untitled

Size: px
Start display at page:

Download "untitled"

Transcription

1 ... i EGR I-

2 EGR TCCO TCCO C 1 C C 1 C C 1 C C 1 C C 1 C 2 C II-

3 n-butane Methane Methane/n-Butane Methane / n-butane Methane/ DME n-butanedme Methane / DME Methane / DME Methane/n-ButaneMethane/DME Methane / DME III-

4 Terminology cp Isobaric specific heat J/(molK) Specific heat at constant cv J/(molK) volume dp/dθ Pressure rising rate Pa/deg dq/dθ Rate of heat release J/deg dt Variation of temperature K du Variation of internal energy J Lf Low heating value of fuel J/mol LC4 Low heating value of methane J/mol LCO Low heating value of carbon monoxide J/mol Mf Molar weight of fuel kg mr Mass of residual gas kg mair Mass of intake air kg mf Mass of fuel kg Ne Engine speed rpm nf Mole number of fuel mol nrj j Mole number of j species gas mol in residual gas nairj j Mole number of j species gas mol in intake air nexc4 Mole number of Methane in mol exhaust gas nexco Mole number of carbon monoxide in exhaust gas mol P Pressure Pa Pc In-cylinder gas pressure Pa Pin Intake pressure Pa P Initial pressure Pa PLig Auto-ignition pressure of LTR Pa Pig Auto-ignition pressure of TR MPa Qin Inlet low heating value J T Temperature K Tc In-cylinder gas temperature K In-cylinder maximum gas K temperature Tcmax -i-

5 Tin Intake temperature K T Initial temperature, Temperature of compression K start Tex Exhaust gas temperature K TLig Autoignition temperature of K LTR Tig Autoignition temperature of K TR Tw Cooling water temperature K t Time s tcs Time after compression start s V Cylinder volume m 3 X Mole fraction XE Ethane Mole fraction of Ethane XP Propane Mole fraction of Propane XiB iso-butane Mole fraction of iso-butane XnB n-butane Mole fraction of n-butane Terminology φ Equivalence ratio φtotal Total equivalence ratio φm Methane Methane-based equivalence ratio φnb n-butane n-butane-based equivalence ratio φd DME DME-based equivalence ratio ε Compression ratio κ Specific heat ratio ρ Density kg/m 3 γexegr External EGR rate % ηc Combustion efficiency % θ Crank angle deg θcd Combustion duration deg θlig Auto-ignition timing of LTR deg θlmax Appearance timing of peak heat release in LTR deg -ii-

6 θlend End timing of LTR deg θig Auto-ignition timing of TR deg θmax Appearance timing of peak heat release in TR θend End timing of TR deg τ Ignition delay of TR s τl Ignition delay of LTR s deg Mean c Combustion, Chamber CO Carbon monoxide CO2 Carbon dioxide D Di-methyl ether E Ethane ExEGR EGR External exhaust gas recirculation e Engine EGR Exhaust gas recirculation end End ex Exhaust f Fuel igh temperature reaction end End timing of high temperature reaction ig Autoignition of low temperature reaction max Peak value of heat release in high temperature reaction in Input ib iso-butane L Low temperature reaction Lend End timing of low temperature reaction Lig Autoignition of high temperature reaction Lmax Peak value of heat release in low temperature reaction max Maximum -iii-

7 nb n-butane NOx Nitrogen oxide P Propane r Residual gas st Stroke TC Total hydrocarbon w Cooling water Initial condition -iv-

8 21 33% (1)(2) 45% (1)(2) NOx EGR (CCI: omogeneous Charge Compression Ignition) NOx CCO CCO LNG(Liquified Natural Gas) 13A 12A CCO -1-

9 CO 2 / CO 2 4% 2% (3) LNG(Liquefied Natural Gas) 162 CO 2 (4) -2 CO 2 CO 2 (5) -3(LNG) (DME) CO 2 (5) DME LNG CO 2 LNG DME (LNG) -1 SOxCO 2 () (3) -2-

10 Crude Oil Mining Production phase Transport by sea Refining Transport by land Combustion phase Gasoline Refining Transport by land Diesel Natural Gas Mining Biomass Cultivation, arvest Transport by sea Refining Refining Refining Refining Transport by land Transport by land Transport by land Transport by land LNG Methanol DME -2 CO 2 (5) Combusion Transport by land Refining Transport by sea Mining Distribution Transportation Production Cultivation, arvest Blinge.M, et al, "Life-cycle assessment of dimethylether as a motor fuel" -3 CO 2 (5) -3-

11 -4 65% 36% 149 m (6) 12 LNG LNG LNG 53% (4) % (7) -6 LNG 29.5% 69.4% % % LNG 81.4% 5.8% (7) -4 (22 ) (6) -4-

12 % 3.4% 12.4% 13.1% 17.9% % (7) -6 LNG (2 ) (7) -5-

13 CO 2-7 (4) (LNG)(CNG: Compressed Natural Gas) (ANG: Adsorbed Natural Gas) (3) -8 (LNG)(LNG) CO 2 CO 2 CO 2 CO 2 (5)(8) CO (4) -6-

14 1 Running Production (LNG) (LNG) -8 CO 2 (5)(8) -7-

15 Methane EthanePropane Butane -9 13A 12A Methane 85~95%Ethane 2 1%Propane 14%Butane2% (13A12A) (9) C26.7% C % N2.12% C % C % C4 89.1% C41.5% Alaska C % C % C38 4.9% C % Indonesia C4 84.4% C26 5.5% C38 2.3% N2 5.4% C41 1.% 13A 12A O 2.9% -9 13A12A (9) -8-

16 PM NOx NO x CCO -9-

17 -1 4 NOx NOx

18 C CO CCO (1) (2) 45 (1) (2) NO NO CCO -11-

19 2 2 4 (1) EGR ATACActive Thermo-Atomosphere Combustion (11) AR(Activated Radical) (12) 2 ATAC ATAC ATAC (13) 2 ATAC DMEDEEMTBE DMEDEEMTBE ATAC R..Thring (14) 4 EGR

20 EGR PM Thomas W. Ryan (15) 2 EGR CCI 5 EGR EGR (16) PCCIPremixed-Charge Compression Ignition 1/1 NOx (17) Magnus Christensen (18) (iso-octane EtanolNatural Gas) (IMEP) C CO NOx (19) PREDIC(Premixed Lean Diesel Combustion) NOx CCO NOx (2) NOx -13-

21 MULDICMulitiple Stage Diesel Combustion NOx (21) C NOx NOx EGR (19)(2) (21) (22) CCI

22 ot EGR 5%: (kj/deg) :~2%,, :2%~, -2 CCI (22) PREDIC (19)(2) UNIBUS (21) n- φ LTR TR LTR TR Tin LTR TR LTR TR LTR TR LTR TR Ne LTR TR φ: ~.42Tin: 297~355K: 12.9~18.8 EGR: ~4%Ne: 4~1rpm CO2: ~4.9% φ:.1~.29tin: 38~353K : 14.5~18.5 P:.1~.3MPaNe: 7~15rpm mf: 2~6mm 3 /stcyl : 14~26EGR: ~6% P:.1~.26MPaNe: 1rpm 7275K 3mm 3 /stcyl: 3mm 3 /stcyl: 8288K Tin=355K LTR 6772K 886K C, CO 2.2.4MPa 8489K 3. C, CO 2% LTR 35%: 35%: 7471K 3%: 3%: 35%:35%: 5%: 7172 K CO CA AT CA CA AT CA CA AT CA CA AT CA :2%~ Ar, e, N2 CO2 69K (:3%~ ) :2%~ :3.5%~ Ar, e, N2 CO2 Ar, e, N2 (83~81K) NO -15-

23 (23) (34) (23) (27) (28) (33) (34) Warnatz (35) T<9KP=1.bar R O 2 R O 2 (1-1) -16-

24 O 2 1stO 2 additionro 2 internal or external atom abstraction (1-2) R O 2 RO 2 (1-2) RO 2 RO 2 (1-3) RO 2 R RO 2 R (1-4) 8K O 2 2nd O 2 addition RO 2 O 2 O 2 RO 2 (1-5) O 2 RO 2 O 2 RO 2 O 2 RO 2 (1-6) O 2 RO 2 R O 2 RO 2 R (1-7) (1-8)(1-9) 2 O O 2 addition O 2 RO 2 O 2 RO O (1-8) O 2 RO 2 O 2 RO O (1-9) 9KT11KP=1.bar (1-1)(1-11) (1-1) 2 O 2 3 O O 2 R 2 O 2 R (1-1) 2 O 2 M O O M (1-11) 11KTP=1.bar (1-12) -17-

25 O 2 O O (1-12) Methane NTC(Negative Temperaturre Coffecient) C 3 Methane O OO 2 Methane C- ( 4kcal)( 12) C 4 + O 2 C 3 + O 2 (1-13) C 4 + O C O (1-14) (1-13)(1-14) C 3 O C 3 + O C 2 O + (1-15) (1-15) CO OO CO + CO + 2 (1-16) CO + O CO + O (1-17) CO + O CO + 2 O (1-18) (1-16)(1-18) CO O 2 M CO + O 2 CO + O 2 (1-19) CO + CO + 2 (1-2) CO + M CO + + M (1-21) CO O CO 2 CO + O + CO 2 (1-22) -18-

26 NOx CCO CO 2 Methane EthanePropane Butane Methane 8595% Ethane 21% Propane 14% Butane 2% (13A12A) 4 EGR CCOCO 2 NOx CCO Methane EthanePropaneiso-Butane n-butane Methane ( DME) Methane / DME

27 <> <> <> <EGR> <> <> <> <> CO C CO2 NOx

28 7 EGR CCO CCO 13A Methane EthanePropane iso-butane n-butane 2 Methane / n-butane (13A) 1 Methane CO 2 O 2 DME -21-

29 (13A)φ Tin Pin Ne EGR γexegr2 (Methane / EthaneMethane / PropaneMethane / iso-butanemethane / n-butane Methane / DME) YANMAR TS23R kW4 8mm K Tin 125mm K Tex NO x COCO 2 TC

30 -1-1 TS23R OV Bore Stroke, m kW / 22rpm 17.2kW / 22rpm 18.8 deg 36 ATDC 132 ATDC deg 132 ATDC 36 ATDC -23-

31 Natural Gas (13A) Air Laminar Flow Meter Pressure Regulator Control Unit Mass Flow Controller eat Controller Pin EGR EGR Control Valve Tin Charge Amp P Tex Sampling Unit Data Logger CO, CO 2 Meter TC Meter NOx Meter Computer Exhaust Exhaust Dynamo Meter

32

33 -5 Valve Lift, mm In-Cylinder Pressure Pc, MPa TDC 132 TDC Compression Expansion Exhaust Intake Crank Angle deg θ, deg Cylinder Volume V, m 3 TDC TDC BDC ATDC -132 ATDC 132 ATDC 36 ATDC 36 BDC

34 ( 25 l/s) SEC-E5( 1 l/min)sec-552( 5 l/min) PAC-D LFE-25B l/s 25 kpa.6 kpa.8 %.5 % 1 kpa 3-6 ()() -27-

35 Fuel Flow Fuel Flow Supply Fuel Nozzle Nozzle Outside diameter 8mm Inside diameter 5mm Outside diameter : φ8 Inside diameter : φ5 From Laminar Flow Meter Intake Air Flow Intake Air Flow φ5 To Manifold SEC-E5 SEC-552 l/min N 2 ) 13 3/5/1 (N 2 )kpa 13 % % 1 2% %.5 1 %.2.4 kpa 1kPa K K

36 -8 ()() 14mm ( 1V1W4) OMRON E5C4-Q4K 8mm 1.mm K % 1 75 φ=1.mm

37 K-type Sheath Thermocouple Intake Gas Temperature Intake Valve Exhaust Valve 8mm K-type Sheath Thermocouple 31mm -9 EGR (EGR)EGR O 2 N 2 CO 2 2 OC -1 EGR 2-1 γ ExEGR = V air _ V V air air ExEGR 1 (-1) V V air _ air _ ExEGR : EGR, l/s : EGR, l/s -3-

