ii

Size: px
Start display at page:

Download "ii"

Transcription

1 213/ ,,, Pfaffian 1,, Borel,,, rigidity,,, Pfaff,, JSPS ( ). i

2 ii

3 x t n 2 1 e 1 2 dt HGM (holonomic gradient method) 1 1 holonomic 1.1 Hilberlt Hilbert F k F k = {(x, y) N 2 x + y k} 1 NHK 1

4 ( 1 ) k k p k k Figure 1: Hilbert F k ( ) 2+k (k +2)(k +1) #F k = = 2 2 = 1 2! k2 + O(k). O(k m ) k O(km ) k m k F k \(p + N 2 ). 1 # ( F k \(p + N 2 ) ) ( ) ( ) 2+k 2+k p = 2 2 (k +2)(k +1) (k p +2)(k p +1) = 2! 2! = Ck + O(1) = O(k) p = p 1 + p 2,p=(p 1,p 2 ). 2

5 ( ) m # F k \ (P (i) + N 2 ) k=1 2 k k Figure 2: Hilbert 2 (k ) k k K Q, C B: R( ) K[x 1,x 2 ] I x p 1 1 x p 2 2 F k F k F k F k F k = { α k c α x α 1 1 x α 2 2 c α K} 2 3

6 ( ) α 1 + α 2 F k K- 1. I = x p (x p = x p 1 1 x p 2 2 ) F k /(F k I) K ( ) ( ) k +2 k p +2 dim K F k /(F k I) = k 2 Proof. x α = x α 1 1 x α 2 2 I α p + N 2 xα F k I α p + N 2 F k β F k \(p + N 2 ) x β F k /(F k I) K- base I = x p(1),...,x p(m) 2. dim K F k /(F k I) k k K[x 1,x 2 ] I = x 1 x 2,x 2 1 F k /(F k I) base 3 k Figure 3: I = x 1 x 2,x 2 1 1,x 1,x 2,x 2 2,...,x k 2 4

7 I Hilbert H(k; I) H(k; I) =O(k d ) d I Krull (Krull d V (I) V (I) manifold d manifold ) D n = K x 1,...,x n, 1,..., n i x j = x j i + δ ij x i x j = x j x i i j = j i K K derivation 3 multi-index x α β = x α 1 1 x αn n 1 1 n n x α β >x α β α + β > α + β or ( α + β = α + β (α, β) (α, β ) ) Graded lexicographic order l = c αβ x α β +(< ) K[x, ξ] in < (l) =c αβ x α ξ β K[x, ξ] < l initial D n I ( < ) in < (I) = in < (l) l I K[x, ξ] in < (I) I Hilbert H(k; I) =H(k;in < (I))

8 Hilbert Hilbert Hilbert computer algebra hilbert... ( ) 3. I = 1,..., n in < (I) = ξ 1,...,ξ n ( ) K[x, ξ]/in < (I) = K[x] hilbert H(k; I) = ( ) k+n n = O(k n ) n F k = { α + β k c αβx α β } 4. k dim K F k /(F k I) =H(k; I) =H(k;in < (I)) ([2] 1.6, 6.6 ) I in < (I) 5 (Bernstein ). D n D n I H(k; I) =O(k m ) m n Krull Krull n 3 Krull n lower bound D n Krull 6

9 n 1 n 2 Bernstein [2] 6.8 m = n I holonomic ideal M = D n /I holonomic D n -module 45 B: I holonomic... initial initial Hilbert B: generator holonomic Macaulay2 is.holonomic Risa/asir ns twistedlog.holonomic 4 B: initial ideal generator initial Holonomic holonomic C: 4 import("ns twistedlog.rr");. 7

10 involutive base C:... blacket main theorem [4] [2] 6 HGM Björk [3] 6. D n /I holonomic D n -module D n /(I + n D n ) holonomic D n 1 -module M = D n /I,M k = F k /(F k I) I module M/ n M = n, x = x n : M M M k 1 M k ( m ) ( m ) dim k M k /( M M k ) n! kn + O(k n 1 ) n! (k 1)n + O(k n 1 ) = O(k k 1 ) K F k /(F k (I + D)) = M k /( M) M k OK. : M M ( ) N D n -module ( ) N M N = {m M k k m = inm} M = M/N D n -module : M M D n -module M/ M = M/ M 8

11 ( ). N D n n -module m N x n m N k m = k+1 (x n m)=x n k+1 m +(k +1) k m = ( ). m N k m = k k x k = x k k 1 + i! (k(k 1) (k i +1))2 x k i k i k x k m = x k k + i=1 x i i =( x 1)( x 2) ( x i) k i=1 = (...)m + k! 1 i! (k(k 1) (k i +1))2 x k i k i m k i=1 ( 1) k i k! i!(k i)! m m = (...)m M D n /(I + n D n ) D n 1 module k n m m>m x m n m l i x i n, i= l i D n 1 1,x n,x 2 n,...,x m n V k = { α n β n k c αβx α β } kashiwara-malgrange filtration M holonomic b(s) K[s] l V 1 s.t. b( n x n )+l I ( [6, Theorem 5.1.2, 5.1.3]) b(s) b x m n (b( n x n )+l) =b( n x n m)x m n + x m n l = n (...)x m n + b( m)x m n + x m n l b( s) = m m mod I + n D n x m n x n m 9

12 2 HGM, χ 2 ( ) holonomic gradient method χ 2 B: ( HGM ) hypergeometric module holonomic gradient method. 2.1 Γ Γ T n (x) { x n 2 1 e x 2 /N T (n) x> T n (x) = x N T (n) 1 ( N T (n) = x n 2 1 e x n n ) 2 =2 2 Γ 2 T n (x) T n(x)dx = 1 T n (x) T n (x) χ 2 χ 2 e (x m)2 2σ 2 /N, N = 2πσ 2 m σ 2 N(m, σ 2 ) χ 2 2 1

13 7. X 1,...,X n N(, 1) X 1 n Y = Xi 2 =(X 1,...,X n ) i=1 X n n χ 2 (random variable) (Ω, F,P) (R, B) 1 Proof. n ([8] 7.5 (p.171) ) n =1 Y = X 2 c P (Y <c)=p ( c<x< c) X N(, 1) P (a X b) = b y = x 2 P (Y <c)= = c c c a 1 2π e 1 2 x2 dx (a b) 1 c e x2 dx =2 e 1 2 x2 dx 2π 2π 1 2π y 1 2 e 1 2 y dy = c T 1 (y)dy Y 1 χ 2 n 8. X,Y X Y f(x),g(y) X+Y f g(x) = f(x t)g(t)dt 11

14 T n T 1 T n+1 (T n T 1 )(x) = 1 N T (n)n T (1) e x 2 x (x t) n 2 1 t 1 2 dt (T n T 1 ) t = xs x n (1 s) n 2 1 s 1 n 1 2 dt = x 2 Γ( n)γ( 1) 2 2 Γ ( ) n+1 2 R d matrix hypergeometric 1 F 1 zonal ( ) 1 2 A A, (1, )

15 8 P ({ }) =P ({ }) = 3 8 P ({ }) =P ({ }) = 1 8 ( ) P = 1 4 =25% P 5% 1% P 25% : A N(,.25) rk() 7 7, n k=1 rk()2 /(.25) 2 n χ n rd() 2 y 2. y (.25) 2 =ȳ 3. ȳ T ȳ n (x) 5% 9. ( (.25) 2 ) rd() n =5 P 5% P 5% n ( n =5) R P > N< 5; > a< runif(n).5; > b< sum(aˆ2)/ (.25)ˆ2; > p< 1 pchisq(b,df=n ) ; > p Listing 1: p-value 13

16 [1] # [1] # [1] #. > curve( pchisq(x,df=5),from=,to=1); 7 D.Knuth,, pchisq(x, df = 5) x Figure 4: χ 2 pchisq, x T n(t)dt 2.2 HGM P γ(x) = x t n 2 1 e t 2 dt 1 γ(ȳ)/γ(+ ) P - 14

17 [,x] γ(x) Heaviside H(x t)h(t)t n 2 1 e t 2 dt Heaviside { 1 t H(t) = t< γ(x) ( ) t H(t) =δ(t) tδ(t) = δ(t) delta t t H(t) = f(t, x) =H(x t)h(t)t n 2 1 e t 2, t f(t, x) =H (t)h(x t)g(t) H(t)H (x t)g(t)+h(t)h(x t)g (t) delta (x t)t (x t)t t f(t, x) =H(t)H(x t)g (t) g (t) g(t) ( ( n ) l 1 := (x t) t t ) 2 t l 2 := (x t) x f(t, x) D = K x, t, x, t I = Dl 1 + Dl 2 I f ( l I l f = ) 15

18 (I + t D) K x, x l l l = P 1 + t P 2 (P 1 I,P 2 D) (1) f(x, t)dt = P 1 f(x, t)dt + =[P 2 f] = t P 2 f(x, t)dt l γ(x) = (O. D. E. ) ( ) 1. D/I Proof. x >t> x > t graded lexicographic order. in < (l 1 )=2xtξ t,in < (l 2 )= xξ x ξ t =in < ( t ), ξ x =in < ( x ). xtξ t,xξ x Hilbert 3 ( ), x l 1 (2t t )l 2 (t n +2)l 2, 2t x +2t t + t n +2, xtξ t,xξ x,tξ x Hilbert 2 ( ) I I = D, Bernstein D/I K x, x /(I + t D) K x, x 6, ( [2] ) (I + t D) K x, x ( ) (1) l γ(x) Risa/Asir ( Risa/Asir ) J = 2x 2 x +(x n +2) x Listing 2: import( nk restriction. rr ); L=[(x t) (t dt (n/2 1)+t /2), (x t) dx ] ; G= n k restriction. integration ideal(l,[t,x],[dt,dx],[1,]); holonomic gradient method (HGM) γ(x) N T (n) =γ(+ ) 16

19 Risa/Asir Risa/Asir C C Risa/Asir C [1] HGM H. G. M.. Step 1. holonomic J Step 2. J Pfaffian Step 3. Step 2 Pfaffian HGM Step 2 Pfaffian Q = P i Q, i =1,...,n x i ( [2] 6.2 ) n =1 Holonomic Pfaffian Pfaffian grad(q) =(P 1 Q,..., P n Q) Q holonomic gradient method γ(x) Step 1 Step 2 (2x x 2 +(x n +2) x ) γ(x) = ) ( )( ) 1 γ(x) x ( γ(x) x γ(x) = 1 (x n +2) 2x x γ(x) 17

