08907067 rght 格子数値計算を用いた S U ゲージ理論における共形相の研究 大木洋 名古屋大学素粒子宇宙起源研究機構 はじめに 数値計算において調べる事が目的である

More information

観測的宇宙論workshop.pptx

観測的宇宙論workshop.pptx 名古屋 大学宇宙論論研究室 嵯峨承平 ( 共同研究者 : 市來來淨與, 杉 山直 ) 2013/12/4 観測的宇宙論論 workshop 1/20 目次 1. イントロ 2. 2 次摂動論論 3. 重 力力波 ( 線形摂動 ) 4. 重 力力波 (2 次摂動 ) 5. まとめ 2/20 1. イントロ 非ガウス性 重 力力レンズ効果 2 次ドップラー効果 2 次重 力力波 磁場 Mode coupling

More information

具合が大きくなり 一般相対性理論 3 に基づく重力の記述が破綻するためである この問題を解決する新しいアプローチとして 1997 年米国プリンストン大のマルダセナ教授は ブラックホールの中心を含めて正しく重力を記述する理論を提唱した この理論によれば ちょうどホログラムが立体図形の情報を平面上に記録

具合が大きくなり 一般相対性理論 3 に基づく重力の記述が破綻するためである この問題を解決する新しいアプローチとして 1997 年米国プリンストン大のマルダセナ教授は ブラックホールの中心を含めて正しく重力を記述する理論を提唱した この理論によれば ちょうどホログラムが立体図形の情報を平面上に記録 報道関係者各位 平成 26 年 4 月 23 日大学共同利用機関法人高エネルギー加速器研究機構国立大学法人京都大学国立大学法人茨城大学 ブラックホールを記述する新理論をコンピュータで検証 本研究成果のポイント ホログラムが立体図形を平面上に記録できるように ブラックホールのように曲がった時空で起こる力学現象を平坦な時空上で厳密に記述できる新理論に基づき 重力の量子力学的効果が無視できない条件下でのブラックホールの質量と温度の関係をコンピュータで計算

More information

切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. (

切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 統計学ダミー変数による分析 担当 : 長倉大輔 ( ながくらだいすけ ) 1 切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 実際は賃金を就業年数だけで説明するのは現実的はない

More information

物性基礎

物性基礎 水素様原子 水素原子 水素様原子 エネルギー固有値 波動関数 主量子数 角運動量 方位量子数 磁気量子数 原子核 + 電子 個 F p F = V = 水素様原子 古典力学 水素様原子 量子力学 角運動量 L p F p L 運動方程式 d dt p = d d d p p = p + dt dt dt = p p = d dt L = 角運動量の保存則 ポテンシャルエネルギー V = 4πε =

More information

FEM原理講座 (サンプルテキスト)

FEM原理講座 (サンプルテキスト) サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体

More information

Kaluza-Klein(KK) SO(11) KK 1 2 1

Kaluza-Klein(KK) SO(11) KK 1 2 1 Maskawa Institute, Kyoto Sangyo University Naoki Yamatsu 2016 4 12 ( ) @ Kaluza-Klein(KK) SO(11) KK 1 2 1 1. 2. 3. 4. 2 1. 標準理論 物質場 ( フェルミオン ) スカラー ゲージ場 クォーク ヒッグス u d s b ν c レプトン ν t ν e μ τ e μ τ e h

More information

5-仮想仕事式と種々の応力.ppt

5-仮想仕事式と種々の応力.ppt 1 以上, 運動の変数についての話を終える. 次は再び力の変数に戻る. その前に, まず次の話が唐突と思われないように 以下は前置き. 先に, 力の変数と運動の変数には対応関係があって, 適当な内積演算によって仕事量を表す ことを述べた. 実は,Cauchy 応力と速度勾配テンソル ( あるいは変位勾配テンソル ) を用いると, それらの内積は内部仮想仕事を表していて, そして, それは外力がなす仮想仕事に等しいという

More information

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1>

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1> 人工環境設計解析工学構造力学と有限要素法 ( 第 回 ) 東京大学新領域創成科学研究科 鈴木克幸 固体力学の基礎方程式 変位 - ひずみの関係 適合条件式 ひずみ - 応力の関係 構成方程式 応力 - 外力の関係 平衡方程式 境界条件 変位規定境界 反力規定境界 境界条件 荷重応力ひずみ変形 場の方程式 Γ t Γ t 平衡方程式構成方程式適合条件式 構造力学の基礎式 ひずみ 一軸 荷重応力ひずみ変形

More information

Microsoft Word - 8章(CI).doc

Microsoft Word - 8章(CI).doc 8 章配置間相互作用法 : Configuration Interaction () etho [] 化学的精度化学反応の精密な解析をするためには エネルギー誤差は数 ~ kcal/mol 程度に抑えたいものである この程度の誤差内に治まる精度を 化学的精度 と呼ぶことがある He 原子のエネルギーをシュレーディンガー方程式と分子軌道法で計算した結果を示そう He 原子のエネルギー Hartree-Fock

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

格子上の超対称ゲージ理論

格子上の超対称ゲージ理論 格子超対称性の最近の進展について - 格子で調べるブラックホールの量子的性質 - 加堂大輔 ( 慶應義塾大自然セ ) 第一回愛媛大学素粒子論研究室合宿 @ えひめ青少年ふれあいセンター 2016 年 10 月 28 日 ( 金 )-30 日 ( 日 ) 全体のトークプラン 28 日格子場の理論と格子超対称性 場の理論 格子理論 格子超対称性の導入 29 日杉野の格子超対称作用について 格子超対称性と格子超対称ゲージ理論の実現方法