38 8 Cp, kj/kmolk CO2 2O O2 O2 Ar Temperature K Gas Temperature, K -1 (36) KISTLER6121 KISLER511B 1deg 64 CP-62 CA-5A CP CP-62 72pulse/rev 2pulse/deg 1pulse/deg 1pulse/rev 1pulse 55kW EB-DI -31-

39 125mm 1.mm K -11 Intake Valve Exhaust Valve 125mm K-type Sheath Thermocouple 42mm K-type Sheath Thermocouple -11 NOx CO 2 CO C NOx NOx 512PL CLD NO NO 2 NOO 3 NO 2 O 2 (2-1) -32-

40 2-1 NO 2 NO NO NO 2 NOx NO COCO 2 COCO 2 CGT-1-2A CO CO 2 NDIRCO CO 2 CO COCO 2 TC TC CM-1B FID -33-

41 Rate of eat Release dq = dt du dw + dt dt J/mol J/mo J/mol (-2) dudw ducvdt dwpdv cv J/mol K PPa TK vm 3 /mol (-3) (-4) P dv dt + v dp dt R=cpcv = R dt dt RJ/molK cpj/molk (-5) (-6)

42 dq dt = κ κ P dv dt + dp v ( 1) ( κ 1) dt 1 (-7) k = c c p v (-8) (2-7) (2-9) dq dθ = κ κ P dv dθ + dp v ( 1) ( κ 1) dθ 1 (-9) -35-

43 -12 2J/deg 2J/deg In-Cylinder Gas Pressure, Pc MPa Rate of eat Release dq/dθ, J/deg In-Cylinder Gas Temperature Tc, K P ig 2 J/deg T ig θηig θηmax Crank Angle θ, deg φ=.45 θηend φ=.45 φ=.45 Natural Gas (13A) / Air T in =43K P in =.1MPa Ne=8rpm ε =18.8 ExEGR=% γ Experiment -12 () ()() -36-

44 125mm (ATDC-132) (2-1) T ( θ = 132) = m in Cpin T m Cp in in in + mr Cpr Tr + m Cp r r (-1) T in : K T r :K m in : kg m r :kg Cp in Cp r : J/ kg K : J/ kg K (2-1) (2-11) (2-12) T T ( θ ) = T ( θ ) ( θ ) = T ( θ ) i i i 1 i 1 P P P P ( θi ) ( θ ) i 1 κ 1 κ ( θ i ) V ( θ i ) n( θ i 1 ) ( θ ) V ( θ ) n( θ ) i 1 i 1 ( i = -179~54) i ( i = -179~54) (-11) (-12) T ( θ i ):K P( θ i ):MPa 3 V ( θ i ):m n( θ i ):mol k : -37-

45 -13(2-11)(2-12) (2-11)(2-12) 437K (2-12) 82K138K (2-11) 117K 121K (2-11) (2-12) 117K 185K (2-11) (2-12) -38-

46 Cylinder Volume V, m 3 In-Cylinder Gas Temperature Tc, K k In-Cylinder Gas Pressure, Pc MPa ( θ ) = T ( θ ) ( θ ) = T ( θ ) P ( ) ( ) ( θ i ) V ( θ i ) n( θ i 1 ) T θ i = T θ i 1 P( θ i 1 ) V ( θ i 1 ) n( θ i ) Crank Angle θ, deg T T i i i 1 i 1 P P P P Before autoignition ( θi ) ( θ ) P T ( θ ) ( θ 1 ) i = T i P i 1 After autoignition Natural Gas (13A) / Air T in =43K P in =.1MPa Ne=8rpm ε =18.8 ExEGR=% γ Experiment ( θi ) ( θ ) i 1 5 ( θ i ) V ( θ i ) n( θ i 1 ) ( θ ) V ( θ ) n( θ ) i 1 κ 1 κ κ 1 κ i 1 i Mole Number n, mol

47 Methane Methane EthanePropanen-Butaneiso-Butane A 13A kcal/m cm/s Ethane C 6.33 mol% Propane 4.9 mol% n-butane.98 mol% C C C C C C C C Methane mol% iso-butane.98 mol% C C C C C A (9) -5 13A (9)(36) Methane Ethane Propane n-butane iso-butane 13A Chemical Structure C 4 C 2 6 C 3 8 n-c 4 1 iso-c 4 1 Mole Weight, kg /kmol / C C, % wt , % wt Specific eat Ratio k Density, kg/m Thermal Conductivity, mw/mk Stoich. A / F Ratio, m 3 /m Low Calorific Value, MJ / m Wobbe Index, MJ/m Ignition Limits, vol % 5./15 3./ / / /8.4 4./14-4-

48 CCO 4 EGR CO 2 COCNOx CCO EGR TC,CO -1 3 TCCOCO2 NOx -41-

49 CCO EGR -2 Tin=43K Pin=.1MPa Ne=8rpm ε=18.8 EGR γexegr=%(13a) φ 1.5MPa -3 Tin=43K Pin=.1MPa Ne=8rpm ε=18.8 EGR γexegr =%(13A) φ.575 C 4 C CO 3-1 η c LC 4 nexc 4 + LCO n = 1 Qin η : % L n c C Q in exco 4, LCO : C 4, COJ/mol 1 (-1) 4, : C 4,CO, exc n exco : J mol φ=

50 % 94% -43-

51 In-Cylinder Gas Pressure Pc, MPa Pressure Rising Rate dp/dθ, MPa Natural Gas (13A) / Air T in =43K, P in =.1MPa Ne=8rpm, ε =18.8 γ ExEGR=%, Experiment Knocking = Crank Angle θ, deg φ φ =

52 Natural Gas (13A) / Air T in =43K, P in =.1MPa Ne=8rpm, ε =18.8 γ ExEGR=%, Experiment Misfiring η c =% φ =.15 Misfiring φ=.15 In-Cylinder Gas Pressure Pc, MPa Firing 82% Firing 92% Air only Air only Air only 1 Knocking % Air only Crank Angle θ, deg Firing Firing Air only Air only Air only Knocking Air only Crank Angle θ, deg Rate of eat Release dq/dθ, J/deg

53 -4 Pin=.1MPaε=18.8 Ne=8rpm EGR γexegr=%(13a) Tin φ 39K 43K 3 4K 43K % -5 Tin=43Kε=18.8 Ne=8rpm EGR γexegr=%(13a) Pin φ.1mpa.16mpa 9% 9%.12MPa.14MPa EGR -6 43K.1MPa 8rpm 18.8 EGR EGR -46-

54 EGR EGR % 4% EGR 5% EGR 9% EGR 4% EGR 5% EGR CO C -47-

55 Equivalence Ratio φ Natural Gas (13A) / Air P in =.1MPa, Ne=8rpm ε =18.8, ExEGR=% Experiment γ Misfiring η c 95% 9% 8% 6% =% Knocking Intake Temperature T in, K -4 EGR -48-

56 Equivalence Ratio φ Natural Gas (13A) / Air T in =43K, Ne=8rpm ε =18.8, ExEGR=% Experiment Misfiring γ η c Knocking 95% 9% 8% 6% =% Intake Pressure P in, MPa -5 EGR -49-

57 Equivalence Ratio φ Natural Gas (13A) / Air T in =43K, P in =.1MPa Ne=8rpm, ε=18.8 Experiment % Knocking %.5.4 9% 8%.3 6%.2 η c =%.1 Misfiring External EGR Rate γ ExEGR, % -6 EGR -5-

58 EGR -7 Tin=43K Pin=.1MPa Ne=8rpm ε=18.8 EGR γexegr=%(13a) P-T P-T P-T.4 187K 1821K -9-8 (BTDC132)

59 K 52K K 439K -52-

60 In-Cylinder Gas Temperature Tc, K In-Cylinder Gas Pressure Pc, MPa Natural Gas (13A) / Air T in =43K, P in =.1MPa Ne=8rpm, ε =18.8 γ ExEGR=%, Experiment.2 = Crank Angle θ, deg φ φ =

61 In-Cylinder Gas Temperature Tc, K φ = Autoignition.2 Start of Compression Natural Gas (13A) / Air T in =43K P in =.1MPa Ne=8rpm ε =18.8 γ ExEGR=% Experiment In-Cylinder Gas Pressure P c,mpa In-Cylinder Gas Temperature Tc, K Autoignition 1821K φ = In-Cylinder Gas Pressure P c,mpa

62 Rate of eat Release dq/dθ, J/deg Equivalence Ratio φ Knocking Misfiring φ = Crank Angle θ, deg Natural Gas (13A) / Air T in =43K P in =.1MPa Ne=8rpm =18.8 ε γ ExEGR=% Experiment θ ig θ max θ end

63 Temperature T, K Intake Gas Temp. T in Exhaust Gas Temp. T ex Natural Gas (13A) / Air T in =43K P in =.1MPa Ne=8rpm =18.8 ε γ ExEGR=% Experiment Equivalence Ratio φ -1 In-Cylinder Gas Temperature Tc, K K 432 φ =.2 T =431K In-Cylinder Gas Pressure P c,mpa Natural Gas (13A) / Air T in =43K P in =.1MPa Ne=8rpm ε =18.8 γ ExEGR=% Experiment

64 K.1MPa 18.8 EGR % 5rpm 12rpm -13 5rpm 12rpm 44.3ms 18.5ms 12rpm -14 5rpm 182K 1857K

65 In-Cylinder Gas Pressure Pc, MPa Natural Gas(13A) / Air =.4, T in =43K P in =.1MPa, ε =18.8 ExEGR=%, Experiment φ γ Ne=5rpm In-Cylinder Gas Temperature Tc, K Ne=5rpm Crank Angle θ, deg

66 Natural Gas(13A) / Air =.4, T in =43K P in =.1MPa, ε =18.8 ExEGR=%, Experiment φ γ 1 In-Cylinder Gas Pressure Pc, MPa Ne=12rpm In-Cylinder Gas Temperature Tc, K Ne=12rpm TDC TDC 1 TDC TDC 8 TDC Time after Compression Start t cs, ms

67 In-Cylinder Gas Temperature Tc, K Ne=5rpm Autoignition Start of Compression Natural Gas (13A) / Air φ =.4 T in =43K P in =.1MPa ε =18.8 γ ExEGR=% Experiment In-Cylinder Gas Pressure P c,mpa 11 In-Cylinder Gas Temperature Tc, K Ne=12rpm Autoignition 1781K In-Cylinder Gas Pressure P c,mpa

68 Rate of eat Release dq/dθ, J/deg Engine Speed Ne, rpm Ne=12rpm Time after Compression Start t cs, ms Natural Gas (13A) / Air φ =.4 T in =43K P in =.1MPa ε =18.8 γ ExEGR=% Experiment θ ig θ max θ end

69 Rate of eat Release dq/dθ, J/deg Engine Speed Ne, rpm Ne=5rpm Crank Angle θ, deg Natural Gas (13A) / Air φ =.4 T in =43K P in =.1MPa ε =18.8 γ ExEGR=% Experiment θ ig θ max θ end

70 -17 EGR (13A) (13A) EGR 1815K -18.1MPa.16MPa K -63-

71 Natural Gas(13A) / Air P in =.1MPa, ε =18.8 γexegr=%, Experiment In-Cylinder Gas Temperature Tc, K Autoignition 1815K In-Cylinder Gas Pressure P c,mpa ( φ =.5) (T in =443K) (Ne=512rpm) EGR(ExEGR=5%) γ

72 Autoignition Temperature Tig, K Natural Gas(13A) / Air T in =43K, ε =18.8 γexegr=%, Experiment P in =.1MPa.12MPa Autoignition 1815K.14MPa.16MPa φ= Autoignition Pressure P ig, MPa

73 K.1MPa 18.8 EGR %(13A)Methane(13A) Methane EthanePropane n-butane Methane Methane/Ethane(13A) Methane/Propane Methane/n-Butane -2 Methane Ethane 196K Propanen-Butane 175K158K 4-66-

74 φ =.38.2, T in =43K P in =.1MPa, Ne=8rpm ε =18.8, ExEGR=% Experiment γ A B C D Methane 1 mol% Methane 87.5 mol% Ethane 12.5mol% Methane 87.5 mol% Propane 12.5mol% Methane 87.5 mol% n-butane 12.5mol% In-Cylinder Gas Pressure Pc, MPa D C Natural Gas (13A) B A In-Cylinder Gas Temperature Tc, K D C Natural Gas (13A) B Crank Angle θ, deg A