20 Step 3. γ(x) x t n 2 1 e t 2 dt = = = k= k= k= x 1 k! 1 k! ( t 2) k dt t n k! ( 1 ) k x t n 2 1+k dt 2 ) k x n 2 +k ( 1 2 n + k 2 = n 2 x n2 1F 1 ( n 2 ; n 2 +1; x 2 x n γ(x) =e x 2 x n 2 h(x) h(x) θ ( ) θ + n 2 x(θ +1) 2 Pfaffian γ(x)/n T (N) HGM Risa/Asir Listing 3: p-value import( names. rr )$ import( taka runge kutta. rr )$ Glib math coordinate=1$ extern Aig$ / Df : N : approx degree / def poch(a,n) { R=1; for (I=; I<N; I++) { R=R (A+I ) ; } return R; } def igs (X, Df,N) { S = 1; for (K=1; K<=N ; K++) { S += eval ((X 1/2)ˆK)/poch(Df/2+1,K); } ) 18

21 return S/(Df/2); } def igs (X, Df,N) { return eval( igs (X, Df,N) exp ()); } def igs (X,Df,N) { return igs (X, Df,N) eval(xˆ(df/2) exp( X/2)); } / diff(igs), gamma(x). / def igs1 (X, Df,N) { S = ; for (K=1; K<=N ; K++) { S += (1/2) K eval ((X 1/2)ˆ(K 1))/poch(Df/2+1,K); } return S/(Df/2); } def igs1 (X, Df,N) { return eval( igs1 (X, Df,N) exp ()); } def ig (X, Df) { / h(x) / Step=.1; X=1; N=4; / / Iv=[igs (X,Df,N), igs1 (X,Df,N)]; Eq = [ [, 1 ], [ 1 / ( 2 x),( 1/x) (Df/2+1 x/2)]]; / Runge Kutta / A= t k rk. runge kutta 4 linear(eq,x,[],x,iv,x,step); return A; } / Df gamma(x). / def ig(x,df) { extern Aig ; Aig=ig (X, Df ); A=[]; for (I=; I<length(Aig); I++) { V=A i g [ I ] ; X=V [ ] ; A= cons([x,v[1] eval(exp( X/2) Xˆ(Df / 2 ) ) ],A) ; } return reverse(a); } / N T(Df) / def nc(df) { return(pari(gamma,df/2) eval (2ˆ(Df/2))); } end$ γ(7) γ(7)/n T (5) [1893] load("evalig3.rr"); [198] A=ig(7,5)$ [1981] A[]; [7, E31] [1982] A[][1]/nc(5);

22 χ 2 HGM χ 2 Numerical Recipes HGM [11] HGM [1] F k = {(m 1,m 2 ) N 2 m 1 + m 2 k}. p, q N 2, F k \ (p + N 2 ) (q + N 2 ) k (k ). n? 3.2. [1] Q x,. 1. x k k = θ(θ 1) (θ k +1), θ = x. 2. b(θ)x k = x k b(θ + k). b(θ) θ = x. 3. k x k = x k k + k 1 i=1 (k(k 1) (k i i! +1))2 x k i k i [1] e xt tn t [15] 7 T 5 (t)dt [2] 1. 1 F 1 (a, c; x). 2. (a, c ) [45] ( ) χ 2 1 F 1. 1 F 1 zonal, positive definite symmetric matrix.. : 2

23 1. A.G.Constantine, Some Non-Central Distribution Problems in Multivariate Analysis, The Annals of Mathematical Statistics 34 (1963), H.Hashiguchi, Y.Numata, N.Takayama, A.Takemura, The holonomic gradient method for the distribution function of the largest root of a Wishart matrix, Journal of Multivariate Analysis, 117, (213) References [1] D.Cox, J.Little, D.O Shea, Ideals, Varieties, and Algorithms, Springer.. 1 1,. [2] JST CREST,,. [3] Björk, Rings of Differential Operators. Weyl. [4], D,. [5] T.Kimura, Hypergeometric Functions of Two Variables... [6] M.Saito, B.Sturmfels, N.Takayama, Gröbner Deformations of Hypergeometric Differential Equations, Springer. [7],, 2,. R. [8],,.. [9] [1] [11] 21

24 22

25 Pfaffian 1 ( ) Sep. 2,3, 213, Introduction Gauss F (a, b, c; x) = n= (a, n)(b, n) (c, n)(1,n) xn, (a, n) =Γ (a + n)/γ (a), c, 1, 2,... {x C x < 1}., Γ (c) t b c (t x) b (t 1) c a dt Γ (a)γ (c a) t 1 1 (Re(c) > Re(a) > )., [, 1], t 1/t., [ x(1 x)( d dx )2 +{c (a+b+1)x}( d ] dx ) ab f = (1)., Pfaffian df = Ωf, f G = ( F (a, b, c; x) f = d F (a, b, c; x) dx ) ( 1, Ω = ab x(1 x) c (a+b+1)x x(1 x) ( ) 1 x 1 ϕ = Gf ϕ Pfaffian b dϕ = dg f + G df = dg G 1 ϕ + GΩG 1 ϕ [( ) ( dx b = a c x + c a b 23 ) dx x 1 ) ] ϕ dx.

26 ., G d log x = dx dx, d log(x 1) = x x 1, 214. X = C {, 1} x U x, (1) Sol(U x ) 2. ẋ (, 1). ẋ X γ, Sol(Uẋ) f. γ γ X homotopic, f. ρ ẋ loop, ρ M ρ (f) f, Sol(Uẋ) M ρ (c 1 f 1 + c 2 f 2 )=c 1 M ρ (f 1 )+c 2 M ρ (f 2 ) (f 1,f 2 Sol(Uẋ), c 1,c 2 C), M ρ Sol(Uẋ). loopρ loop ρ loop ρ ρ M ρ ρ(f) =M ρ (M ρ (f)). π 1 (X, ẋ) ρ M ρ GL(Sol(Uẋ)),. (1). X ẋ loop ρ 1 loop ρ 1. M = M ρ M 1 = M ρ1 Sol(Uẋ). Sol(Uẋ) M M 1 M M 1. M M 1., M M 1. twisted homology group., twisted homology group,, F 1.,,,,. 1 Stokes F (a, b, c; x) C x = C {, 1,x} 1 u(t)ϕ(t) u(t) = t b c (t x) b (t 1) c a =(t x ) α (t x 1 ) α 1 (t x 2 ) α 2, { dt ϕ(t) = t 1, x =, x 1 = x, x 2 =1, x 3 =, α = b c, α 1 = b, α 2 = c a, α 3 = a,. α j / Z, x t. C x k k ψ u(t) u(t)ψ. u(t) ψ ψ 24

27 u(t) u pairing ψ, u. Stokes d(u(t)ψ) = u(t)ψ. D d(u(t)ψ) =du(t) ψ + u(t)dψ = u(t)(ω ψ + dψ), ( b c ω = d log(u(t)) = t D + b t x + c a ) dt = t 1 2 i= α i dt t x i,, ω ψ,d u, ω = d + ω, C x 1-form ω,.,, ψ, ( D) u. ω ω (D u )=( D) u, D u(t) D u(t) D u(t) D. Stokes, ω, ω. Theorem 1 ( Stokes ) ω ψ,d u = ψ, ω (D u ). ω ψ = C x C k ψ k, k D j u(t) γ = j J Du j k, Ck u(c x). ω (γ) = k. ϕ = dt,. t 1 dt dt = C x. (1, ) u(t) (1, ) u,. 1, C x, (1, ). x (, 1), ϕ, γ u = 1 u(t)ϕ γ u. ε R, I 1+ε,R 1+ε R, C ε ε, C R R. γ u = I1+ε,R u 1 C1 u + 1 C 1 λ 2 1 λ, u λ i = e 2π 1αi 3 u(t), t, t 1, t x. Cauchy ϕ, γ u ε, R. Re(c) > Re(a) > lim u(t)ϕ =lim u(t)ϕ = ε C R 1 C ϕ, γ u = 1 u(t)ϕ. 25

28 C C 1 x 1 1+ε I 1+ε,R R ω (γ u ). ω (I u 1+ε,R )=Ru(R) (1 + ε) u(ε+1). C 1, t 1 2π, ω (C u 1 )=λ 2 (1 + ε) u(1+ε) (1 + ε) u(1+ε). C, t, t x, t 1 2π, ω (C u )=λ 3 R u(r) R u(r)., ω (γ u )=. γ u. Problem 1 x (, 1), C x x =, x 1 = x, x 2 =1, x 3 = γ ij ( i<j 3) γ u ij. 2 γ u ε,r, ϕ, γ u.,. ϕ = dt t 1 Du C2 k (C x ) ω (D u ) pairing ϕ, ω (D u ), Theorem 1 ϕ, ω (D u ) = ω ϕ,d u =. C u 2 (C x ) w, ω H 1 (C x, ω ) : H 1 (C x, ω )=ker( ω : C u 1 (C x ) C u (C x ))/ ω (C u 2 (C x )). 26

29 Theorem 2 ( - ) dim C H 1 (C x, ω )=2. H 1 (C x, ω ) x, (1) Sol(U x ). u(t, x) X = {(t, x) P 1 X t(t x)(t 1) } P 1 P 1, C x ı x : C x pr 1 (x), pr : X(t, x) x X. H 1 ( ω )= x X H 1 (C x, ω ) H 1 ( ω,u x )= x U x H 1 (C x, ω ) Sol(U x ). H 1 (C x, ω ) Sol(U x ) x germ Sol(x). ϕ pairing, x. u(t) 1/u(t), H 1 (C x, ω ), H 1 ( ω )= x X H 1 (C x, ω ). d log(1/u(t)) = ω. H 1 (C x, ω ) H 1 (C x, ω ) I h. 1-chains + p i transversely. ( u + u 1 )= ( + ) pi u(p i )u 1 (p i ) i, I h. ( + ) pi γ + γ.,. p i I h (γ u, γ u 1 + )= I h (γ u +, γ u 1 ), ; α i = α i, λ i =1/λ i, u = u 1. Theorem 3 i<j 3, p<q 3, I h (γij, u (γpq) u )= 1 λ i λ j (1 λ i )(1 λ j ) if (i, j) =(p, q), λ i 1 λ i λ j if i = p, j > q, 1 λ j if j = p, 1 1 λ j if i < p, j = q, 1 if i<p<j<q, if i<p<q<j, i<j<p<q. 27