More information

PowerPoint Presentation

PowerPoint Presentation 原子核反応論 八尋正信 九州大学 九大 目次. 散乱の量子論 基礎 Ekonal 近似 Glaube 近似 多重散乱理論.CDCC 理論 3. 天体核反応 太陽ニュートリノ問題 漸近係数 Ekonal-CDCC 4. ビッグバン元素合成と宇宙論への応用 5. 最先端の核反応とハドロン物理 散乱の量子論 目次. 散乱の基礎論.Bon 近似と Ekonal 近似 3.Glaube 近似 4.Glaube

More information

Microsoft Word - t30_西_修正__ doc

Microsoft Word - t30_西_修正__ doc 反応速度と化学平衡 金沢工業大学基礎教育部西誠 ねらい 化学反応とは分子を構成している原子が組み換り 新しい分子構造を持つことといえます この化学反応がどのように起こるのか どのような速さでどの程度の分子が組み換るのかは 反応の種類や 濃度 温度などの条件で決まってきます そして このような反応の進行方向や速度を正確に予測するために いろいろな数学 物理的な考え方を取り入れて化学反応の理論体系が作られています

More information

Microsoft PowerPoint - 東大講義09-13.ppt [互換モード]

Microsoft PowerPoint - 東大講義09-13.ppt [互換モード] 物性物理学 IA 平成 21 年度前期東京大学大学院講義 東京大学物性研究所高田康民 2009 年 4 月 10 日 -7 月 17 日 (15 回 ) 金曜日 2 時限 (10:15-11:45) 15 11 理学部 1 号館 207 号室 講義は自己充足的 量子力学 ( 第 2 量子化を含む ) 統計力学 場の量子論のごく初歩を仮定 最後の約 10 分間は関連する最先端の研究テーマを雑談風に紹介する

More information

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位 http://totemt.sur.ne.p 外積 ( ベクトル積 ) の活用 ( 面積, 法線ベクトル, 平面の方程式 ) 3 次元空間の つのベクトルの積が つのベクトルを与えるようなベクトルの掛け算 ベクトルの積がベクトルを与えることからベクトル積とも呼ばれる これに対し内積は符号と大きさをもつ量 ( スカラー量 ) を与えるので, スカラー積とも呼ばれる 外積を使うと, 平行四辺形や三角形の面積,

More information

Einstein ( ) YITP

Einstein ( ) YITP Einstein ( ) 2013 8 21 YITP 0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass =

More information

気体の性質-理想気体と状態方程式 

気体の性質-理想気体と状態方程式  自由エネルギー 熱力学関数 202 5/3 第 3セメスター化学 B 第 7 回講義担当奥西みさき前回の復習 : エントロピー今回の主題 : 自由エネルギー 講義資料は研究室のWebに掲載 htt://www.tagen.tohoku.ac.j/labo/ueda/index-j.html クラウジウスの式 サイクルに流れ込む熱量を正とする 不可逆サイクル 2 可逆サイクル η 熱機関 C η 熱機関

More information

Microsoft PowerPoint - TQFT2010-talk.pptx

Microsoft PowerPoint - TQFT2010-talk.pptx 励起子絶縁体の負性微分抵抗と AdS/CFT 対応 京都大学大学院理学研究科 中村真 Ref. arxiv:1006.4105[hep-th] IPMU Focus Week Condensed Matter Physics Meets Hih Enery Physics hosted by the Institute for the Physics and Mathematics of the Universe

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

OCW-iダランベールの原理

OCW-iダランベールの原理 講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す

More information

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回 素粒子物理学2 素粒子物理学序論B 2010年度講義第2回 =1.055 10 34 J sec =6.582 10 22 MeV sec c = 197.33 10 15 MeV m = c = c =1 1 m p = c(mev m) 938M ev = 197 10 15 (m) 938 =0.2 10 13 (cm) 1 m p = (MeV sec) 938M ev = 6.58

More information

Microsoft PowerPoint _9JPS_Tanaka_reduced_

Microsoft PowerPoint _9JPS_Tanaka_reduced_ Black Holes in Modified Gravity Takahiro Tanaka (YITP) Inspiraling-coalescing binaries 連星系からの重力波からは様々な情報を引き出せる Inspiral phase (large separation) クリーンな系 質点近似がよい星の内部構造はほとんど無視できる 正確な波形の予測が可能 for detection

More information

コロイド化学と界面化学

コロイド化学と界面化学 環境表面科学講義 http://res.tagen.tohoku.ac.jp/~liquid/mura/kogi/kaimen/ E-mail: mura@tagen.tohoku.ac.jp 村松淳司 分散と凝集 ( 平衡論的考察! 凝集! van der Waals 力による相互作用! 分散! 静電的反発力 凝集 分散! 粒子表面の電位による反発 分散と凝集 考え方! van der Waals

More information

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析

More information

Kerr 時空における球対称流に対するコリメーション効果 ( CQG, 26, , 2009 ) 髙見健太郎 ( 広島大学 / Albert-Einstein-Institute) 共同研究者 : 小嶌康史 ( 広島大学 ) 2009 年 10 月 01 日駒場宇宙コロキウム

Kerr 時空における球対称流に対するコリメーション効果 ( CQG, 26, , 2009 ) 髙見健太郎 ( 広島大学 / Albert-Einstein-Institute) 共同研究者 : 小嶌康史 ( 広島大学 ) 2009 年 10 月 01 日駒場宇宙コロキウム Kerr 時空における球対称流に対するコリメーション効果 ( CQG, 26, 085013, 2009 ) 髙見健太郎 ( 広島大学 / Albert-Einstein-Institute) 共同研究者 : 小嶌康史 ( 広島大学 ) 2009 年 10 月 01 日駒場宇宙コロキウム 目 次 導入 Kerr 時空と測地線方程式 粒子のコリメーション条件 粒子流に対するコリメーション効果 まとめ

More information