75 φ =.38.2, T in =43K P in =.1MPa, Ne=8rpm ε =18.8, ExEGR=% Experiment γ In-Cylinder Gas Temperature Tc, K Tig=196K Methane 87.5 mol% Natural Gas (13A) 187K 175K Ethane 12.5mol% Methane 1 mol% n-butane 12.5mol% Methane 87.5 mol% Propane 12.5mol% Methane 87.5 mol% 158K In-Cylinder Gas Pressure P c,mpa

76 TCCO TCCO TC TC CO TCCO -21 Tin=43K Ne=8rpmε=18.8 EGR γexegr=%(13a) COCO 2 TC CO 2 TCCO TC CO 16K 9%TC CO.45%.1% 2K NO 2K NOx 3ppm -22φ=.45 Pin=.1MPa Ne=8rpm ε=18.8 EGR γexegr=% COCO 2 TC CO 2 TCCO 16K 9%TC CO.4%.1% 19K NO TC CO -69-

77 TCCO In-Cylinder Maximum Gas Temperature Tcmax, K CO, TC, % Natural Gas(13A) / Air T in =43K, P in =.1MPa Ne=8rpm, ε =18.8 γexegr=%, Experiment Misfiring Misfiring TC CO Knocking Knocking Equivalence Ratio φ CO2, % Combustion Efficiency ηc, % -21 TCCOCO 2-7-

78 TCCO In-Cylinder Maximum Gas Temperature Tcmax, K CO, TC, % Natural Gas(13A) / Air =.45, P in =.1MPa Ne=8rpm, ε =18.8 ExEGR=%, Experiment φ γ Misfiring Misfiring TC CO CO2 Knocking Knocking Intake Temperature T in, K Combustion Efficiency ηc, % CO2, % -22 TCCOCO 2-71-

79 TCCO TCCO -23 Tin=43K Pin=.1MPa Ne=8rpmε=18.8 EGR γexegr=%.1 Tcmax=197K ηc=%.3 Tcmax=13Kηc=67% K 194K % 94% -24φ=.45 Pin=.1MPa Ne=8rpm ε=18.8 EGR γexegr=% 39K 43K 197K 186K % 92% -25 EGR TCCOCO 2 TCCO 12K 16K TC.4%CO.1% CO 2 16K 9% TCCO 16K -72-

80 TCCO In-Cylinder Gas Temperature Tc, K Natural Gas(13A) / Air T in =43K, P in =.1MPa Ne=8rpm, ε =18.8 γexegr=%, Experiment 2 η c =94% T cmax =194K φ =.5 9% 173K % 155K.35 67% 13K.3 % 197K Crank Angle θ, deg

81 TCCO In-Cylinder Gas Temperature Tc, K Natural Gas(13A) / Air φ =.45, P in =.1MPa Ne=8rpm, ε =18.8 γexegr=%, Experiment η c =92% T cmax =186K 85% 158K 66% 12K % 197K Tin=43K 41K 4K 39K Crank Angle θ, deg

82 TCCO CO2, % CO, % TC, % Combustion Efficiency ηc, % Natural Gas(13A) / Air ε =18.8, Experiment Below.1% Over 9% In-Cylinder Maximum Gas Temperature T cmax, K Ne=5rpm Ne=8rpm Ne=1rpm Ne=12rpm T in =42K T in =41K T in =4K P in =.12MPa P in =.14MPa P in =.16MPa γ ExEGR =6.3% γ ExEGR =1% γ ExEGR =25% γ ExEGR =4% γ ExEGR =5% -25 TCCOCO 2-75-

83 3 3 CCO 4 EGR CO 2 COCNOx CCO 3 (13A) EGR 1815K EGR CO CO 16K -76-

84 -77- Methane EthanePropane Butane Methane 8595%Ethane 21% Propane 14% Butane 2% (13A12A) (13A) C 1 ~C 4 MethaneEthane Propaneiso-Butanen-Butane Methane / EthaneMethane / PropaneMethane / iso-butane Methane / n-butane 2 mol% 1mol% TCCO CO 2 C C C C C C C C C C C C C C C C C C C C C C C C C C C C Methane Ethane Propane n-butane iso-butane C1C4 2 C C Methane + Ethane C C C C Propane C C C C C C C C C C C C C C n-butane iso-butane C C C C C C C C -1 4

85 C 1 C 4 C 1 C 4 C 1 C 4 Tin=43KPin=.1MPaNe=8rpmε=18.8 Ethane φ -2Methane EthanePropaneiso-Butane n-butane MPa 11K Methane.6 Ethane.1 Ethane.4-3 Propaneiso-Butane n-butane EthanePropane iso-butane n-butane EthanePropaneiso-Butane n-butane -78-

86 C 1 C 4 In-Cylinder Gas Pressure Pc, MPa Ethane/Air T in =43K, P in =.1MPa Ne=8rpm, ε =18.8 γ Experiment ExEGR=%,.1 φ= Crank Angle θ, deg φ -2 Ethane -79-

87 C 1 C 4 Equivalence Ratio φ T in =43K, P in =.1MPa Ne=8rpm, ε =18.8 γ Experiment ExEGR=%, Misfire Firing Knocking Methane Ethane Propane iso-butane n-butane -3 MethaneEthanePropaneiso-Butane n-butane -8-

88 C 1 C 4 C 1 C 4-4φ=.3 Tin=43K Ne=8rpm ε=18.8 (13A)MethaneEthanePropane iso-butane n-butane Methane EthanePropane iso-butane n-butane Methane EthanePropaneiso-Butane n-butane ( -14)(13A) EthanePropaneiso-Butane n-butane 185K (13A)Ethane Propaneiso-Butane n-butane (13A)EthanePropaneiso-Butane n-butane -5 MethaneEthanePropaneiso-Butane n-butane (37) Ethane 2 n-butane 2 2 OOO 2 C C Methane EthanePropaneiso-Butanen-Butane n-butane iso-butane O 2 1 iso-butane 2 n-butane -6(13A)MethaneEthanePropaneiso-Butane n-butane Ethane 153K Propaneiso-Butane n-butane 14K 12K17K Methane -7.16MPa 38K K -8(13A)MethaneEthanePropaneiso-Butane n-butane -81-

89 C 1 C 4 (13A)EthanePropaneiso-Butane n-butane (13A) Methane n-butane Tin=35K Pin=.1MPa Ne=8rpm ε=18.8 n-butane φ φ=.25 Pin=.1MPa Ne=8rpm ε=18.8 n-butane 294K 355K 355K -12φ=.2 Tin=35K Ne=8rpm ε=18.8 n-butane.1mpa.2mpa n-butane -82-

90 C 1 C 4 In-Cylinder Gas Temperature Tc, K In-Cylinder Gas Pressure Pc, MPa φ =.3, T in =43K P in =.1MPa, Ne=8rpm ε =18.8, ExEGR=% Experiment n-butane iso-butane Propane Ethane n-butane iso-butane Propane Ethane γ Natural Gas(13A) Methane Natural Gas(13A) Methane Crank Angle θ, deg -4 MethaneEthanePropaneiso-Butane n-butane -83-

91 C 1 C 4 C 4 C 2 6 C 3 8 C C C Primary carbon atom Primary carbon atom C C C Secondary carbon atom n-c 4 1 iso-c 4 1 Primary carbon atom C C C C C C C C Secondary carbon atom Primary carbon atom Tertiary carbon atom Arrhenius parameters for attack of C- bonds by, O, O and O 2 k = A T b exp ( -E / RT ) Reaction A E (cm 3 /mols) (kj/mol) + primary C- + secondary C- + tertiary C O + primary C- O + secondary C- O + tertiary C- O + primary C- O + secondary C- O + tertiary C- O 2 + primary C- O 2 + secondary C- O 2 + tertiary C MethaneEthanePropaneiso-Butane n-butane (37) -84-

92 C 1 C 4 In-Cylinder Gas Temperature Tc, K n-butane iso-butane Propane Ethane Natural Gas (13A) Methane Start of Compression φ =.3 T in =43K P in =.1MPa Ne=8rpm ε =18.8 ExEGR=% γ Experiment In-Cylinder Gas Pressure P c,mpa 11 In-Cylinder Gas Temperature Tc, K Natural Gas (13A) Methane Ethane Propane iso-butane Tig=185K Tmax=183K 153K 14K 12K n-butane 17K In-Cylinder Gas Pressure P c,mpa -6 MethaneEthanePropaneiso-Butane n-butane -85-

93 C 1 C 4 In-Cylinder Gas Temperature Tc, K Methane / Air φ =.45, T in =38K P in =.16MPa, Ne=8rpm ε =18.8, ExEGR=% Experiment Autoignition 113K γ Crank Angle θ, deg -7 Methane -86-

94 C 1 C 4 Rate of eat Release dq/dθ, J/deg n-butane iso-butane Propane Ethane n-butane iso-butane Propane Ethane Methane Natural Gas (13A) Methane Misfiring Natural Gas (13A) Crank Angle θ, deg φ =.3 T in =43K P in =.1MPa Ne=8rpm ε =18.8 γ ExEGR=% Experiment θ ig θ max θ end -8 (13A)MethaneEthanePropaneiso-Butane n-butane -87-

95 C 1 C 4 n-butane / Air T in =35K, P in =.1MPa Ne=8rpm, ε=18.8 γ Experiment ExEGR=%, φ=.1.15 Rate of eat Release dq/dθ, J/deg Crank Angle θ, deg -9 n-butane -88-

96 C 1 C 4 n-butane / Air φ =.25, P in =.1MPa Ne=8rpm, ε =18.8 γ Experiment ExEGR=%, Tin=294K Rate of eat Release dq/dθ, J/deg 325K K Crank Angle θ, deg -1 n-butane -89-

97 C 1 C 4 n-butane / Air φ =.2, T in =35K Ne=8rpm, ε =18.8 γ Experiment ExEGR=%, P in =.1MPa.125MPa Rate of eat Release dq/dθ, J/deg MPa.2MPa Crank Angle θ, deg -11 n-butane -9-

98 C 1 C 4 C 1 C 4-12 n-butane TCCOCO 2 TCCO TC CO 16K 9%TC CO.16%.12% -13 EthanePropaneiso-Butane n-butane CO CO C 2 C 4 CO 125K 16K 9%CO.1% CO 16K18K -91-

99 C 1 C 4 In-Cylinder Maximum Gas Temperature Tcmax, K n-butane/air T in =43K, P in =.1MPa Ne=8rpm, ε =18.8 γ Experiment Misfiring ExEGR=%, Knocking Combustion Efficiency ηc, % TC, CO, % Misfiring CO TC CO2 Knocking CO2, % Equivalence Ratio φ -12 n-butane TCCOCO 2-92-

100 C 1 C 4 Combustion Efficiency ηc, % CO, % T in =43K, P in =.1MPa Ne=8rpm, ε =18.8 γ Experiment ExEGR=%, Misfiring Misfiring Ethane Propane iso-butane n-butane Knocking Knocking In-Cylinder Maximum Gas Temperature T cmax, K -13 EthanePropaneiso-Butane n-butane CO -93-

101 C 1 C 2 C 4 2 C 1 C 2 C Methane EthanePropane Butane φ=.3 Tin=43K Ne=8rpmε=18.8 Methane EthanePropaneiso-Butane n-butane 153K14K12K17K C 1 C 4 Methane C 2 C 4 C 1 C 2 C 4 2 TCCO 2 CO -14 C 1 C 2 C 4 2 Tin=43K Pin=.1MPa Ne=8rpmε=18.8 Methane EthanePropaneiso-Butane n-butane mol% 1 mol% 1 Qin=875J/cycle(1J) Methane/Ethane Methane/PropaneMethane/iso-Butane Methane/n-Butane φtotal

102 C 1 C 2 C 4 2 Q in =8751 J/cycle T in =43K, P in =.1MPa Ne=8rpm, ε =18.8 γexegr=%, Experiment Methane, mol% Additive Fuel, mol% (Ethane, Propane, iso-butane, n-butane) 1 9 Mole Fraction, mol% Mole Fraction of Additive Fuel, mol% -14 Methane EthanePropaneiso-Butane n-butane -95-