30 γ u = γ23, u γ1 u = γ12 u (γu ) =(γ23) u,(γ1 u ) =(γ12) u ) Proof. H = ( 1 λ2 λ 3 (1 λ 2 )(1 λ 3 ) 1 1 λ 2 λ 2 1 λ 2 1 λ 1 λ 2 (1 λ 1 )(1 λ 2 ). C u u 1 p 1 C 1 p 2 p 3 I 1+ε,R γ u (γu ). p 1 1, u u(p 1 )u 1 (p 1 )= λ 3, C 1 1 λ 3 λ 3 λ 3 1 λ 3. p 2 1, u u 1 u(p 2 )u 1 (p 2 )=1, C λ 2 ( 1) 1 1 λ 2. I h (γ u, γ u 1 ), 1 λ 2λ 3 (1 λ 2 )(1 λ 3 ). γ u (γu 1 ). p 3 1. u p 3 u u 1 u(p 3 )u 1 (p 3 )=1. C λ 2.. Problem 2. Remark 1 α j / Z (j =, 1, 2, 3). det(h) = 1 λ 1 λ 2 λ 3 (1 λ 1 )(1 λ 2 )(1 λ 3 ). 28

31 3 ẋ (, 1) ( X = C {, 1}), π 1 (X, ẋ) loop ρ. (1) Sol(Uẋ) ρ M ρ, (γ u, γ1 u ) M ρ M ρ, i.e., (M ρ (γ u ), M ρ (γ1 u )) = (γ u, γ1 u )M ρ,. M ρ, M ρ, a, b, c M ρ, Mρ, (γu, γ1 u ), (γ u, γ1 u ) H = ( I h (γi u, (γj u ) ) ). i,j Theorem 4. (1) I h (M ρ (γ+), u M ρ (γ u 1 )) = I h (γ+, u γ u 1 ), γ± u±1 H 1 (C x, ±ω ). (2) t M ρ HM ρ = H. (3) M ρ β, γ u I h (γ u, (γ u ) ) β β =1. (4) M ρ β 1, β 2 γ u 1, γ u 2. β 1 β 2 1 I h (γ u 1, (γ u 2 ) )=. Proof. (1) ẋ Uẋ, γ+, u γ u,.,. ( ) (2) γ u (γ u, γ1 u ) (γ u, γ1 u g ) (g,g 1 C), g 1 ( ) ( ) M ρ (γ u )=(γ u, γ1 u g g )M ρ, I g h (γ u, (γ u ) )=(g,g 1 )H 1 g1. (1) I h (M ρ (γ u ), (M ρ (γ u )) )=(g,g 1 ) t M ρ HM ρ (g,g 1 ) t M ρ HM ρ, g,g 1 t M ρ HM ρ = H. (3) M ρ (γ u )=βγ u, (1) ( g g 1 ) =(g,g 1 )H ( g g 1 ( g g 1 ) ). I h (γ u, (γ u ) ) = I h (M ρ (γ u ), M ρ ((γ u ) )) = I h (βγ u, β (γ u ) ) = (β β ) I h (γ u, (γ u ) ). I h (γ u, (γ u ) ) β β =1. 29

32 (4) (1) I h (γ u 1, (γ u 2 ) ) = I h (M ρ (γ u 1 ), M ρ ((γ u 2 ) )) = I h (β 1 γ u 1, β 2 (γ u 2 ) ) = (β 1 β 2 ) I h (γ u 1, (γ u 2 ) ). β 1 β 2 1 I h (γ u 1, (γ u 2 ) )=. Remark 2 Theorem 4 (4), I h (γ2 u, (γ2 u ) ) β2 β 1 β2 1 β 1 β 2. =1/β 2, Lemma 1 M 1 λ λ 1 = e 2π 1c. M 1 γ u 23, M λ λ 1 γ u 1. λ λ 1 1 I h (γ u 1, (γ u 23) )= γ u 1, γ u 23. Proof. (1, ) ρ. u(t) = t α (t x) α 1 (t 1) α 2 x =ẋe 2π 1θ (θ [, 1]). (t x) α 1. x, t (1, ) t arg(t x) ρ. M 1 (γ23) u =γ23. u γ1 u ρ. t = t = x =ẋe 2π 1θ (θ [, 1]) γ 1 (, 1) γ 1 : t =ẋe 2π 1θ s s (, 1). γ 1 ρ, γ 1. u(t) (, 1), ρ. γ 1(u(t)) = (ẋe 2π 1θ s) α (ẋe 2π 1θ s ẋe 2π 1θ ) α 1 (ẋe 2π 1θ s 1) α 2 = e 2π 1θ(α +α 1)ẋ α +α 1 s α (s 1) α 1 (ẋe 2π 1θ s 1) α 2. ρ θ 1 u(t) λ λ 1, M 1 (γ1) u =λ λ 1 γ1. u λ λ 1 1 Theorem 4, I h (γ1, u (γ23) u )=. Theorem3, I h (γ1, u (γ1) u ) I h (γ23, u (γ23) u ),. Lemma 2 M 1 1 λ 1 λ 2 = e 2π 1(c a b). M 1 1 γ u 3, M 1 λ 1 λ 2 γ u 12. λ 1 λ 2 1 I h (γ u 3, (γ u 12) )= γ u 3, γ u 12. Problem 3 Lemma 2 Lemma 1. 3

33 Theorem 5 ( ) M, M 1, : M (γ u ) = γ u (1 λ )(1 λ 1 )I h (γ u, (γ1) u )γ1 u = λ λ 1 [γ u (1 λ 2 )(1 λ 3 )I h (γ u, (γ23) u )γ23] u, M 1 (γ u ) = γ u (1 λ 1 )(1 λ 2 )I h (γ u, (γ12) u )γ12 u = λ 1 λ 2 [γ u (1 λ )(1 λ 3 )I h (γ u, (γ3) u )γ3] u. Proof. λ λ 1 1, M 1, λ λ 1 γ23, u γ1 u. M (γ1) u = γ1 u (1 λ )(1 λ 1 )I h (γ1, u (γ1) u )γ1 u = γ1 u (1 λ )(1 λ 1 )(1 λ λ 1 ) γ1 u = λ λ 1 γ u (1 λ )(1 λ 1 ) 1, M (γ23) u = γ23 u (1 λ )(1 λ 1 )I h (γ23, u (γ1) u )γ1 u = γ23. u. λ λ 1 =1. Remark 3 λ λ 1 1, M (γ u )=γ u (1 λ λ 1 )I h (γ u, (γ u 1) )I h (γ u 1, (γ u 1) ) 1 γ u 1 γ 1 λ λ 1 I h. Corollary 1 H 1 (C x, ω ) (γ u, γ u 1 )=(γ u 23, γ u 12) M, M 1 M,M 1 M = I 2 (1 λ )(1 λ 1 )r t 1 r1 t H ( ) 1 = λ λ 1 [I 2 (1 λ 2 )(1 λ 3 )e t e t λ λ H]= 1 λ 2 1, λ λ 1 M 1 = I 2 (1 λ 1 )(1 λ 2 )e t 1 e t 1 H ( 1 = λ 1 λ 2 [I 2 (1 λ )(1 λ 3 )r t 3 r3 t H]= 1 λ 1 λ 1 λ 2 I 2, e = t (1, ), e 1 = t (, 1), r 1 = 1 ( ) 1 λ λ 1 λ 2, r 1 λ 1 λ λ 3 = λ ( 1 λ1 λ λ 1 λ 1 Proof., γ u i (γ u, γ u 1 ), γ u = g γ u + g 1 γ u 1 H 1 (C x, ω ) ). ), ( g1 e i (i =, 1). γ u 1 H 1 (C x, ω ) γ u, γ u 1 g 2 ) 31

34 g γ u + g 1 γ1 u. Theorem 3 = I h (γ1, u (γ23) u ) = g I h (γ23, u (γ23) u )+g 1 I h (γ12, u (γ23) u ) = H g + H 1 g 1, λ 1 1 λ 1 = I h (γ1, u (γ12) u ) = g I h (γ23, u (γ12) u )+g 1 I h (γ12, u (γ12) u ) = H 1 g + H 11 g 1. ( ) ( ) λ 1 = t g H, γ1 1 λ 1 g u 1 ( ) r 1 = t H 1 λ 1 = 1 ( ) 1 λ λ 1 λ 2 1 λ 1 1 λ 1 λ λ 1 ( ). Theorem 5 M (γ u g1 ) M. γ u γ1 u ( g1 g 2 ) = I 2 ( g1 g 2, M (γ u ) ) g 2 r 1. I h (γ u, (γ u 1) )=(g 1,g 2 ) Hr 1 = t r 1 t H [ I2 (1 λ )(1 λ 1 )r 1 t r 1 t H ] ( g 1 g 2. e i = e i. M, M 1., λ λ 1 =1 λ 1 λ 2 =1. ( g1 g 2 ). ) 4 Appell s F 1 Appell s F 1 {x =(x 1,x 2 ) C 2 max( x 1, x 2 ) < 1} F 1 (a, b 1,b 2,c; x) = (a, n 1 + n 2 )(b 1,n 1 )(b 2,n 2 ) (c, n 1 + n 2 )(1,n 1 )(1,n 2 ) xn 1 1 x n 2 2 n N 2, c, 1, 2,. Γ (c) Γ (a)γ (c a) 1 t b 1+b 2 c (t x 1 ) b 1 (t x 2 ) b 2 (t 1) c a dt t 1 32

35 (Re(c) > Re(a) > ). x =,x 3 =1,x 4 =, t = x i exponent α i (i =,...,4) : x =, x 1, x 2, x 3 =1, x 4 = ; α = b 1 + b 2 c, α 1 = b 1, α 2 = b 2, α 3 = c a, α 4 = a. F 1 (a, b 1,b 2,c; x), : x 1 (1 x 1 ) 2 1 +x 2 (1 x 1 ) 1 2 +[c (a+b 1 +1)x 1 ] 1 b 1 x 2 2 ab 1, x 2 (1 x 2 ) 2 2 +x 1 (1 x 2 ) 1 2 +[c (a+b 2 +1)x 2 ] 2 b 2 x 1 1 ab 2, (x 1 x 2 ) 1 2 b 2 1 +b 1 2. F 1 (a, b 1,b 2,c) Appell s F 1. Fact 1 S = {x C 2 x 1 x 2 (x 1 1)(x 2 1)(x 1 x 2 )=}. X = C 2 S x X U x F 1 (a, b 1,b 2,c) Sol(U x ). X ẋ =(ẋ 1, ẋ 2 ) ẋ =< ẋ 1 < ẋ 2 < 1=ẋ 3. ρ ij ( i< j 3, (i, j) (, 3)) X ẋ loop x j x i ẋ j,,., i = i, j. Fact 2 π 1 (X, ẋ) ρ ij. 5 F 1 (a, b 1,b 2,c) C x = C {,x 1,x 2, 1}, u(t) =t α (t x 1 ) α 1 (t x 2 ) α 2 (t 1) α 3,, H 1 (C x, ω ), H 1 ( ω )= x X H 1 (C x, ω ), germ Sol(x) H 1 (C x, ω ). x i x j γ ij ( i<j 4) γ u ij. u(t) 1, H 1 (C x, ω ), H 1 ( ω )= x X H 1 (C x, ω ), H 1 (C x, ω ) H 1 (C x, ω ) I h. Theorem 3 i<j 4, p<q 4. λ i = e 2π 1α i ( i 4). 33

36 6 F 1 (a, b 1,b 2,c) π 1 (X, ẋ) ρ M ρ GL(Sol(ẋ)) F 1 (a, b 1,b 2,c). M ρij = M ij ( i<j 3, (i, j) (, 3)). Theorem 4,. Lemma 3 M ij 1, λ i λ j. 1, λ i λ j γ u ij. Proof. Lemma 1, λ i λ j γij. u {i, j, k, l, m} = {,...,4} k, l, m x k x l x k x m 1. Theorem 6 i<j 3, (i, j) (, 3) M ij (γ u )=γ u (1 λ i )(1 λ j )γ u iji h (γ u, (γ u ij) ). Proof. λ i λ j 1. Theorem 4 M ij 1 {γ u H 1 (C x, ω ) I h (γ u, (γ u ij) )=}. γ u I h (γ u, (γ u ij) )=, γ u, 1. γ u = γ ij, Theorem 3 γ u ij (1 λ i )(1 λ j )γ u iji h (γ u ij, (γ u ij) ) = γij u (1 λ i)(1 λ j )(1 λ i λ j ) γij u =(λ i λ j ) γij u (1 λ i )(1 λ j ), γ ij λ i λ j. Lemma 3, M ij. Problem 4 H 1 (C x, ω ), H =(I h (γ u i, (γ u i ) )) ij., M ij. Problem 5 ρ 14 π 1 (X, ẋ) x 1 R 1(R>>),, R, ẋ 1. M 14 = M(ρ 14 ).,, γ u 14. Problem 6 x C {} m simplex x = {t =(xs 1,..., xs m ) C m s 1,...,s m >,s s m < 1} u(t, x) =(x t 1 t m ) α t α 1 1 t α m m, x, e 2π 1(α +α 1 + +α m) u(t, x). Problem 7,. 34

37 References [Apk] Appell P. and Kampé de Fériet M. J., Fonctions hypergéométriques et hypersphériques: polynomes d Hermite, Gauthier-Villars, Paris, [AoK] Aomoto K. and Kita M., translated by Iohara K., Theory of Hypergeometric Functions, Springer Monographs in Mathematics, Springer Verlag, 211. [CM] Cho K. and Matsumoto K., Intersection theory for twisted cohomologies and twisted Riemann s period relations I, Nagoya Math. J., 139 (1995), [G] Goto Y., The monodromy representation of Lauricella s hypergeometric function F C, preprint, 214, [math.ag]. [GM] Goto Y. and Matsumoto K., The monodromy representation and twisted period relations for Appell s hypergeometric function F 4, to appear in Nagoya Math. J. [KN] Kita M. and Noumi M., On the structure of cohomology groups attached to the integral of certain many-valued analytic functions. Japan. J. Math., 9 (1983), [L] Lauricella G., Sulle funzioni ipergeometriche a più variabili, Rend. Circ. Mat. Palermo, 7 (1893), [M1] Matsumoto K., Monodromy and Pfaffian of Lauricella s F D in terms of the intersection forms of twisted (co)homology groups, Kyushu J. Math., 67 (213), [M2] Matsumoto K., Pfaffian of Lauricella s hypergeometric system F A, preprint, 213. [MY] Matsumoto K. and Yoshida M., Monodromy of Lauricella s hypergeometric F A - system, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13 (214), [Y] Yoshida M., Hypergeometric functions, my love, -Modular interpretations of configuration spaces-, Aspects of Mathematics E32., Vieweg & Sohn, Braunschweig,

38 36

39 Borel,, Introduction 213. Gevrey,,. : z k+1 d φ = A(z)φ. (.1) dz, k Z A(z) M(n; C{z}) C{z} n. A() Φ(λ) =det ( λ A() ) =. (.1)., k =, z =., Φ(λ) = λ 1,, λ n z =, (.1)., λ i λ j / Z (i j), (.1) P (z) GL(n; C{z}) φ = P (z)ψ : z d dz ψ = λ 1... λ n ψ. (.2) 37

40 diag(λ 1,, λ n ) Λ, (.1) P (z)z Λ., (.1) z = λ 1,, λ n. k 1., φ = P (z)ψ (.1) : z k+1 d dz ψ = Λ 1 (z)... ψ. (.3) Λ n (z), Λ j (z) (j =1,,n) Λ j () = λ j., P (z) GL(n; C[[z]]),, P (z). Λ j (z),,., Borel. Borel Laplace (Borel ) Laplace,,, Borel, (.1) P (z)exp( z z k 1 Λ(z)dz) ( Λ(z) =diag(λ1 (z),, Λ n (z)) ) (.1). 1 Gevrey (.1) P (z),, P (z) Poincaré rank,. Gevrey, Gevrey Gevrey. [Ba1], [Ra2] Gevrey. 38

41 1.1 Gevrey 1.1 (Gevrey ). ˆf(z) = f n z n C[[z]] Gevrey order k(> ), C>, n n= f n C n+1 Γ (1 + n/k) (1.1). Gevrey order k C[[z]] 1/k. k < k 1 C[[z]] 1/k1 C[[z]] 1/k,, k 1, C[[z]] 1/ := C{z} k> C{z} C[[z]] 1/k., m := z C[[z]] 1/k = { ˆf(z) C[[z]] 1/k f =} : 1.2. ( C[[z]] 1/k, m ) PID., f 1 ˆf(z) = j= ( 1) j (f(z) f ) j f j+1 ˆf(z) ˆf 1 (z), 1.3 1/ ˆf(z) C[[z]] 1/k, C[[z]] 1/k., PID, C[[z]] 1/k m C[[z]] f(z) C{z}, ĝ(z) m f(ĝ(z)) C[[z]] 1/k., ˆf(z) C[[z]] 1/k, d ˆf dz (z) = f n+1 (n +1)z n n=., d ˆf/dz C[[z]] 1/k C[[z]] 1/k C., C{z} C[[z]] 1/k, : 1.4. C[[z]] 1/k C{z}. 39

42 1.2 C S d, α, ρ (α,ρ > ) S = S(d, α, ρ) ={z = re iθ <r<ρ, θ d < α/2}., S(d, α) =S(d, α, ) ={z = re iθ θ d < α/2}., S = S(d, α, ρ) S 1 d 1, α 1, ρ 1 (α 1,ρ 1 > ) { } S 1 = S 1 (d 1, α 1, ρ 1 )= z = re iθ <r ρ 1, θ d 1 α 1 /2, S 1 S. S, f(z) S, ˆf(z) =., f(z), ˆf(z) N ν f (z,n). ν f (z,n) =z N (f(z) N 1 n= f n z n ) f n z n C[[z]] 1.5 ( ). f(z) S ˆf(z) Gevrey order k, S S 1, C>, N S 1 n= ν f (z,n) C N+1 Γ (1 + N/k) (1.2)., f(z) = k ˆf(z). A k (S), ˆf(z) C[[z]] S Gevrey order k., f(z) A k (S) ˆf(z) C[[z]]., T k : A k (S) C[[z]]. T k : A k (S) C[[z]] 1/k 4 C[[z]]

43 A k (S) C[[z]] 1/k T k., A () k (S) :=KerT k. : 1.6. A k (S), T k., A () k (S) A k(s)., k 2 >k 1 > A k2 (S) A k1 (S) k 2 >k 1 >., S k 1,k 2, A () k 1 (S) =A () k 2 (S)., f(z) A k1 (S), ˆf(z) C[[z]]1/k2 f(z) = k1 ˆf(z) f(z) Ak2 (S) f(z) A k (S) \ za k (S)., f(z) = k ˆf(z), f f(z )= z S 1/f(z) / A k (S). (S) f(z) A() k (S), S S 1, C> N> A () k f(z) C N+1 z N Γ (1 + N/k) S 1., f(z) A () k (S) : 1.7. f(z) A () k (S), S S 1, C, h > S Borel f(z) Ce h z k ˆf(z) C[[z]], Borel B k ( ˆf)(ζ) B k ( ˆf)(ζ) = n= f n Γ (1 + n/k) ζn. ˆf(z) C[[z]] 1/k B k ( ˆf)(ζ) C{ζ}., f(z) S(d, α, ρ) (α > π/k)., f(z) d Borel B k (f)(ζ) B k,d (f)(ζ) = 1 2πi γ 41 f(z)e (ζ/z)k z k d(z k ) (1.3)

44 ., γ :[, 1] S(d, α, ρ) ρ (, ρ), β (π/k, α) 3t ρ exp ( i(d + β/2) ) ( t 1/3) γ(t) = ρ exp ( i(d +3(1 2t)β/2) ) (1/3 t 2/3) 3(1 t) ρ exp ( i(d β/2) ) (1.4) (2/3 t 1)., B k,d (f)(ζ) S(d, α π/k) exponential size k,, S(d, α π/k) S 1 (d, β, ), C, h > B k,d (f)(ζ) Ce h ζ k s B k,d (z s )(ζ) = ζ s Γ (1 + s/k) (1.5)., Borel B k Borel B k C[[z]] : : B k ( ˆf)(ζ) = f n B k,d (z n ). n= 1.8. k>k 1 >, f(z) A k1 (S(d, α, ρ)) (α > π/k) f = k1 ˆf. k 1 2 = k 1 1 k 1, B k,d (f)(ζ) A k2 (S(d, α π/k)) B k,d (f)(ζ) = k2 Bk ( ˆf)(ζ)., k = k 1 B k,d (f)(ζ) C{ζ} B k,d (f)(ζ) = B k ( ˆf)(ζ). Proof. g(ζ) =B k,d (f)(ζ). ( ν g (ζ,n)=ζ N g(ζ) B ( N 1 )) k f n z n 42 n=