103 C 1 C 2 C 4 2 Total Equivalence Ratio φtotal Q in =8751 J/cycle T in =43K, P in =.1MPa Ne=8rpm, ε =18.8 γexegr=%, Experiment Methane/Ethane Methane/Propane Methane/iso-Butane Methane/n-Butane φ total = Mole Fraction of Additive Fuel, mol% -15 Methane/EthaneMethane/PropaneMethane/iso-Butane Methane/n-Butane -96-

104 C 1 C 2 C Qin=8751J/cycleφtotal=.38.2 Tin=43K Pin=.1MPa Ne=8rpmε=18.8 Methane EthanePropaneiso-Butane n-butane 2 Methane Methane Ethane 6.3% Propane 3.2%iso-Butane 2.5%n-Butane 2% Propane 8%iso-Butane 8%n-Butane 63% EthanePropaneiso-Butane n-butane Ethane Propaneiso-Butanen-Butane -97-

105 C 1 C 2 C 4 2 Mole Fraction of Additive Fuel, mol% Q in =8751 J/cycle φ total=.38.2, T in =43K P in =.1MPa, Ne=8rpm ε =18.8, ExEGR=% Experiment γ Misfire Firing Knocking Misfiring Firing Knocking Methane + Ethane Methane + Propane Methane + iso-butane Methane + n-butane

106 C 1 C 2 C Qin=8751J/cycleφtotal=.38.2 Tin=43K Pin=.1MPa Ne=8rpmε= 18.8 Methane / n-butane 2 n-butane Methan n-butane 2 mol%n-butane 1 mol% n-butane n-butane n-butane n-butane -18 Methane / n-butane 2 n-butane n-butane 2mol% 4mol% 195K 11K n-butane n-butane n-butane 2mol% 4.1MPa115K -19 Methane / EthaneMethane / PropaneMethane / iso-butane Methane / n-butane 2 EthanePropaneiso-Butane n-butane EthanePropaneiso-Butane n-butane 6.3 1mol%3.25mol%2.53.2mol%22.5mol% EthanePropaneiso-Butane n-butane EthanePropaneiso-Butane n-butane Methane 2 2 n-butane 1 Ethane1 2 Propane iso-butane Methane EthanePropaneiso-Butane n-butane EthanePropaneiso-Butane n-butane O Methane -99-

107 C 1 C 2 C 4 2 (38)(39) O 8K n-butane O -2 Methane / n-butane 2 n-butane n-butane n-butane EthanePropaneiso-Butane n-butane EthanePropaneiso-Butane n-butane Methane / n-butane 2 n-butane 2mol% 1 mol% 8 63mol% 6 2 EthanePropaneiso-Butane n-butane EthanePropaneiso-Butane n-butane Methane BTDC 5 EthanePropaneiso-Butane n-butane 25mol%1mol%8mol%6.3mol%Methane n-butane EthanePropaneiso-Butane n-butane EthanePropaneiso-Butane n-butane 6.3 8mol%3.24mol%2.53.2mol%22.5mol% EthanePropaneiso-Butane n-butane Ethane Propaneiso-Butane n-butane EthanePropaneiso-Butane n-butane Methane C 2 C 4 Methane Methane -1-

108 C 1 C 2 C 4 2 In-Cylinder Gas Pressure Pc, MPa Methane/n-Butane/Air Q in =8751 J/cycle total=.38.2, T in =43K P in =.1MPa, Ne=8rpm φ ε =18.8, ExEGR=% Experiment γ n-butane 63mol% In-Cylinder Gas Temperature Tc, K n-butane 63mol% Crank Angle θ, deg Methane / n-butane 2 n-butane -11-

109 C 1 C 2 C 4 2 In-Cylinder Gas Temperature Tc, K Methane/n-Butane/Air Q in =8751 J/cycle total=.38.2, T in =43K P in =.1MPa, Ne=8rpm φ ε n-butane 4mol% =18.8, ExEGR=% Experiment 63 γ Tig=11K 195K 19K 177K 158K 145K 123K 12K Crank Angle θ, deg -18 Methane / n-butane 2 n-butane -12-

110 C 1 C 2 C 4 2 Q in =8751 J/cycle φ total=.38.2, T in =43K P in =.1MPa, Ne=8rpm ε =18.8, ExEGR=% Experiment γ Autoignition Temperature Tig, K Methane / Ethane Methane / Propane Knocking Methane / iso-butane Knocking Methane / n-butane Knocking Mole Fraction of Additive Fuel, mol% EthanePropaneiso-Butane n-butane -13-

111 C 1 C 2 C 4 2 Rate of eat Release dq/dθ, J/deg Mole Fraction of n-butane XnB, mol% Methane/n-Butane/Air Q in =8751 J/cycle total=.38.2, T in =43K P in =.1MPa, Ne=8rpm φ ε =18.8, ExEGR=% Experiment γ Knocking n-butane 63 mol% θ ig θ max θ end Misfiring Crank Angle θ, deg -2 Methane / n-butane 2 n-butane -14-

112 C 1 C 2 C 4 2 Autoignition Timing θig, deg Q in =8751 J/cycle φ total=.38.2, T in =43K P in =.1MPa, Ne=8rpm ε =18.8, ExEGR=% Experiment γ Methane / Ethane Methane / Propane Methane / iso-butane Methane / n-butane Knocking Knocking Knocking Mole Fraction of Additive Fuel, mol% EthanePropaneiso-Butane n-butane -15-

113 C 1 C 2 C 4 2 Combustion Duration θcd, deg Q in =8751 J/cycle φ total=.38.2, T in =43K P in =.1MPa, Ne=8rpm ε =18.8, ExEGR=% Experiment γ Methane / Ethane Methane / Propane Methane / iso-butane Methane / n-butane Knocking Mole Fraction of Additive Fuel, mol% EthanePropaneiso-Butane n-butane -16-

114 C 1 C 2 C 4 2 (4-1)(4-4) Methane / EthaneMethane / PropaneMethane / iso-butanemethane / n-butane 2 EthanePropane iso-butane n-butane Methane / Ethane T R ( M / E ) ig = E 8X E E 5X E E 2X =.9955 T( M / E) ig : Methane/EthaneK X : Ethanemol% E 2 E 2.386X E (-1) Methane / Propane T R ( M / P) ig = E 6X P 7.377E 4X P E 2X P 4.232X =.9969 T( M / P) ig : Methane/PropaneK X : Propanemol% P P (-2) Methane / iso-butane T R ( M / ib) ig = E 6X ib 1.319E 3X ib X ib X =.9953 T( M / ib) ig : Methane/ iso ButaneK X : iso Butanemol% ib ib (-3) Methane / n-butane T R ( M 2 / nb) ig = E 6X =.9969 T( M / X nb 4 nb E 3X 3 nb X 2 nb 6.274X ) ig : Methane/ n ButaneK : n Butanemol% nb nb (-4) MethaneEthanePropane Butane Ethane Propane Butane (4-5) EthanePropane Butane -17-

115 C 1 C 2 C 4 2 T ( M / E / P / ib / nb) ig = T( M / E ) ig + T( M / P) ig + T( M / ib) ig + T( M / nb) ig 339 (-5) -23 (9)(4)~(42) (4-5) (4-5) 19K -17(1815K) Methane EthanePropane Butane 13A 113K145K -18-

116 C 1 C 2 C 4 2 C % C26.7% N2.12% C % C % C % n-c41.5% <Alaska> <Indonesia> C 4 88% C26 5.8% C38 4.5% n-c41 1.7% C 4 75% C26 7% C38 13% n-c41 5% C 4 88% C26 6% C38 3% n-c41 3% <Tokyo Gas(13A)> <Keiyo Gas(13A)> <Osaka Gas(13A)> Autoignition Temperature Thig, K This Study Alaska Indonesia Tokyo Gas(13A) Keiyo Gas(13A) Osaka Gas(13A) -23 (9)(4)~(42) -19-

117 C 1 C 2 C Qin=8751J/cycleφtotal=.38.2 Tin=43K Pin=.1MPa Ne=8rpmε=18.8 Methane/n-Butane 2 n-butane TCCOCO 2 n-butane 1mol n-butane TCCO n-butane TCCO n-butane EthanePropaneiso-Butane n-butane CO Propaneiso-Butane n-butane CO Propaneiso-Butane n-butane CO 8mol%Propaneiso-Butane n-butane CO 2mol n-butaneiso-butanepropaneethane 9CO.1-26 CO CO 17K 9%CO.1% (13A)C 1 C 4 C 1 C 2 C

118 C 1 C 2 C 4 2 In-Cylinder Maximum Gas Temperature Tcmax, K TC, CO, % Methane/n-Butane/Air Q in =8751 J/cycle total=.38.2, T in =43K P in =.1MPa, Ne=8rpm φ ε =18.8, ExEGR=% Experiment γ CO2 Knocking Knocking.4 TC 2.2 CO Mole Fraction of n-butane X nb, mol% CO2, % Combustion Efficiency ηc, % -24 Methane / n-butane 2 n-butane TCCOCO

119 C 1 C 2 C 4 2 Combustion Efficiency ηc, % Q in =8751 J/cycle total=.38.2, T in =43K P in =.1MPa, Ne=8rpm φ ε =18.8, ExEGR=% Experiment γ Methane / n-butane Methane / iso-butane Methane / Propane Methane / Ethane CO, % Mole Fraction of Additive Fuel, mol% EthanePropaneiso-Butane n-butane CO -112-

120 C 1 C 2 C 4 2 Combustion Efficiency ηc, % CO, % Q in =8751 J/cycle total=.38.2, T in =43K P in =.1MPa, Ne=8rpm φ ε =18.8, ExEGR=% Experiment Misfiring Misfiring γ Methane / n-butane Methane / iso-butane Methane / Propane Methane / Ethane Knocking Knocking In-Cylinder Maximum Gas Temperature T cmax, K EthanePropaneiso-Butane n-butane CO -113-

121 Methane EthanePropane Butane Methane 8595%Ethane 21% Propane 14% Butane 2% (13A12A) (13A) C 1 ~C 4 MethaneEthane Propaneiso-Butanen-Butane Methane / EthaneMethane / PropaneMethane / iso-butane Methane / n-butane 2 mol% 1mol% TCCO CO 2 EthanePropaneiso-Butane n-butane EthanePropaneiso-Butane n-butane EthanePropaneiso-Butane n-butane 153K14K12K 17K 2 2 EthanePropaneiso-Butane n-butane 2 EthanePropane iso-butane n-butane n-butane EthanePropaneiso-Butane -114-

122 EthanePropaneiso-Butane n-butane CO C 1 C 4 C 1 C 2 C

123 3 Methane 4 Methane C 2 C 4 C 2 C 4 4 Methane n-butane Methane 2 (13A) Methane/n-Butane (13A)

124 CEMKIN II (43) CEMKIN CEMKIN 198 Sandia National Laboratory 199 CEKIN II 1996 CEMKIN III CEMKIN II CEMKIN FORTRAN Interpreter (code) Gas-Phase SubrouTine Library (code) Thermodynamic Database (file) Linking File (file) -2 CEMKIN CEMKIN Interpreter Thermodynamic Database Linking File Gas-Phase SubrouTine Library 1 Linking File Application Code Application Code CEMKIN SENKIN (44) SENKIN -117-

125 Gas-Phase Reactions (chem.inp) Thermodynamic Database (therm.dat) Chemkin Interpreter Chemkin link file (chem.bin) Printed output file (chem.out) Gas-Phase Subroutine Library Application Code -2 CEMKIN (43) -118-

126 qi K i K K v ki X k v ki X k ( i = 1,..., I) (5-1) k = 1 k = 1 v ki i k v ki i k Xk k i qimol/m 3 q = k i K f i k = 1 K Fki Rki [ X ] k [ X ] (5-2) k ri k = 1 k Fki : i k Rki : i k [Xk] : k mol/m 3 kfi : i kri : i k k fi i ( T ) = A T exp( E / RT ) i (5-3) Ai i βi i Ei i RJ/mol K TK i K I ω = qi( v ki v ki) ( K = 1,..., K) (5-4) i=