45 (1.5) ν g (ζ,n)=ζ N B k,d (z N ν f (z,n))(ζ)., ν f (z,n) (1.2), B k,d (1.3) ν g (ζ,n) : S(d, α π/k) S 1 C >, N ν g (ζ,n) C N+1 Γ(1 + N/k 1 )/Γ(1 + N/k)., B k,d (f)(ζ) = k2. Bk ( ˆf)(ζ)., k = k 1 B k ( ˆf)(ζ) 1.4. f(z) f (k) (z) =f(z 1/k ), B 1,kd B k,d B k,d (f)(ζ) =B 1,kd (f (k) )(ζ k )., ˆf(z) C[[z]] ˆf (k) (z) = ˆf(z 1/k ) C[[z 1/k ]], (1.5) B 1 C[[z 1/k ]] B k (f)(ζ) = B 1 (f (k) )(ζ k ). 1.4 Laplace α, ρ > g(ζ) A k1 (S(d, α, ρ)), g(ζ) = k1 ĝ(ζ). g(ζ) S(d, α) exponential size k. g(ζ) d Laplace L k,d (g)(z) L k,d (g)(z) =., ĝ(ζ) =. e id g(ζ)e (ζ/z)k z k dζ k (1.6) g n ζ n Laplace L k (ĝ)(z) n= L k (ĝ)(z) = g n Γ(1 + n/k)z n n= 43

46 1.5. s L k,d (ζ s )(z) =Γ (1 + s/k) z s (1.7)., Laplace L k Laplace L k C[[ζ]] : L k (ĝ)(z) = g n L k,d (ζ n ). : n= 1.9. k2 1 = k1 1 + k 1 ε > δ(ε) > L k,d (g)(z) A k2 (S(d, α + π/k ε, δ(ε))) L k,d (g)(z) = k2 Lk (ĝ)(z). Proof. S(d, α, ρ) g(ζ) = k1 ĝ(ζ) ε > C> S 1 (d, α ε/2, ρ ε) ν g (ζ,n) C N+1 Γ(1 + N/k 1 )., ĝ(ζ) C[[ζ]] 1/k1, g(ζ) S(d, α) exponential size k S 1 (d, α ε/2, ) { ζ ρ ε} C,h > ν g (ζ,n) C N+1 Γ(1 + N/k 1 )e h ζ k., δ > (z,ζ) S(d, α + π/k ε, δ) S 1 (d, α ε/2, ) (ζ/z) k < 2h ζ k., f(z) =L k,d (g)(z) (1.6) S(d, α + π/k ε, δ)., (1.7) ( ν f (z,n) =z N f(z) L ( N 1 )) k g n ζ n n= ν f (z,n) =z N L k,d (ζ N ν g (ζ,n))(z)., ν g (ζ,n) ν f (z,n) : S(d, α+ π/k ε, δ) C 1 >, N ν f (z,n) C N+1 Γ(1 + N/k 1 )Γ(1 + N/k)., L k,d (g)(z) = k2 Lk (ĝ)(z). 44

47 1.6. g(ζ) g (k) (ζ) =g(ζ 1/k ), L 1,kd L k,d L k,d (g)(z) =L 1,kd (g (k) )(z k )., ĝ(ζ) C[[ζ]] ĝ (k) (ζ) =ĝ(ζ 1/k ) C[[ζ 1/k ]], (1.7) L 1 C[[ζ 1/k ]] L k (g)(z) = L 1 (g (k) )(z k ). Borel Laplace : 1.1. f(z) S(d, α, ρ) (α > π/k) L k,d B k,d (f)(z) =f(z). Proof. δ > z = δe 2πid L k,d B k,d (f)(z) = 1 e id f( z)e ζk ( z k z k) z k z k d( z k )dζ k 2πi γ = 1 f( z)z k z e id k d( z k ) e ζk ( z k z k) dζ k 2πi = 1 2πi = k 2πi γ γ γ f( z)z k z k z k z k d( z k ) f( z) z k 1 z k z k d( z), δ > z γ., Cauchy. : g(ζ) S(d, α) (α > ), ζ = exponential size k B k,d L k,d (g)(ζ) =g(ζ). 1.5 Borel, Borel-Ritt : 45

48 1.12. d R, α (, π/k), ρ >., ˆf(z) C[[z]] 1/k f(z) = k ˆf(z) f(z) Ak (S(d, α, ρ)). Proof. g(ζ) D δ = {ζ C ζ δ} (δ > ). g(ζ) L δ k,d (g)(z) L δ k,d(g)(z) = δe id g(ζ)e (ζ/z)k z k dζ k., ˆf(z) C[[z]]1/k δ B k ( ˆf)(ζ) D δ. Sk,d δ ( ˆf)(z) :=L δ k,d B k ( ˆf)(z), Sk,d δ ( ˆf)(z) A k (S(d, α, ρ)) Sk,d δ ( ˆf)(z) = k ˆf(z)., Bk ( ˆf)(ζ) D δ, C> N, ζ D δ ˆB k ( ˆf)(ζ) N 1 f n ˆBk (z n )(ζ) C N+1 ζ N (1.8) n=., (1.5),(1.7), (1.8) : C 1 > z S(d, α, ρ) ( f n z n Sk,d(z δ n ) ) = e id δe id f n ζ n Γ(1 + n/k) e (ζ/z)k z k dζ k C n+1 Γ(1 + n/k) z n exp[ (δe id /z) k ], Lk,d( δ ˆBk ( ˆf)(ζ) N 1 ) e id f n ˆBk (z n )(ζ) C N+1 ζ N e (ζ/z)k z k dζ k n= C N+1 1 Γ(1 + N/k) z N. S(d, α, ρ) S δ k,d ( ˆf)(z) = k ˆf(z) α (, π/k) T k : A k (S(d, α, ρ)) C[[z]] 1/k., exp[ (e id /z) k ] A () k (S(d, α, ρ)) T k., α > π/k T k, Watson : ρ >, α > π/k A () k (S(d, α, ρ)) =. 46

49 Proof. f(z) A () k (S(d, α, ρ)) f(z) = k, 1.8 B k,d (f)(ζ) = B k ()(ζ) =., 1.1 f(z) =L k,d B k,d (f)(z) =L k,d ()(z) =. : ˆf(z) C[[z]]1/k,. (i) f(z) A k (S(d, α, ρ)) (ρ >, α > π/k) f(z) = k ˆf(z). (ii) ε > B k ( ˆf)(ζ) S(d, ε) exponential size k., ˆf(z) f(z) f(z) =L k,d B k ( ˆf)(z) (Borel ). ˆf(z) C[[z]]1/k 1.14 ˆf(z) d k-borel, k-summable, d k-summable C{z} k,d. ˆf(z) C{z} k,d, Borel S k,d ( ˆf)(z) S k,d ( ˆf)(z) :=L k,d B k ( ˆf)(z)., R mod 2π k-summable C{z} k., ˆf(z) C[[z]] 1/k k-summable ˆf(z), Sing( ˆf) ( R mod 2π). n d := C{z} k,d m = z C{z} k,d n := C{z} k m = z C{z} k : (C{z} k,d, n d ), (C{z} k, n) PID d, k> C{z} C{z} k,d k> C{z} C{z} k. 47

50 1.19. ˆfk (z) = Γ(1 + n/k)z n B k ( ˆf k )(ζ) =(1 ζ) 1., n= ˆf k (z) d/ 2πZ k-summable Sing( ˆf k )={ mod2π}., k l ˆf k (z) / C{z} l. C{z} k,d, C{z} k : 1.2. C{z} k,d, C{z} k C{z} a<b d (a, b), k>., ˆf(z) d (a,b)\{d }, k > B k ( ˆf)(ζ) S(d, ε) (ε > ) exponential size k ˆf(z) C{z} k,d Phragmén-Lindelöf : g(ζ) S = S(d, π/k) exponential size k ( k (,k) ). g(ζ) S S g(ζ) S. Proof. d =. sup g(ζ) M S, ε > l ( k, k) S e εζl g(ζ) M., S g(ζ) Me ε ζ l, ε >, S g(ζ) M k> C{z} = d R C{z} k,d. Proof. C{z} k,d C{z}. ˆf(z) C{z} k,d d R d R B k ( ˆf)(ζ) C exponential size k., ρ > S k,d ( ˆf)(z) {z C < z < ρ}., z = S k,d ( ˆf)(z) z = S k,d ( ˆf)(z) = k ˆf(z) C{z}. 48 C{z} k,d

51 1.24. k 1 >k 2 > C{z} = C{z} k1 C{z} k2 = C[[z]] 1/k1 C{z} k2. Proof. C{z} C{z} k1 C{z} k2 C[[z]] 1/k1 C{z} k2, ˆf(z) C[[z]] 1/k1 C{z} k2 B k ( ˆf)(ζ) C exponential size k 3 (k3 1 = k2 1 k1 1 )., 1.21, C[[z]] 1/k, B k C{ζ}., : 1.25 ( ). k, k 1 >., f(ζ),g(ζ) A k1 (S(d, α, ρ)) (α, ρ > ) f(ζ) g(ζ) f k g(ζ). [ d t f k g(ζ) = dt ] f((t t) 1/k )g( t 1/k )d t t=ζk 1.7. k 1 : f(ζ),g(ζ) A k1 (S(d, α, ρ)) f (k) (ζ) =f(ζ 1/k ), g (k) (ζ) =g(ζ 1/k ) : f k g(ζ) =f (k) 1 g (k) (ζ k ) f(ζ),g(ζ) A k1 (S(d, α, ρ)) (α, ρ > ) f(ζ) = k1 ˆf(ζ), g(ζ) = k1 ĝ(ζ)., h(ζ) :=f k g(ζ) h(ζ) A k1 (S(d, α, ρ)) h(ζ) = k ĥ(ζ), h n = n j= Γ(1 + (n j)/k)γ(1 + j/k) f n j g j (n ) Γ(1 + n/k)., [ d t ζ m k ζ n = (t t) m/k t ] n/k d t t=ζk dt 49