127 dm dt = (5-5) t, s V, m dmk = Vω kwk, k = 1,... K (5-6) dt 3 ω k, W, k 3 mol/m s kg/mol Yk dy dt Ykvm 3 /kg k = vω k Wk (5-7) du + Pdv = (5-8) u = K k= 1 uk Yk (5-9) (5-9) du = K k = 1 Y k du k + K k = 1 u k dy k (5-1) du k = c, dt (5-11) v k (5-8)(5-1)(5-11) -12-

128 K k= 1 k v k K Y c, dt + u dy + Pdv = (5-12) k= 1 k k cv c v = K k= 1 Y c, k v k c v dt dt + K k= 1 u k dy dt k + dv P = (5-13) dt (5-7)(5-13) c v dt dt + dv P dt + v K k= 1 u k k ω W = (5-14) uj/kg PPa Vm 3 Yk k kg/kg Cvk k TK vm 3 /kg Wk k kg/mol mkg mk k kg k (5-14) PV = mrt -121-

129 (Cmn + (n/4+m) O2 = n/2 2O + mco2 ) n-butane (23) -1 n-butane N 2 O 2 Ar AE -2 (23)(45)~(52) -122-

130 -1 (23) -123-

131 -2 (K) (MPa) GRI Methane Warth n-butane n-butane Curran Dagaut Curran Shock Tube (45) Shock TubeJSFR (46) (47) RCM Shock Tube n-eptane Shock TubeJSFR (48) DME JSFR (49) DME Shock TubeJSFR (5) DME Shock Tube (51) Gasoline Shock TubeJSFR (52) (23) -124-

132 -4-3µs Kojima (23) 5-2 Kojima n-buntane Kojima 72~83K12~14K (Methane Ethane Propane ) GRI-MEC 3. (46) 125~14K n-butane -5 n-butane φ=1. T=719K P=1.MPa Kojima (LTR)(TR) 2-6 n-butane (53) Kojima Negative Temperature Coefficient( NTC) NTC 72K 82K

133 -3 15 Shock Tube 13K 1 1K RCM 5 EGR 16rpm 8rpm Engine 4rpm Time ms Initial Condition of Pre-Mixture

134 Temperature T, K Rate of eat Release dq/dt, J/deg n-butane / Air φ =1., P=1.MPa T=719K, Calculation igh Temperature 6 Reaction 4 2 Low Temperature Reaction Time t, ms -5 n-butane Kojima -127-

135 Ignition Delay τ, K 1 1 Initial Temperature T, K n-butane/air P=1.MPa φ=2. φ=2. φ=1. φ=1. τ L τ τ L τ φ=.5 φ=.5 τ L τ Line: Calculation Symbols: Experiment (53) (RCM) / T, 1/K -6 n-butane (RCM) (53) Kojima -128-

136 Methane -7 Methane / O 2 / Ar φ=1. T=15K P=1.MPa Kojima (TR) 1-8 Methane/O 2 /Ar (39) Kojima φ=.5, 1., 2. NTC -129-

137 Temperature T, K Rate of eat Release dq/dt, J/deg Methane / O2 / Ar φ =1., P=1.MPa T=15K, Calculation igh Temperature Reaction Time t, ms -7 Methane / O 2 / Ar Kojima -13-

138 Ignition Delay τ, K 1 1 Initial Temperature T, K Methane/O2/Ar P=.2MPa τ φ=.5 τ φ=1. τ φ=2. Line: Calculation.1 Symbols: Experiment (39) (Shock Tube) :φ=.5 :1. : / T, 1/K -8 Methane / O 2 / Ar (39) Kojima -131-

139 Methane/n-Butane -9 Methane/n-Butane 2 (54) Kojima 2 n-butane mol% 1mol% n-butane 3mol%6mol% n-butane 3mol% NTC n-butane NTC n-butane n-butane Methane/n-Butane 2 n-butane (LTR)(TR) 2 Methane n-butane n-butane Methane Methane/n-Butane 2 n-butane NTC n-butane -132-

140 Ignition Delay τ, K Methane/n-Butane /O 2 /Ar P =.1MPa, φ=1. Calculation Initial Temperature T, K n-butane Mole Fraction % 3% 6% 1% 16% 25% 4% 63% 1%.1 Line: Calculation Symbols: Experiment (54).1 (Shock Tube) :n-butane Mole Fraction 3% :n-butane Mole Fraction 6% / T, 1/K -9 Methane / n-butane 2 (54) Kojima -133-

141 N 2 : O 2 : Ar = 21 : 78 : 1 ABDC48 P T Pin Tin Methane / n-butane 2 Qin=875J/cycleφtotal=.38 Tin=43K Pin=.1MPa Ne=8rpmε=18.8 n-butane 1mol% n-butane Methane / n-butane 2 n-butane n-butane n-butane n-butane -134-

142 n-butane 24mol% K n-butane n-butane n-butane n-butane -4 Methane/n-Butane 2 n-butane n-butane TCCO n-butane -135-

143 -3 Experiment Process 4 Stroke Displacement, m Bore, m.112 Stroke, m.115 Length of conrod, m.25 Crank radius, m.575 Intake valve close, deg ABDC 48 Exhaust valve open, deg BBDC 48 Compression ratio 18.8 Calculation One compression/ Expansion -136-

144 In-Cylinder Gas Pressure Pc, MPa In-Cylinder Gas Temperature Tc, K Methane/n-Butane/Air Q in =8751 J/cycle total=.38.2, T in =43K P in =.1MPa, Ne=8rpm φ ε =18.8, ExEGR=% Experiment n-butane 63mol% n-butane 63mol% γ n-butane 63mol% Crank Angle θ, deg Rate of eat Release dq/dθ, J/deg -1 Methane/n-Butane 2 n-butane -137-

145 Temperature T, K Pressure P, MPa Methane/n-Butane/Air Q in =875 J/cycle, φ total=.38 T in =43K, P in =.1MPa Ne=8rpm, ε =18.8 γexegr=%, Calculation n-butane 1mol% n-butane 1mol% n-butane 1mol% Crank Angle θ, deg Rate of eat Release dq/dθ, J/deg -11 Methane/n-Butane 2 n-butane -138-

146 Autoignition Temperature Tig, K Methane/n-Butane/Air Q in =875 J/cycle, φ total=.38 T in =43K, P in =.1MPa Ne=8rpm, ε =18.8 γ ExEGR=% : Autoignition occur before TDC : Autoignition occur after TDC Experiment Calculation Knocking Mole Fraction of n-butane X nb, mol% -12 Methane/n-Butane 2 n-butane Tig -139-

147 Autoignition Timing θig, deg Methane/n-Butane/Air Q in =875 J/cycle, φ total=.38 T in =43K, P in =.1MPa Ne=8rpm, ε =18.8 γ ExEGR=% Experiment Knocking -14 Calculation Mole Fraction of n-butane X nb, mol% -13 Methane/n-Butane 2 n-butane θig -14-

148 Temperature T, K n-butane Mole Fraction 1mol% Methane/n-Butane /Air Q in =875 J/cycle φ total=.38 T in =4K P in =.1MPa Ne=8rpm ε =18.8 γ ExEGR=% Calculation Crank Angle θ, deg -14 Methane/n-Butane 2 n-butane (Tin=4K) Autoignition Temperature Tig, K Mole Fraction of n-butane XnB, mol% Methane/n-Butane /Air Q in =875 J/cycle φ total=.38 T in =4K P in =.1MPa Ne=8rpm ε =18.8 γ ExEGR=% Calculation -15 Methane/n-Butane 2 n-butane Tig (Tin=4K) -141-

149 -4 Methane/n-Butane 2 n-butane -142-

150 Methane / n-butane 2 Methane / n-butane 2-16 Methane Qin=875J/cycle φ=.38 Tin=43K Pin=.1MPa Ne=8rpm ε=18.8 O 2 CO 2 2 O COO 2 2 O 2 O 2 O 2 O C 4 C 4 C 3 CO CO CO 2-17 Methane (39)(54) O Methane C 4 + O = C O (5-1) C 4 + =C (5-2) C 4 + O =C 3 + O (5-3) C 4 + O 2 = C O 2 (5-4) O K K O + O 2 = O + O (5-5) + O 2 = 2O (5-6) 2 O 2 + M = 2O + M (5-7) O + 2 = + O (5-8) O + O 2 =O + O 2 (5-9) 12K O + O 2 = O + O + O 2 = 2O Methane O -18 Methane / n-butnane 2 (38)(53)(54) -143-

151 Methane / n-butane 2 12K O C 3 n-butane 8K OOO 2 n-butane 2 O 2 1st O 2 additions-c 4 9 O 2 8K O 2 2nd O 2 addition2nd O 2 addition s-c 4 9 O 4 CO CO + O = CO + 2 O CO + O 2 = CO + O 2 O 2 O 2 O 2 + = 2 O 2 2 O 2 1K 2 O 2 O O Methane 12K O n-butane 8K1K O -19 Methane(98mol%) / n-butane(2mol%) 2 Methane n-butane COO 2 2 O 2 O Methane C 3-2 n-butane CO 2 O 2 O n-butane n-butane -21 n-butane C 4 + O = C O C 4 + O = C O n-butane n-butane n-butane n-butane O Methane n-butane O Methane O n-butane Methane -144-

152 Methane / n-butane 2 Temperature T, K Mole Fraction X Methane/Air Q in =875 J/cycle, φ =.38 T in =43K, P in =.1MPa Ne=8rpm, ε =18.8 γexegr=% Calculation O2 C4 2O CO2 Autoignition O2 2O CO Rate of eat Release dq/dθ, J/deg Mole Fraction X CO O2 C3 2O O 2 CO O CO O CO O2 2O2 C Crank Angle θ, deg O -16 Methane -145-

153 Methane / n-butane 2. Reaction Rate, mol/cm 3 s Reaction Rate, mol/cm 3 s C4 + O = C3 + 2O 1.2 C4 + O = C3 + O 1.8 C4 + = C C O2 = C3 + 2O Temperature T, K Methane/Air Q in =875 J/cycle, φ =.38 T in =43K, P in =.1MPa Ne=8rpm, ε =18.8 γexegr=% Calculation + O2 = O + O + O2 = 2O O + O2 = O + O2 O + 2 = + O 2O2 = 2O + M Temperature T, K -17 Methane (39)(54) O -146-

154 Methane / n-butane Methane / n-butane 2 (38)(53)(54)

155 Methane / n-butane 2 Temperature T, K Mole Fraction X Mole Fraction X Methane(98 mol%) / n-butane (2 mol%) / Air Q in =875 J/cycle, φtotal=.38 T in =43K, P in =.1MPa Ne=8rpm, ε =18.8 γexegr=%, Calculation O2 C4 2O CO O2 CO O CO2 O Autoignition C3 C Crank Angle θ, deg O2 CO2 O O O2 2O2 CO 2O CO Rate of eat Release dq/dθ, J/deg -19 Methane(98mol%) / n-butane(2mol%) -148-

156 Methane / n-butane 2 Methane/n-Butane/Air Q in =875 J/cycle, φ total=.38 T in =43K, P in =.1MPa Ne=8rpm, ε =18.8 γexegr=%, Calculation Mole Fraction of CO XCO n-butane mol% Mole Fraction of 2O2 X2O n-butane mol% Mole Fraction of O XO n-butane mol% Crank Angle θ, deg 2-2 Methane/n-Butane 2 n-butane CO 2 O 2 O -149-

157 Methane / n-butane 2 Reaction Rate of C4 + O = C3 + 2O, mol/cms Methane/n-Butane/Air Q in =875 J/cycle, φ total=.38 T in =43K, P in =.1MPa Ne=8rpm, ε =18.8 γexegr=%, Calculation n-butane 63mol% Crank Angle θ, deg Methane/n-Butane 2 n-butane C 4 + O = C O -15-

158 (13A)13A iso-butane n-butane -22(13A) Tin=43K Pin =.1MPa Ne=8rpmε= K K n-butanepropaneethane Methane CO 2 O 2 1K 2 O 2 O O C 4 C 4 C 3 CO 15K CO CO 2 OO 2 O 2 CO C 4 CO 2 O 2 OC 3 CO.1 CO 2 O O C 4 11K 13K CO

159 CO 1K CO + O = CO + 2 OCO + O 2 = CO + O 2 O 2 + = 2 O 2 2 O 2 O O C 4 C 3 15K CO CO CO 2 O 2 O C

160 12 Natural Gas (13A) / Air T in =43K, P in =.1MPa Ne=8rpm, ε =18.8 γ ExEGR=% In-Cylinder Gas Pressure Pc, MPa Pressure T, MPa Crank Angle θ, deg (a) Experiment = Crank Angle θ, deg (b) Calculation φ φ = (13A) ()() -153-

161 In-Cylinder Gas Temperature Tc, K Natural Gas (13A) / Air T in =43K, P in =.1MPa Ne=8rpm, ε =18.8 γexegr=%, Experiment Autoigniton = φ In-Cylinder Gas Temperature Tc, K K 185K 182K T ig =192K φ = Crank Angle θ, deg -23 (13A) Tig -154-

162 Temperature T, K Temperature T, K Natural Gas (13A) / Air T in =43K, P in =.1MPa Ne=8rpm, ε =18.8 γexegr=%, Calculation Autoigniton T ig =1147K φ =.1 184K 172K 162K 145K 131K 199K 1118K = Crank Angle θ, deg φ (13A) Tig -155-

163 Temperature T, K Mole Fraction X Natural Gas (13A) / Air φ =.4, T in =43K P in =.1MPa, Ne=8rpm ε =18.8, ExEGR=% Calculation O2 C4 C26 n-c41 2O CO2 Autoignition C38 γ 2O O2 CO Rate of eat Release dq/dθ, J/deg 1-1 Mole Fraction X CO O2 CO O O 2O2 C3 O2 CO Crank Angle θ, deg CO O O 2O2 C3-25 (13A)

164 T, K dq/dθ, J/deg XC XCO X2O2 XO XC3 XCO φ=.5.3 φ=.5.3 φ=.5.3 φ= φ= φ=.5.3 φ= φ= Crank Angle θ, deg Natural Gas (13A) / Air T in =43K P in =.1MPa Ne=8rpm =18.8 ε γ ExEGR=% Calculation -26 (13A)C 4 CO 2 O 2 OC 3 CO -157-

165 -27(13A)φ=.45 Pin=.1M Pa Ne=8rpmε= K 43K K 12182K 4K -3 39K41K 43K C 4 CO 2 O 2 OC 3 CO 37K 43K CO 2 O 2 O C 4 C 3 CO -158-

166 1 Natural Gas (13A) / Air φ =.45, P in =.1MPa Ne=8rpm, ε =18.8 γ ExEGR=% In-Cylinder Gas Pressure Pc, MPa T in =43K 42K 41K 4K 39K Crank Angle θ, deg (a) Experiment 1 Pressure P, MPa Tin=45K 44K 43K 42K 41K 4K 39K Crank Angle θ, deg (b) Calculation -27 (13A) ()() -159-

167 In-Cylinder Gas Temperature Tc, K In-Cylinder Gas Temperature Tc, K Natural Gas (13A) / Air φ =.45, P in =.1MPa Ne=8rpm, ε =18.8 γexegr=%, Experiment Autoigniton T in =43K 42K 41K 4K 39K T ig =182K T in =43K 169K 42K 151K 119K Crank Angle θ, deg -28 (13A) Tig 41K 4K -16-

168 Temperature T, K Temperature T, K Natural Gas (13A) / Air φ =.45, P in =.1MPa Ne=8rpm, ε =18.8 γexegr=%, Calculation T in =45K 44K 43K 42K 41K 4K 39K Autoigniton T ig =196K T in =45K 189K 44K 182K 43K 172K 42K 164K 41K 152K 4K 139K 39K Crank Angle θ, deg -29 (13A) Tig -161-

169 T, K dq/dθ, J/deg XC4 XCO X2O2 XO XC3 XCO Tin=41K Tin=41K Tin=41K Tin=41K Tin=41K Tin=41K Tin=41K 39K 39K 39K Tin=41K 39K 39K 39K 39K 39K Crank Angle θ, deg 37K 37K 37K 37K 37K 37K 37K 37K Natural Gas (13A) / Air φ =.45 P in =.1MPa Ne=8rpm ε =18.8 γ ExEGR=% Calculation -3 (13A)C 4 CO 2 O 2 OC 3 CO -162-

170 -31(13A)φ=.4 Tin=43K Pin=.1MPaε=18.8 4rpm rpm 182K -34 5rpm125rpm 4rpm C 4 CO 2 O 2 OC 3 CO 5rpm 125rpm 4rpm CO 2 O 2 O C 4-5(13A) (13A) TC CO -163-

171 1 Natural Gas (13A) / Air φ =.4, T in =43K P in =.1MPa, =18.8 γ ExEGR=% ε In-Cylinder Gas Pressure Pc, MPa Ne=5rpm Time after Compression Start t CS, ms (a) Experiment 1 Pressure P, MPa Ne=5rpm Time after Compression Start t CS, ms (b) Calculation -31 (13A) ()() -164-

172 In-Cylinder Gas Temperature Tc, K Natural Gas (13A) / Air φ =.4, T in =43K P in =.1MPa, ε =18.8 γexegr=%, Experiment Ne=12rpm 1rpm 8rpm 63rpm 5rpm Autoigniton In-Cylinder Gas Temperature Tc, K T ig =188K 184K 178K Ne=12rpm 1rpm 8rpm K 63rpm 168K 5rpm Time after Compression Start t CS, ms -32 (13A) Tig -165-

173 Temperature T, K Natural Gas (13A) / Air φ =.4, T in =43K P in =.1MPa, ε =18.8 γexegr=%, Calculation 2rpm 16rpm 125rpm1rpm 8rpm 25rpm 315rpm 4rpm 63rpm Ne=5rpm Autoigniton Temperature T, K Tig=1127K 1123K 1117K 118K 197K 187K Ne=25rpm 2rpm 16rpm 125rpm 1rpm 8rpm 174K 63rpm 5rpm 162K Time after Compression Start t CS, ms -33 (13A) Tig -166-

174 T, K dq/dθ, J/deg XC4 XCO X2O2 XO XC3 XCO Ne=4rpm Ne=4rpm Ne=4rpm Ne =4rpm Ne=4rpm 125rpm 125rpm 125rpm 125rpm 125rpm 5rpm 5rpm 5rpm 5rpm 5rpm Ne=4rpm 125rpm 5rpm Ne=4rpm Ne=4rpm 125rpm 125rpm 5rpm 5rpm Natural Gas (13A) / Air φ =.4 T in =43K P in =.1MPa ε=18.8 γ ExEGR=% Calculation -34 (13A) C 4 CO 2 O 2 OC 3 CO -167-

175 -5 (13A) -168-

176 5 5 3 Methane 4 Methane C 2 C 4 C 2 C 4 4 Methane n-butane Methane 2 (13A) n-butane n-butane n-butane O Methane n-butane n-butane 2 O 2 O, Methane (13A) CO 2 O 2 O CO 2 O 2 O C

177 Methane/ DME2 2 Methane n-butane 2mol% 63mol% 12 n-butane 2 O 2 O Methane 1 n-butane DMEMethane/DME Methane C C + DME O C

178 n-butanedme n-butanedme K.1MPa rpm Methanen-ButaneDME Methane TR 1 TR 113K n-butane DME LTR TR 2 n-butane 75K LTR 85K TR DME 62K LTR 8K TR n-butane DME LTR TR LTR -3 n-butanedme n-butanedme LTRTR 2 n-butanedme LTR TR TR LTR DME n-butane -4 n-butanedme LTR LTR 1 n-butane DME LTR n-butane DME n-butane LTR LTR 1 DME 15n-Butane 3n-ButaneDME LTR TR 2 LTR DME -5-6 n-butanedme LTRTR (26)(55) n-butanedme LTR (6-1)(6-2) CO + O = 2 O + CO (6-1) CO + O 2 = O 2 + CO (6-2) -171-

179 n-butanedme n-butanedme CO 2 O 2 LTR 2 O 2 O n-butane DME O O -172-

180 n-butanedme In-Cylinder Gas Temperature Tc, K φ =.2, Tin=3K P in =.1MPa, Ne=8rpm ε =18.8, ExEGR=% Experiment γ DME/Air TR of Methane n-butane/air Methane/Air TR of n-butane TR of DME LTR of n-butane LTR of DME Crank Angle θ, deg -2.2 Methane / Airn-Butane / AirDME / Air -173-

181 n-butanedme T in =3K, P in =.1MPa Ne=8rpm, ε =18.8 γexegr=%, Experiment n-butane / Air φ = DME / Air φ = Rate of eat Release dq/dθ, J/deg Crank Angle θ, deg Rate of eat Release dq/dθ, J/deg Crank Angle θ, deg -3 n-butane / AirDME / Air -174-

182 n-butanedme Total eat Release of LTR QLTR, J T in =3K, P in =.1MPa Ne=8rpm, ε =18.8 γexegr=%, Experiment n-butane/air DME/Air Equivalence Ratio φ D, φ nb QLTR / Qin 1, % DME/Air n-butane/air Equivalence Ratio φ D, φ nb -4 n-butane / AirDME / Air -175-

183 n-butanedme 6-5 n-butane LTRTR (26) -176-

184 n-butanedme Time ms Crank Angle deg DME/Air φ=.25 φ T=3K P=.1MPa Ne=8rpm ε=16.1 ε TDC No. Cool Flame 46 CO+O 2 =CO+O C 3 OC 2 +O 2 =C 3 OC 2 O 2 32 CO+O=CO+ 2 O 312 C 3 OC 3 +O=C 3 OC O 332 C 2 OC 2 O 2 =>O+CO+CO 335 O 2 C 2 OCO=OC 2 OCO+O No. Blue Flame No. ot Flame 46 CO+O 2 =CO+O O 2 +M=O 2 +M 32 CO+O=CO+ 2 O 7 CO+O=CO O 2 +O 2 =2O 2 +O 2 49 O 2 +O= 2 O+O O 2 +M=O 2 +M 23 CO+O 2 =CO 2 +O 23 CO+O 2 =CO 2 +O 51 2 O 2 (+M)=O+O(+M) 51 2 O 2 (+M)=O+O(+M) -6 DME LTRTR (55) -177-

185 Methane / DME 2 Methane / DME 2 Methane / DME 2-7 Methane / DME 2 (55)(56) T < 8K(6-3) O DME C 3 OC 3 + O = C 3 OC O (6-3) (6-4)(6-5) O 2 1st O 2 additionc OO C 3 OC 2 + O 2 = C 3 OC 2 O 2 (6-4) C 3 OC 2 O 2 = C 2 OC 2 O 2 (6-5) (6-6) O 2 ( 2nd O 2 addition )(6-7)(6-8) 2 O C 2 OC 2 O 2 + O 2 = O 2 C 2 OC 2 O 2 (6-6) O 2 C 2 OC 2 O 2 = O 2 C 2 OCO + O (6-7) O 2 C 2 OCO = OC 2 OCO + O (6-8) (T > 1K)C 3 OC 2 (6-9)(6-4) C 3 OC 2 = C 3 + C 2 O (6-9) Methane O C 3 C 3 OC 3 OC 2 OC 2 OCO 2 DME 8K 1st O 2 addition2nd O 2 addition CO CO 2 O 2 1K 2 O 2 O DME O Methane Methane (56) 8K n-butanedme First O 2 Addition Second O 2 Addition CO 2 O 2 Methane n-butane -178-

186 Methane / DME 2 DME n-butanedme Methane n-butane DME LTR O Methane -179-

187 Methane / DME Methane / DME 2 (55)(56)

untitled

untitled NAOSITE: Nagasaki University's Ac Title Author(s) 予混合圧縮着火機関における天然ガスおよびメタノールの着火 燃焼特性に関する研究 鄭, 奭鎬 Citation (2008-03-19) Issue Date 2008-03-19 URL http://hdl.handle.net/10069/16303 Right This document is

More information

研究成果報告書

研究成果報告書 (NOx) (SOx)2016 (EGR) (SCR) NOx NOx (UHC) NOx 25 ( ) CO 2 ( ) (Gas Permeation Membrane; GPM) 1 GPM GPM (2 ) (Anti-Quenching Membrane; AQM) GPM 2 (Oxygen Enriched Air; )1 (Nitrogen Enriched Air; NEA) NEA