52 [ d ] = dt t1+(m+n)/k B(1 + m/k, 1+n/k) t=ζk = Γ(1 + m/k)γ(1 + n/k) ζ m+n Γ(1 + (m + n)/k), ν h (ζ,n), C{ζ} k Conv k, 1.26 : B k : C[[z]] 1/k Conv k Bk L k., Exp k,d C{ζ}, ε > S(d, ε) exponential size k k, 1.14 : B k : C{z} k,d Exp k,d., s B k ( z d dz zk+s )(ζ) =, ˆf(z) C[[z]] 1/k : (k + s)ζ k+s Γ(1 + (k + s)/k) = kζk Bk (z s ) B k ( z d dz ( z k ˆf(z) ) ) = kζ k Bk ( ˆf)(ζ). (1.9), 1.28 : f(z) C{z}, ĝ(z) n d, f(ĝ(z)) C{z} k,d. Proof. g B (ζ) := B k (ĝ)(ζ), g B (ζ) S(d, ε) (ε > ), S(d, ε) S 1 C, h > g B (ζ) C ζ e h ζ k. Cauchy, C, h, dg B /dζ S 1 dg B dζ (ζ) Ce h ζ k 5

53 ., n B k (ĝ n )(ζ) =gb n (ζ), g n B (ζ) Cn ζ n Γ(1 + n/k) eh ζ k (1.1)., n = n, g B () =, t g B k g n B (ζ) = t dg B dζ ((t t) 1/k ) 1 k (t t) 1/k 1 g n B ( t 1/k )d t t=ζ k Ce h( t t ) 1 k ( t t ) 1/k 1 Cn t n /k eh t d t Γ(1 + n /k) C n+1 ζ n+1 e B(1/k, 1+n /k) h ζ k Γ(1 + n /k) Cn +1 ζ n +1 Γ(1 + (n +1)/k) eh ζ k. t = ζ k, (1.1) B k (f(ĝ))(ζ) S 1 exponential order k. 1.7 Weierstrass C[[z]] 1/k, C{z} k,d, C{z} k Hensel. f(ζ,w), g(ζ,w) C{ζ,w}, f g(ζ,w) :, [ d t f g(ζ,w)= dt ] f((t t) 1/k,w)g( t 1/k,w)d t t=ζk. (1.11), Exp w k,d f(ζ,w) C{ζ,w}, ε >, S w S w = S(d, ε) {w C w < ε} f(ζ,w) Ce h ζ k. Exp w k,d. R C{ζ,w}, Exp w k,d., R f(ζ,w) R f(, ), R R., Weierstrass ( [GR] ), : 51

54 1.3. g(ζ,w) R j wg(, ) = ( j n 1), (1.12) n wg(, ) (1.13)., f(ζ,w) R q(ζ,w),r(ζ,w) R : f = q g + r, n wr(ζ,w)=. g(ζ,w) R (1.12), (1.13) w order n, w monic n g(ζ,w) Weierstrass., 1.3 : g(ζ,w) R w order n., n Weierstrass W (ζ,w), q(ζ,w) R, : g = q W., monic f(z,w) ( C[[z]] 1/k ) [w], f(,w) = ḡ(w) h(w)(ḡ, h C[w] ), 1.31 g(z,w),h(z,w) ( C[[z]]1/k ) [w] f(z,w) =g(z,w)h(z,w), g(,w)=ḡ(w), h(,w)= h(w). C{z} k,d, C{z} k, : C[[z]] 1/k, C{z} k,d, C{z} k Hensel. 1.9., Gevrey, Weierstrass. [Z] [Ro] C[[z]] Hensel C[[z]]. 1.8 Cauchy-Heine Cauchy-Heine,., Cauchy-Heine : 52

55 1.33 (Cauchy-Heine ). ψ(z) A () k (S(d, α, ρ)) (α, ρ > ), a S(d, α, ρ)., ψ(z) Cauchy-Heine CH a (ψ)(z). CH a (ψ)(z) : CH a (ψ)(z) = 1 2πi a ψ(w) w z dw ψ(z) A () k (S(d, α, ρ)) (α, ρ > ), a S(d, α, ρ), d = d + π, α = α +2π, ρ = a., CH a (ψ)(z) A k (S( d, α, ρ)) CH a (ψ)(z) = k ĈH a (ψ)(z), ĈH a (ψ)(z) := 1 2πi, z S(d, α, ρ) a z n w n 1 ψ(w)dw. n= CH a (ψ)(z) CH a (ψ)(ze 2πi )=ψ(z). Proof., CH a (ψ)(z) S( d, α, ρ), [,a] z S(d, α, ρ), CH a (ψ)(z) A k (S( d, α, ρ)), ψ A () k (S(d, α, ρ)) N 1 1 w z = z n w n 1 + zn w N w z n=,. Cauchy. : 1.35 ( ). S 1 = R /2π Z I j (1 j m), α j+1 < β j < α j+2 (1 j m) α j, β j R (1 j m), I j =(α j, β j )mod2π., j>m α j = α j m +2π., D r := {z C < z <r} (r >) S j (1 j m), α j, β j (1 j m) S j = S((α j + β j )/2, (β j α j )/2,r). 53

56 , 1.34 : S j (1 j m) D r, ψ j(z) A () k (S j 1 S j ) (S = S m )., a j S j 1 S j f j (z) = j CH al (ψ l )(z)+ l=1 m l=j+1 CH al (ψ l )(ze 2πi ) ( j m) (1.14), S j := S j Dρ (ρ =min a j ) f j (z) A k ( S j )( j m) j : f j (z) = k m l=1 ĈH al (ψ l )(z), f j (z) f j 1 (z) =ψ j (z), f m (ze 2πi )=f (z). k-summable : ˆf(z) C{z}k, Sing( ˆf) ={d j mod 2π 1 j m}., Sing( ˆf j )={d j mod 2π} ˆf j (z) C{z} k (1 j m) m ˆf(z) = ˆf j (z). j=1 Proof. d 1 < d 2 < < d m < d m+1 = d m +2π., d j (d j,d j+1 ) f j (z) = S k, dj ( ˆf)(z), f (z) = f m (z), ψ j (z) = f j (z) f j 1 (z) (1 j m), ψ j (z) A () k (S j 1 S j )., S j ε, ρ > 1.35 α j = d j π/2k +ε, β j = d j+1 +π/2k ε Dρ., a j = ρe 2πid j ( ρ (, ρ)), Sj α j = d j π π/2k + ε, β j = d j + π + π/2k ε D ρ 1.34 CH aj (ψ j )(z) A k ( S j )., ε >, CH aj (ψ j )(z) = k ĈH aj (ψ j )(z) C{z} k Sing(ĈH a j (ψ j )) = {d j mod 2π}., f j (z) (1.14) g j (z) := f j (z) f j (z), 1.34 S j 1 S j g j (z) g j 1 (z) =., g j (z) D ρ z =, h(z) =g j(z) C{z}., f j (z) +h(z) = f j (z) = k ˆf(z), ˆfj (z) =ĈH a j (ψ j )(z) (1 j m 1), ˆf m (z) =ĈH a m (ψ j )(z)+h(z). 54

57 1.9 k>1/2., S 1 Gevrey order k A k : I S 1. A k (I), ρ : I (, 1) S ρ := { ρe iθ < ρ < ρ(θ), θ I}. S 1 S 1, S 1 A k. [Ra2],[MR], A k., C[[z]] 1/k S 1, A k T k : A k C[[z]] 1/k., A () k := Ker T k, 1.12 : A () k A k C[[z]] 1/k. (1.15) Γ(S 1, A () k )=,Γ(S 1, A k )=C{z}, Γ(S 1, C[[z]] 1/k )=H 1 (S 1, C[[z]] 1/k )= C[[z]] 1/k, (1.15) : C{z} C[[z]] 1/k H 1 (S 1, A () k ) H 1 (S 1, A k ) C[[z]] 1/k. (1.16),, S : (1.16) H 1 (S 1, A () k ) H 1 (S 1, A k ). 1.38, : C{z} C[[z]] 1/k H 1 (S 1, A () k ). (1.17), H 1 (S 1, A k ) C[[z]] 1/k., I (d) k, : =[d π/2k, d + π/2k] mod2π ( A k )S 1 \I (d) k A k ( A k )I (d) k. (1.18), I (d) ι 1 k S 1 S 1 \ I (d) k ι 2 55

58 , I (d) k, ( A k )S 1 \I (d) k : A () k = ι 2! ι 1 2 A k, (1.18) Γ c (S 1 \ I (d) k ; A k) C{z} Γ(I (d) k ; A k) Hc 1 (S 1 \ I (d) k ; A k) H 1 (S 1, A k ) H 1 (I (d) k ; A k). (1.19) (1.19).,, Watson., Γ c (S 1 \ I (d) k T k : Γ(I (d) k ; A k) C{z} k,d Γ(I (d) k ; A () k )= ; A k)=,hc 1 (S 1 \ I (d) ; C[[z]] 1/k) C[[z]] 1/k, Hc 1 (S 1 \ I (d) k ; A () k ) Hc 1 (S 1 \ I (d) k ; A k) C[[z]] 1/k H 1 (S 1 ; A () k ) H 1 (S 1 ; A k )., : k Γ(I (d) k ; A k) C[[z]] 1/k C{z} C{z} k,d H 1 c (S 1 \ I (d) k ; A () k ). (1.2), S 1 I B k (I) I k-summable, S 1 k-summable B k, A k, B k :, Ŝ1 S 1, D k = {(θ 1, θ 2 ) S 1 Ŝ1 arg θ 1 arg θ 2 π/2k}., p 1 1, p 2 2 : p S 1 S 1 Ŝ1 p 2 56 Ŝ 1

59 , A k = p 2 (p 1 1 A k ) Dk, A k, B k : B k A k., G k := GL(n; A k ), Ĝ k := GL(n; C[[z]] 1/k ), T k : G k Ĝk, G () k := kert k., (1.15) : 1 G () k G k Ĝk 1. (1.21), Cartan 1.38 : (.2) H 1 (S 1, G () k ) H 1 (S 1, G k ) , [Si].,. [Ma], [H]. 1.1., Watson l>k>1/2 Proof., : Γ(I (d) k ; A () k /A () l )=. A () l A () k A () k /A () l., Watson Γ(I (d) k ; A () k )=Γ(I (d) k ; A () l )=, : Γ(I (d) k ; A () k /A () l ) H 1 (I (d) k ; A () l ) ι1 H 1 (I (d) k ; A () k ). 57

60 , ι : Γ(I (d) k ; A l) T l C[[z]] 1/l l H 1 (I (d) k ; A () l ) Γ(I (d) k ; A k) T k C[[z]] 1/k k ι 1 H 1 (I (d) k ; A () k ), ϕ Ker ι 1, l ( ˆf) =ϕ ˆf C[[z]] 1/l. ( (d), ˆf Im Tl Γ(I k ; A l) )., k ( ˆf) = ˆf ( (d) T k Γ(I k ; A k) ), l>k>1/2 T l : Γ(I (d) k ; A l) C{z} k,d C[[z]] 1/l. Proof. Watson.. ˆf C{z}k,d C[[z]] 1/l T k (f) = ˆf f Γ(I (d) k ; A k)., 1.8 k1 1 = k 1 l 1 S(d, π/2k 1 )\{} B l,d (f) = k1 Bl ( ˆf)., ˆf C[[z]]1/l B l ( ˆf) C{z}, T l B l,d (f) = Bl ( ˆf)., B l,d (f) S(d, π/2k 1 ) exponential order l, 1.9 f = L l,d B l,d (f) Γ(I (d) k ; A l), f = l ˆf.. = k m+1 >k m >k m 1 > >k 1 = k>1/2 k =(k m,k m 1,,k 1 ), d =(d m,d m 1,,d 1 ) R m I (dm) k m I (d m 1) k m 1 I (d 1) k 1., 1 j m A j := Γ(I (d j) k j ; A k /A () k j+1 ), B j := Γ(I (d j+1) k j+1 ; A k /A () k j+1 ) 58

61 ., : A 1 A B 1 B 2 A m B m 1 A 1 B1 A 2 B2 Bm 1 A m A k, d. f =(f1,,f m ) A k, d k-precise quasifunction, f j k j -precise quasifunction., A () l Ker T k (l k), T k : A j C[[z]] 1/k (1 j m),(f 1,,f m ) A k, d T k (f 1 )= = T k (f m )., (f 1,,f m ) A k, d T k (f 1 ) T k : A k, d C[[z]] 1/k, Im T k C{z} k, d, d k-summable., (f 1,,f m ), (g 1,,g m ) A k, d, (f 1 g 1,,f m g m ) A k, d, T k A () =, A m = Γ(I (dm) k m ; A k ), m = 1 T k : A 1 C{z} k1,d 1., : Ker T k =. Proof. f =(f1,,f m ) Ker T k., T k (f 1 )=, f 1 Γ(I (d 1) k 1 ; A () k /A () k 2 ), 1.4 f 1 =. B 1 f 1 = f 2, f 2 Γ(I (d 2) k 2 ; A () k 2 /A () k 3 ), 1.4 f 2 =., f j =(1 j m)., 1.42 T k : A k, d C{z} k, d, ˆf C{z} k, d T 1 k ( ˆf) =(f 1,,f m ), f m ˆf Borel, S k, d ( ˆf) f, g A k, d, f m = g m, f g Ker T k., 1.42 f m A k, d f. C{z} k, d, : 59

62 1.43. ˆf m C{z} k, d,g(z) C{z} g( ˆf) C{z} k, d., f =(f 1,,f m ) A k, d T k ( f )= ˆf, g( f )=(g(f 1 ),, g(f m )) A k, d T k (g( f )) = g( ˆf)., n k, d = m C{z} k, d, : ( C{z} k, d, n k, d ) PID. k-summable., ˆf (j) C{z} kj,d j (j =1,,m)., ˆf C{z} k, d., ˆf = ˆf (1) + + ˆf (m) (1.22) f m = S k1,d 1 ( ˆf (1) )+ + S km,d m ( ˆf (m) ) (1.23), f m A k, d, T k (f m )= ˆf. k-summable :, ˆf C[[z]]1/k : (i) ˆf C{z} k, d (ii) ˆf (j) C{z} kj,d j (j =1,,m) (1.22). Proof. (i) (ii). (f 1,,f m ) A k, d, T k (f m )= ˆf., B m 1 f m = f m 1, f m 1 I (d m 1) k m 1 {I j } p j=1 f m 1,j Γ(I j ; A k ) : q (1 q p) I (d m) k m I q, I j I (dm) k m =Ø (j q), f m 1,q = f m, f m 1,j f m 1,j+1 Γ(I j I j+1 ; A () k m )., Cauchy-Heine 1.36 g m 1,j Γ(I j ; A km ) I j I j+1 f m 1,j f m 1,j+1 = g m 1,j g m 1,j+1 6

63 ., h m 1,j = f m 1,j g m 1,j, I j I j+1 h m 1,j = h m 1,j+1 h m 1 Γ(I (d m 1) k m 1 ; A k )., g m 1,q =km ˆf (m) ˆf (m) C{z} km,d m., ĝ C[[z]] 1/km g j A j (1 j m 2) T k (g j )=ĝ, ĥ = ˆf (m) ˆf, k =(k 1,,k m 1 ), d =(d 1,,d m 1 ) ĥ C{z} k, d., ˆf (j) C{z} kj,d j (j =1,,m) ˆf (1.22) ˆf (j) C{z} kj,d j (j =1,,m), P (y 1,,y m ) C[y 1,,y m ] P ( ˆf (1),, ˆf (m) ) C{z} k, d. 1.45, ˆf C{z} k, d Borel S k, d ( ˆf) (1.23), J. Ecalle Acceleration, S k, d ( ˆf)., k >k> d ( k, k)-acceleration A k,k,d : A k,k,d (f)(ζ) =ζ k e id f( ζ)c k/k ( ( ζ/ζ) k ) d ζ k, C α (t) = 1 u 1 1/α u 1 tu 1/α e du 1 (α > 1). 2πi γ 1, C α (t) γ 1 (1.4) d =,k =1., A k,k,d, f(ζ) Exp k,d A k,k,d (f) A k,k,d (f)(ζ) =B k,d L k,d (f)(ζ) (1.24)., B k,d L k,d (f)(ζ) = = e id e (ζ/z) k z kdz k γ e id f( ζ)d ζ k γ e ( ζ/z) k z k f( ζ)d ζ k z k k e (ζ/z) k ( ζ/z) k dz k, u =(z/ζ) k (1.24)., f(ζ) =ζ s (s ) A k,k,d (f)(ζ) = 61 Γ(1 + s/k) Γ(1 + s/ k) ζs (1.25)

64 ., ˆf(ζ) = n f nζ n C[[ζ]]  k,k ( ˆf)(ζ)  k,k ( ˆf)(ζ) = n=., : α > 1 β β 1 =1 α 1 Γ(1 + n/k) Γ(1 + n/ k) f nζ n., ε > c 1,c 2 > S(, π/β ε). C α (t) c 1 e c 2 t β (1.26) Proof. C α (t) v = t α u C α (t) = t v 1 1/α t αv 1 v 1/α e 2πi γ 1 dv 1., f(v) =v 1/α e v 1/α C α (t) =tb 1, (f)(t α )., f(v) A () 1/α (S(, απ)), 1.8 B 1,(f)(ζ) A () α 1(S(, (α 1)π))., ζ = t α, 1.7 (1.26)., 1.46 : S = S(d, δ) (δ > ), k >k> κ κ 1 = k 1., f(ζ) A l (S) S exponential size κ, ε > ρ(ε) > S = S(d, δ +π/κ ε, ρ(ε)) A k,k,d (f)(ζ)., l 1 = l 1 + κ 1 A k,k,d (f)(ζ) A l( S). k 1 A k,k,d (f)(ζ) = l  k,k ( ˆf)(ζ). 62

65 1.15. A k,k,d L k,d., : ˆf C[[z]]1/k : (i) ˆf C{z} k, d (ii) k κ j (1 j m) κ 1 j = k 1 j k 1 j+1. g j (ζ) (1 j m) B k1 ( ˆf)(ζ) =g 1 (ζ), g j+1 (ζ) =A kj+1,k j,d j (g j )(ζ), ε > g j (ζ) S(d j, ε) exponential size κ j. Proof. (i) (ii) ˆf C{z} kj,d j., i < j g i (ζ) exponential size (k 1 i k 1 j ) 1, (k 1 i k 1 j ) 1 < κ i., g j (ζ) = B kj ( ˆf)(ζ), ˆf C{z}kj,d j g j (ζ) d j exponential size k j (< κ j )., g j+1 (ζ) =B kj+1,d j L kj,d j (g j )(ζ) g j+1 (ζ) d j+1 exponential size k j+1. i j +1 g i (ζ) d i exponential size k i. (ii) (i), f j (z) =L δ k j+1,d(g j+1 )(z) (1 j m 1), f m (z) =L km,d m (g m )(z)., L δ k j+1,d 1.12, d d j < ε/2+π/2κ j L δ k j+1,d δeid Gevrey order k j+1., f =(f1,,f m ) A k, d, T k ( f )= ˆf., f j A j T k (f j )= ˆf, B j 1 f j = f j 1 :, g j (ζ) A δ k j+1,k j,d j (g j )(ζ) A δ k j+1,k j,d j (g j )(ζ) =B kj+1,d j L δ k j,d j (g j )(ζ) 63

66 ., gj+1(ζ) δ =A δ k j+1,k j,d j (g j )(ζ), 1.46 g j+1 (ζ) gj+1(ζ) δ Gevrey order k j k j+1 /(k j+1 k j ), L δ k j+1,d j+1 (g j+1 gj+1)(z) δ Gevrey order k j+1., 1.1 f j 1 (z) =L kj+1,d j (gj+1)(z) δ, f j 1 (z) L δ k j+1,d j+1 (gj+1)(z) δ Gevrey order k j+1. B j 1 f j = f j 1., ˆf C{z} k, d : ˆf C{z} k, d, Borel S k, d ( ˆf) : S k, d ( ˆf) =L km,d m A km,k m 1,d m 1 A k2,k 1,d 1 B k1 ( ˆf). 2 n A(z) M(n; C{z}), k, : z k+1 d ϕ = A(z)ϕ. (2.1) dz (2.1) z =,, [BJL], [Ra2], [Ba2],, Borel. 2.1 Splitting Lemma, (2.1) A() λ 1,, λ l. P GL(n; C) ϕ = P ϕ A() Jordan. λ j Jordan J(λ j ) M(n j ; C)., l =2 : ( ) J(λ1 ) A() = (λ J(λ 2 ) 1 λ 2 )., ϕ = T (z)ψ ( T (z) GL(n; C{z} k ) ), (2.1) : z k+1 d ψ = B(z)ψ, (2.2) dz 64