More information

5 11 3 1....1 2. 5...4 (1)...5...6...7...17...22 (2)...70...71...72...77...82 (3)...85...86...87...92...97 (4)...101...102...103...112...117 (5)...121...122...123...125...128 1. 10 Web Web WG 5 4 5 ²

More information

ブローダウン過給システムを用いたガソリンHCCI機関の 運転領域拡大について

ブローダウン過給システムを用いたガソリンHCCI機関の 運転領域拡大について 1/ 35 ブローダウン過給システムを用いたガソリン HCCI 機関の運転領域拡大 後藤俊介, 窪山達也, 森吉泰生 ( 千葉大学 ) 畑村耕一, 鈴木正剛,( 畑村エンジン研究事務所 ) 山田敏生,(CDAJ) 高梨淳一,( 本田技術研究所 ) 本日の発表内容 2/ 35 1. 背景 2. 目的 3. ブローダウン過給 (BDSCI) システム 4.EGRガイド 5. 実験装置 6. 実験結果と考察

More information

untitled

untitled 1 Physical Chemistry I (Basic Chemical Thermodynamics) [I] [II] [III] [IV] Introduction Energy(The First Law of Thermodynamics) Work Heat Capacity C p and C v Adiabatic Change Exact(=Perfect) Differential

More information

A Akzo 12y26.doc Example of sun shade mat: ECO-MAT Power consumption of air-conditioner is saved by 10%. Picture of air-conditioner with ECO-MAT Comparison of consumed power of air-conditioner

More information

Journal of the Combustion Society of Japan Vol.51 No.155 (2009) FEATURE Clarification of Engine Combustion and the Evolution デ

Journal of the Combustion Society of Japan Vol.51 No.155 (2009) FEATURE Clarification of Engine Combustion and the Evolution デ 51 155 2009 23-30 Journal of the Combustion Society of Japan Vol.51 No.155 (2009) 23-30 FEATURE Clarification of Engine Combustion and the Evolution ディーゼルエンジン燃焼の課題と今後 Diesel Combustion Challenge and Future

More information

Journal of the Combustion Society of Japan Vol.56 No.178 (2014) FEATURE /Issues and Solutions for Engine Combustion φ-t マッ

Journal of the Combustion Society of Japan Vol.56 No.178 (2014) FEATURE /Issues and Solutions for Engine Combustion φ-t マッ 56 178 2014 291-297 Journal of the Combustion Society of Japan Vol.56 No.178 (2014) 291-297 FEATURE /Issues and Solutions for Engine Combustion φ-t マップとエンジン燃焼コンセプトの接点 A Point of Contact between a φ-t Map

More information

審査委員会081214_4章まで.ppt

審査委員会081214_4章まで.ppt Presentation title 1 / 54 NO Study on the Control Methods of NOx Component in Diesel Exhaust by Combustion Control and its Application Keishi TAKADA Contents 2 / 54 1 2 NOxUrea-SCR NOx 3 4 NOx 5 NOx 6

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202D B202D B202D

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202D B202D B202D わかりやすい熱力学第 3 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/060013 このサンプルページの内容は, 第 3 版発行時のものです. i ii 49 7 iii 3 38 40 90 3 2012 9 iv 1 1 2 4 2.1 4 2.2 5 2.3 6 2.4 7 2.5

More information

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2 1 1 2 2 2 1 1 P F ext 1: F ext P F ext (Count Rumford, 1753 1814) 0 100 H 2 O H 2 O 2 F ext F ext N 2 O 2 2 P F S F = P S (1) ( 1 ) F ext x W ext W ext = F ext x (2) F ext P S W ext = P S x (3) S x V V

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 基礎からの冷凍空調 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/067311 このサンプルページの内容は, 初版 1 刷発行当時のものです. http://www.morikita.co.jp/support. 03-3817-5670FAX 03-3815-8199 i () () Q&A

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi 4 4 9............................................... 3.3......................... 4.4................. 5.5............................ 7 9..................... 9.............................3................................4..........................5.............................6...........................

More information

35TS.indd

35TS.indd 海 外 開 発 / 海 外 生 産 特 集 海 外 の 大 学 とのエンジン 共 同 研 究 Collaboration on Engine Research with Foreign Universities 米 谷 俊 一 Shunichi Kometani 研 究 創 発 センター コア 技 術 研 究 室 1 はじめに 2 研 究 課 題 とテストエンジン 表 1 図 1 Engine Type

More information

2章.doc

2章.doc C 2 H 4 N 2 O 2 LPG LIF 13 2.1 2.1.1 2.1 2.2 115mm70mm 727cm 3 Hand Pump Injector Driver Computer Constant Volume Chamber Injector Piezo-electronic transducer Fan Spark Plug Temperature Indicator C 2 H

More information

Microsoft PowerPoint - SeniorMtng_2010_06_14V2.ppt

Microsoft PowerPoint - SeniorMtng_2010_06_14V2.ppt 日 本 機 械 学 会 関 西 支 部 シニア 会 第 8 回 情 報 交 流 サロン 2010 年 6 月 14 日 第 三 のエンジン 燃 焼 法 - 予 混 合 圧 縮 自 着 火 燃 焼 - 西 脇 一 宇 立 命 館 大 学 総 合 理 工 学 研 究 機 構 内 容 予 混 合 圧 縮 自 着 火 燃 焼 とは 予 混 合 圧 縮 自 着 火 燃 焼 研 究 の 歴 史 予 混 合 圧

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

Microsoft Word - ●ipho-text3目次

Microsoft Word - ●ipho-text3目次 国際物理オリンピック 研修用テキスト Ⅲ 熱物理 相対論 量子力学 特定非営利活動法人物理オリンピック日本委員会 1 1.1 1 1. 1.3 3 1.4 4 1.5 6 1.6 7 1.7 9 11.1 11. 0.3 1 6 3.1 6 3. -9 3.3 - -- 31 3.4 --33 39 4.1 39 4. 40 4.3 4 4.4 44 4.5 47 5 5.1 5 5. 5 5.3

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake supplied to the engine, and as such are critical elements

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

NL-22/NL-32取扱説明書_操作編

NL-22/NL-32取扱説明書_操作編 MIC / Preamp ATT NL-32 A C ATT AMP 1 AMP 2 AMP 3 FLAT FLAT CAL.SIG. OVER LOAD DET. AMP 4 AMP 5 A/D D/A CONV. AMP 6 AMP 7 A/D CONV. Vref. AMP 8 AMP 10 DC OUT AMP 9 FILTER OUT AC DC OUT AC OUT KEY SW Start

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

ノック解析(1) CARSによるエンジン筒内未燃ガス温度の高精度測定と自着火反応モデルの評価

ノック解析(1)  CARSによるエンジン筒内未燃ガス温度の高精度測定と自着火反応モデルの評価 15 Analysis of Knock Phenomena (1) Unburned Gas Temperature Measurement by Accurate CARS Thermometry and Validation of a Reduced Chemical Kinetic Model for Auto-ignition Kazuhiro Akihama, Michio Nakano,

More information

876 542 550 269KPa 1650 1623K 1473K SiC 170 100000 160 150 140 130 10000 120 (121%) 110 100 90 1000 0% 10% 20% 30% 40% 0% 10% 20% 30% 40% (%) (%) 850 230MPa 500 500hr. 450 1073K 800 400 350 K5C(HIP)

More information

H22環境地球化学4_化学平衡III_ ppt

H22環境地球化学4_化学平衡III_ ppt 1 2 3 2009年度 環境地球化学 大河内 温度上昇による炭酸水の発泡 気泡 温度が高くなると 溶けきれなくなった 二酸化炭素が気泡として出てくる 4 2009年度 環境地球化学 圧力上昇による炭酸水の発泡 栓を開けると 瓶の中の圧力が急激に 小さくなるので 発泡する 大河内 5 CO 2 K H CO 2 H 2 O K H + 1 HCO 3- K 2 H + CO 3 2- (M) [CO

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

090117公聴会_提出版.ppt

090117公聴会_提出版.ppt Presentation title 1 / 6 ( ) NO Study on the Control Methods of NOx Component in Diesel Exhaust by Combustion Control and its Application Keishi TAKADA Contents 2 / 6 > > > > NOxUrea-SCR NOx NOx NOx NOx

More information

教室説明会1113.ppt

教室説明会1113.ppt Presentation title 1 / 62 NO Study on the Control Methods of NOx Component in Diesel Exhaust by Combustion Control and its Application Keishi TAKADA Contents 2 / 62 > > > NOxUrea-SCR NOx NOx NOx NOx Urea-SCR

More information

スライド タイトルなし

スライド タイトルなし 1 2 3 4 27,500 5 6 2000 7 8 9 10 11 12 < 13 SPECIFICATION CHARACTERISTICS UNIT Regular Gasoline Premium Gasoline METHOD A Type C Type A Type C Type ABNT ASTM Color - (1) (2) (1) (2) Appearance - (4) (4)

More information

untitled

untitled I 3 2 4 2. 4 2. 2 4 2. 3 4 2. 4 4 2. 5 4 2. 6 4 2. 7 5 2. 8 5 2. 9 5 3. 8 3. 8 3.2 8 3.3 0 3.4 0 3.5 4 3.6 6 3.7 7 3.8 Lagmur 22 3.9 Freudlch 26 3.0 29 3. 30 3.2 36 4. 37 4. 37 4.2 37 4.3 39 4.4 4 5. DNA

More information

現代物理化学 1-1(4)16.ppt

現代物理化学 1-1(4)16.ppt (pdf) pdf pdf http://www1.doshisha.ac.jp/~bukka/lecture/index.html http://www.doshisha.ac.jp/ Duet -1-1-1 2-a. 1-1-2 EU E = K E + P E + U ΔE K E = 0P E ΔE = ΔU U U = εn ΔU ΔU = Q + W, du = d 'Q + d 'W

More information

<93C18F578B4C8E965F90F596EE20918F91BC2E6D6364>

<93C18F578B4C8E965F90F596EE20918F91BC2E6D6364> Laser Flash Exposure time 25(50)µsec Deadtime=150nsec 5µsec I0 I1 I2 I3 I4 I5 Camera (40000 or 20000 fps) Phosphorescence ɡ ɡ ɡ ɡ TSParticle Intensity Ratio [ ] 0.9 1 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Fitted

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

untitled

untitled vacuum assisted grouting SEEE 2001 11 2002 10 150 SEEE PC PC 2002 PC PC PC PC PC 1 SEEE PC 1 JIS 0MPa 0.1MPa 100 MPa0.1MPa1 760Torr 100 0.1MPa l /min 2 0.09MPa 90% -2.1 90 0.09MPa -2.1 0.09MPa 0.1

More information

平成12年度

平成12年度 1 1-1 (1) 150[ml] 500[ml/] Cerebral Ventricle Brain 1-1 2 ( ) 1-1 1-2 0.20.5[mm] 13 14[mm] 1-2 3 ( ) (2) 4 2-1 (cerebral ventricle) (peritoneum) R O p O Cerebral Ventricle Valve Brain R o R i P i Peritoneum

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

17 Fig.2-1 Relationship between cooling water temperature and steam consumption of booster Source: The new oil and fat technology, Mr. E. Bornardini, Publishing house Technologie, Rome Note:

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1 September 25, 2017 1 1.1 1.2 p = nr = 273.15 + t : : K : 1.3 1.3.1 : e.g. 1.3.2 : 1 intensive variable e.g. extensive variable e.g. 1.3.3 Equation of State e.g. p = nr X = A 2 2.1 2.1.1 Quantity of Heat

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

pall_news116

pall_news116 PALL NEWS 2013 SPRING Vol.117 LED NEW 316L NW40 NW50 O - 316 L 316 L nm (38 O C ) 3 nm 75 slpm 0.72 MPa 100 O C O - 1 1/4 VCR 2 ISO NW40 NW50 2 2013 SPRING Pall News ol.117 D mm L CK4000I40H 55 49 Flow

More information

Akira MIZUTA(KEK) AM, Nagataki, Aoi (ApJ, , 2011) AM + (in prep)

Akira MIZUTA(KEK) AM, Nagataki, Aoi (ApJ, , 2011) AM + (in prep) Akira MIZUTA(KEK) AM, Nagataki, Aoi (ApJ, 732 26, 2011) AM + (in prep) 2011.12.28 GRB GRB. ex. GRB980425/SN1998bw, GRB030329/SN2003dh XRF060218/SN2006aj. GRB091127/SN2009nz XRF100316D/SN2010bh Spectrum

More information

mt_4.dvi

mt_4.dvi ( ) 2006 1 PI 1 1 1.1................................. 1 1.2................................... 1 2 2 2.1...................................... 2 2.1.1.......................... 2 2.1.2..............................

More information

untitled

untitled 1 JCAP 5 WG 2007 2 22 2 1. 2. 2.1 CR-DPF ( DPF) 2.2 NSR (NOx ) S P 2.3 SCR (NOx ) S P 2.4 3. CO 2 4. 3 CR-DPF NSR SCR SAPS* *SAPS Sulfated Ash ) Phosphate Sulfur CO 2 4 5 1. 2. 2.1 CR-DPF 2.2 NSR S P 2.3

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

スライド 1

スライド 1 201210 BP2011 BP2011 J-POWER C Coal ship Coal silo / yard Coal bunking Coal conveyer Coal bunker Coal stack /storage Transporting Unloading Coal feeder boiler Mill (pulverizer) Drying and milling

More information

1 VW EGR NOx NOx NOx (HC) SCR NOx (NH 3 ) 2L 2007 1,100 0 36 EA189 27 12 3L 2008 8.5 0 35 27 12 NO NO 2 NPO ICCT, International Council on Clean Transportation West Virginia University NOx EPA, Environmental

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2 3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

155 13 2 15 B97176 1 1.1. 4 1.2. 5 1.2.1. 1.2.2. 1.3. 7 2. 2.1. 9 2.2. 1 2.3. 13 2.4. 16 3. 3.1. 3.1.1. 18 3.1.2. 26 3.1.3. 33 3.2. 3.2.1. 34 3.2.2. 5 4. 4.1. 52 4.2. 53 54 55 2 1 1.1 1.2 1.3 3 4 Fig.

More information

( ) ± = 2018

( ) ± = 2018 30 ( 3 ) ( ) 2018 ( ) ± = 2018 (PDF ), PDF PDF. PDF, ( ), ( ),,,,., PDF,,. , 7., 14 (SSH).,,,.,,,.,., 1.. 2.,,. 3.,,. 4...,, 14 16, 17 21, 22 26, 27( ), 28 32 SSH,,,, ( 7 9 ), ( 14 16 SSH ), ( 17 21, 22

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

LEGACY 1. LEGACY A: DIMENSION 1. SEDAN MODEL 2.5 L SOHC 2.5 L DOHC turbo Overall length mm (in) 4,730 (186.2) Overall width mm (in) 1,730 (68.1) Overa

LEGACY 1. LEGACY A: DIMENSION 1. SEDAN MODEL 2.5 L SOHC 2.5 L DOHC turbo Overall length mm (in) 4,730 (186.2) Overall width mm (in) 1,730 (68.1) Overa LEGACY 1. LEGACY A: DIMENSION 1. SEDAN MODEL 2.5 L SOHC 2.5 L DOHC turbo Overall length mm (in) 4,730 (186.2) Overall width mm (in) 1,730 (68.1) Overall height (at C.W.) mm (in) 1,425 (56.1), 1,435 (56.5)

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G 8 ( ) 8. 1 ( ) F F = F I (N I, T, V I ) + F II (N II, T, V II ) (8.1) F δf = δn I [ ( FI (N I ) N I 8. 1 111 ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J 26 1 22 10 1 2 3 4 5 6 30.0 cm 1.59 kg 110kPa, 42.1 C, 18.0m/s 107kPa c p =1.02kJ/kgK 278J/kgK 30.0 C, 250kPa (c p = 1.02kJ/kgK, R = 287J/kgK) 18.0 C m/s 16.9 C 320kPa 270 m/s C c p = 1.02kJ/kgK, R = 292J/kgK

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

(a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig. 2 Priventive gas velocity at nozzle 405

(a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig. 2 Priventive gas velocity at nozzle 405 Fig. 1 Experimental Apparatus Fig. 2 Typical Ion Distribution in COG-Air Flame Fig. 3 Relation between Steel Temperature and Reduction Time (a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig.

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

Journal of the Combustion Society of Japan Vol.56 No.177 (2014) ORIGINAL PAPER SI エンジンのクレビスノックの容器実験による基礎研究 ( クレビス内混合気の自己着火

Journal of the Combustion Society of Japan Vol.56 No.177 (2014) ORIGINAL PAPER SI エンジンのクレビスノックの容器実験による基礎研究 ( クレビス内混合気の自己着火 56 177 2014 258-265 Journal of the Combustion Society of Japan Vol.56 No.177 (2014) 258-265 ORIGINAL PAPER SI エンジンのクレビスノックの容器実験による基礎研究 ( クレビス内混合気の自己着火とノックの発生について ) Fundamental Study on Crevice Knock of

More information

Donald Carl J. Choi, β ( )

Donald Carl J. Choi, β ( ) :: α β γ 200612296 20 10 17 1 3 2 α 3 2.1................................... 3 2.2................................... 4 2.3....................................... 6 2.4.......................................

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

OPA134/2134/4134('98.03)

OPA134/2134/4134('98.03) OPA OPA OPA OPA OPA OPA OPA OPA OPA TM µ Ω ± ± ± ± + OPA OPA OPA Offset Trim Offset Trim Out A V+ Out A Out D In +In V+ Output In A +In A A B Out B In B In A +In A A D In D +In D V NC V +In B V+ V +In

More information

K02LE indd

K02LE indd I Linear Stage Table of Contents 1. Features... 1 2. Description of part Number... 1 3. Maximum Speed Limit... 2 4. Specifications... 3 5. Accuracy Grade... 4 6. Motor and Motor Adaptor Flange... 4 6-1

More information

K 1 mk(

K 1 mk( R&D ATN K 1 mk(0.01 0.05 = ( ) (ITS-90)-59.3467 961.78 (T.J.Seebeck) A(+ T 1 I T 0 B - T 1 T 0 E (Thermoelectromotive force) AB =d E(AB) /dt=a+bt----------------- E(AB) T1 = = + + E( AB) α AB a b ( T0

More information

CMT CA CMT BEMS CA AC HP 24 Building Environment and Energy Management System BEMS / HP HP HP HP 992

CMT CA CMT BEMS CA AC HP 24 Building Environment and Energy Management System BEMS / HP HP HP HP 992 74 642991-999 2009 J. Environ. Eng., AIJ, Vol. 74 No. 642, 991-999, Aug., 2009 Masatoshi KUBOKI, Eisuke TOGASHI, Tomoaki USHIO and Shin-ichi TANABE In recent years, commissioning (Cx) is attracting attention

More information

1 158 14 2 8 00225 2 1.... 3 1.1... 4 1.2... 5 2.... 6 2.1...7 2.2... 8 3.... 9 3.1... 10 3.2... 16 4.... 17 4.1... 18 4.2... 20 4.3... 22 5.... 23 5.1... 24 5.2... 28 5.3... 34 5.4... 37 5.5... 39 6....

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

untitled

untitled 1 25/5/3-6/3 1 1 1.1.................................. 1 1.2.................................. 4 2 5 2.1.............................. 5 2.2.............................. 6 3 Black Scholes 7 3.1 BS............................

More information

untitled

untitled ( ) c a sin b c b c a cos a c b c a tan b a b cos sin a c b c a ccos b csin (4) Ma k Mg a (Gal) g(98gal) (Gal) a max (K-E) kh Zck.85.6. 4 Ma g a k a g k D τ f c + σ tanφ σ 3 3 /A τ f3 S S τ A σ /A σ /A

More information

白山羊さんの宿題.PDF

白山羊さんの宿題.PDF ICRU Report 60 Fundamental Quantities and Units for Ionizing Radiation (1998) dosimetric quantity exposurex kermak absorbed dosed 1) fluenceφ hν 1. ρ x Φ/Φ { Φ/Φ}/{ρ x} mass attenuation coefficient µ/ρ

More information

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III. Masafumi Udagawa Dept. of Physics, Gakushuin University Mar. 8, 16 @ in Gakushuin University Reference M. U., L. D. C. Jaubert, C. Castelnovo and R. Moessner, arxiv:1603.02872 Outline I. Introduction:

More information

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

PALL NEWS vol.126 November 2017

PALL NEWS vol.126 November 2017 PALL NEWS November 2017 Vol.126 PALL NEWS vol.126 November 2017 NEW =2000 9660 41.4 MPa 24 MPa NFPA T2.06.01 R2-2001 CAT C/90/* (1x10 6 0-28 MPa 1x10 6 29 120 C 60 C 450 Pa 340 Pa 1 MPa JIS B 8356-3/ISO

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

Engine Control <D-FH> (T) (T) 0 EDU 0 EFI MIN EDU elay EFI MIN elay 7 0 EFI N. 0 EFI N. - -

Engine Control <D-FH> (T) (T) 0 EDU 0 EFI MIN EDU elay EFI MIN elay 7 0 EFI N. 0 EFI N. - - Engine Control (T) (T) 0 0 /F low lug elay /F elay low lug 7 0 (), () Junction Connector 0 - - Engine Control (T) (T) 0 EDU 0 EFI MIN EDU elay EFI MIN elay 7 0 EFI N. 0 EFI N. - - Engine

More information

24 10 10 1 2 1.1............................ 2 2 3 3 8 3.1............................ 8 3.2............................ 8 3.3.............................. 11 3.4........................ 12 3.5.........................

More information

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63> 入門モーター工学 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/074351 このサンプルページの内容は, 初版 1 刷発行当時のものです. 10 kw 21 20 50 2 20 IGBT IGBT IGBT 21 (1) 1 2 (2) (3) ii 20 2013 2 iii iv...

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

L kW/6000rpm 181Nm/4500rpm 100kW/3500rpm 310Nm/2000rpm /2 2/3 2 km 10km/L 12.5km 100 /L 75 /L 2 km CO2 1- -

L kW/6000rpm 181Nm/4500rpm 100kW/3500rpm 310Nm/2000rpm /2 2/3 2 km 10km/L 12.5km 100 /L 75 /L 2 km CO2 1- - 50 82 87 77 70 2.0L 4 1 104kW/6000rpm 181Nm/4500rpm 100kW/3500rpm 310Nm/2000rpm 72 2 3 2 3 1/2 2/3 2 km 10km/L 12.5km 100 /L 75 /L 2 km 20 12 CO2 1- DaimlerChrysler 1 Mercedes-Benz E 2 2.7L 5 E270CDI 2.6L

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

cms.pdf

cms.pdf RoHS compliant INTERNAL STRUTURE FEATURES Part name over Slider Housing Slider contact Fixed contact Terminal pin lick spring Ground terminal Material Steel (SP), Tin-plated Polyamide opper alloy, Gold-plated

More information

89865TVS_JA.fm

89865TVS_JA.fm VISHAY GENERAL SEMICONDUCTOR Transient Suppressors Application Note (TVS) Soo Man Sweetman Kim Senior Application Manager TVS Vishay General Semiconductor ITVS TVS TVS TVS 1 10 s 1000 sbellcore 1089 2

More information

台紙.indd

台紙.indd Power Range for U-Wärtsilä Low-Speed ngines Humane and arth-friendly 3 4 5 6 7 8 9 onv e ntiona l onv e ntiona l Layout ield x te nde d La you t ie ld 10 11 WÄRTSILÄ LOW-SP MRIN NINS INTRT LTRONI ONTROL

More information

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs 15 C11-4 Numerical analysis of flame propagation in a combustor of an aircraft gas turbine, 4-6-1 E-mail: tominaga@icebeer.iis.u-tokyo.ac.jp, 2-11-16 E-mail: ntani@iis.u-tokyo.ac.jp, 4-6-1 E-mail: itoh@icebeer.iis.u-tokyo.ac.jp,

More information

J. Jpn. Inst. Light Met. 65(6): 224-228 (2015)

J. Jpn. Inst. Light Met. 65(6): 224-228 (2015) 65 62015 224 228 ** Journal of The Japan Institute of Light Metals, Vol. 65, No. 6 (2015), 224 228 2015 The Japan Institute of Light Metals Investigation of heat flow behavior on die-casting core pin with

More information