67 ( ) B1 (z) B(z) =. B 2 (z), B j (z) M(n j ; C{z} k )(j =1, 2) B j () = J(λ j )., (2.1) ϕ = T (z)ψ ψ z k+1 d ( dz ψ = T 1 z k+1 d )ψ dz T + AT., (2.2), T (z), B(z) z k+1 d T = AT TB (2.3) dz., T (z), B(z) M(n; C[[z]] 1/k ) (2.3)., T (z) : T (z) =I n + ( T12 (z) T 21 (z), I n n, T ij M(n i,n j ; z C[[z]]). A(), A(z) ( ) A11 (z) A A(z) = 12 (z) (2.4) A 21 (z) A 22 (z)., (2.3) (1, 1). (2, 1) ). =A 11 + A 12 T 21 B 1 (2.5) z k+1 d dz T 21 = A 21 + A 22 T 21 T 21 B 1 (2.6)., (2.5) (2.6) B 1, T 21 : z k+1 d dz T 21 = A 21 + A 22 T 21 T 21 A 11 T 21 A 12 T 21. (2.7) B 2, T 12 (2, 2), (1, 2). 65

68 T 21. T 21, A ij z p T (p) 21, A (p) ij : T 21 = A ij = p=1 p= T (p) 21 z p, A (p) ij zp., (2.7) z p : (p k)t (p k) 21 = A (p) 21 + p q=1 A (p q) 22 T (q) 21 p 1 A () 22 T (p) 21 + T (p) 21 A () 11 =A (p) 21 + q=1 q 1 +q 2 +q 3 =p q 1,,q 3 1 p q=1 T (q) 21 A (p q) 11 p 1 A (p q) 22 T (q) 21 q=1 q 1 +q 2 +q 3 =p q 1,,q 3 1 T (q) 21 A (p q) 11 T (q 1) 21 A (q 2) 12 T (q 3) 21. T (q 1) 21 A (q 2) 12 T (q 3) 21 (p k)t (p k) 21. (2.8), (2.8) T (q) 21 (1 q p 1), T (p) 21., λ 1 λ 2, A () 22 + A () 11 M(n 2,n 1 ; C) L., (2.8) T (p) 21 (p 1). T 21 M(n 2,n 1 ; z C[[z]] 1/k ). P =(p ij ) M(p, q; C), P P = i,j p ij., A(z) M(n; C{z}), C > p A (p) ij Cp+1., : C>, p 1 T (p) 21 C p Γ(p/k). (2.9) 66

69 p =1, 1 p p 1 (2.9) p = p (2.9). C>C., (2.8) 2 p 1 A (p q) 22 T (q) 21 q=1 p 1 q=1 C C p ( C C C C C p Γ ) p q Γ(l/k) C ( p 1 )., (2.8) 5 ( ) (p k)t (p k) 21 C p k p k (p k)γ k ( = kc p k p ) Γ k., L 1, C> p 1 (2.9), T 21 M(n 2,n 1 ; z C[[z]] 1/k ). T 21 M(n 2,n 1 ; z C{z} k )., X := B k (T 21 ), Ã ij,b := B k (A ij A () ij ), (1.9),(2.7) T 21,B : A () 22 X+XA () 11 +kζ k X = kζ k X+Ã21,B+Ã22,B X X Ã11,B X Ã12,B X. (2.1), (2.1) A () 22 + A () 11 + kζ k L ζ, S {ζ C kζ k = λ 2 λ 1 } =Ø S = S(d, α) L ζ., Exp h k( S) S, S f(ζ) f := sup e h ζ k f(ζ) < ζ S, Exp h k( S) Banach. P (ζ) = (p ij (ζ)) = M(p, q; Exp h k( S)) P P = ( p ij ). : C, h > S k Ãij,B C e h ζ k (2.11). h>h, (2.1) 3 Ã22,B() = Ã22,B X t dã22,b dζ ((t t) 1/k ) 1 k (t t) 1/k 1 X( t 1/k )d t t=ζ k 67

70 t C k 1 e h( t t ) ( t t ) 1/k 1 X e h t d t t=ζ k C k 1 (h h ) 1/k e h t X., (2.11) dã22,b/dζ (2.11). (2.1) 5 X Ã12,B X C k 2 (h h ) 1/k e h t X 2. (2.1)., F (X) =L 1 ζ (kζ k X + Ã21,B + Ã22,B X X Ã11,B X Ã12,B X), L 1 ζ M(n 2,n 1 ; Exp h k( S)), h, M>, F B M := {X M(n 2,n 1 ; Exp h k( S)) X M}., Banach (2.1) X M(n 2,n 1 ; Exp h k( S)), B k (T 21 ). T 21, B 1 d =(arg(λ 2 λ 1 )+2π Z)/k k-summable. T 12, B 2 d =(arg(λ 1 λ 2 )+2π Z)/k k-summable., : A () λ 1,, λ l, λ i λ j (i j), J(λ 1 ) A () J(λ 2 ) =... J(λ l )., B j (z) M(n j ; C{z} k ), T ij (z) M(n i,n j ; z C{z} k ) = J(λ j ), B () j B 1 (z) B(z) = B 2 (z)... B l (z) 68

71 T 12 T 1l T 21 T 23. T (z) =I n T(l 1)l T l1 T l(l 1), ϕ = T (z)ψ (2.1) (2.2)., X ij, B j { 1 k arg(λ p λ j )+ 2π Z } k p j k-summable., (2.3) A ij, B j, T ij B j = A jj + p j A jp T pj, z k+1 d dz T ij = p A ip T pj T ij B j, T ij l =2 L J(λ i ) + J(λ j ) : X =(X 1,,X n ), F (z,x) =(F 1,,F n ) C n {z,x}. F (z,x), F (, ) = J = ( Xi F j (, ) ) J., z k+1 d dz X = F (z,x) X(z) C n [[z]] X(z) C n {z} k., J λ j (1 j n), X j n j=1 k-summable. { 1 k arg(λ j)+ 2π Z } k 69

72 2.2, A(z) M(n; C{z} k ) A () = J(λ) (2.1)., ϕ = e λk 1 z k ϕ λ =., ϕ = T (z)ψ ( T (z) GL(n; C{z} k ) ) (2.1) (2.2), M,N > B(z) = N+M p= B (p) z p, B (p) = A (p) ( p N 1). T (z) : T (z) =I n + T (p) z p., T (z) T (z) GL(n; C[[z]] 1/k ). X := B k (T I n ), Ã B := B k (A A () ), BB := B k (B B () ) (2.3) : A () X + XA () + kζ k X = kζ k X + ÃB B B + ÃB X X B B. (2.12), M(n; C) A () + A () L, A () + A () + kζ k L ζ, det(λ L) =λ µ f(λ) (f() ), ζ kµ L ζ ζ = D ρ := {ζ C ζ ρ}., Ã B D ρ., B 1 D ρ, D ρ n X(ζ) = ( x ij (ζ) ) X 1 := sup D ρ, B 2 N+M p=n p=n ζ N x ij (ζ) < i,j M(n; C)ζ p 7

73 , Y (ζ) = ( y ij (ζ) ) B 2, Y 2 := sup ζ N y ij (ζ) D ρ, B 1, B 2 Banach., tr A(z) = i,j N 1 p= A (p) z p, tr à B := B k ( tr A A () ), BB tr à B B 2., (X, Y ) B 1 B 2, ( F 1 (X, Y )=L 1 ζ G(X, Y ) F2 (X, Y ) ),., F 2 (X, Y )= 1 G(X, Y )( ζ)k N,M (ζ/ ζ) d ζ 2πi ζ =ρ ζ G(X, Y )(ζ) =kζ k X + ÃB tr à B + ÃB X X tr à B X Y, K N,M (t) =t N 1 tm+1 1 t., F 2 (X, Y ) B 2., G(X, Y ) G(X, Y ) ζ N, F 2 (X, Y ), G(X, Y ) F 2 (X, Y ) ζ N+M+1., M M kµ 1 F 1 (X, Y ) B 1., B = B 1 B 1, F =(F 1,F 2 ), N,C > F B C := {(X, Y ) B X 1 + Y 2 C}., C > sup D ρ dãb dζ., : ÃB X t <C dãb dζ ((t t) 1/k ) 1 k (t t) 1/k 1 X( t 1/k )d t t=ζ k 71

74 t C k 1 X 1 ( t t ) 1/k 1 t N/k d t t=ζ k C k 1 X 1 ζ N+1 B(1/k, 1+N/k). kζ k X, X tr à B., X Y X Y k 1 X 1 Y 2 ζ 2N B(N/k, 1+N/k)., B(1/k, 1+N/k), B(N/k, 1+N/k) (N ), ζ = ρ, N,C > F B C., Banach, T (z), B(z)., T (z) A(z) k-summable. A(z) d k-summable., < ρ < ρ ζ = ρe id, S := ζ + S(d, ε), ε >, à B S, C, h > : ÃB C e h ζ k. (2.13) B B S (2.13)., Exp h k( S), X M(n; Exp h k( S)) F (X) =L 1 ζ (ÃB B ( d t ) ) B + R + K(t t)x( t 1/k )d t dt t=ζ k, (2.14) t., K(t) = ti n +ÃB(t 1/k ) B B (t 1/k ), ( d t R(ζ) = K(t t) dt T ) B ( t )d t) 1/k t=ζ k, t =ζ k t =ζ k, TB = B k (T I n ), BB := B k (B B () ), T (z), B(z)., L 1 ζ M(n; Exp h k( S)), h, C >, F {X M(n; Exp h k( S)) X C}., Banach F (X) =X X M(n; Exp h k( S)), X T B S., T (z) A(z) k-summable. 72

75 , 2.2, (2.1) summable,. A(z) M(n; C[z]) J(; n 1 ) A () J(; n 2 ) =... J(; n l ) (2.1) i) k, ii) n., J(; n j ) M(n j ; C) n j Jordan., (2.1) k =, n =1, n =1. l =1. n 2., T (z) =I n + T (z), T (z) = N T (p) z p p=1 ψ = T (z)ϕ, N> (2.1) (2.2) B(z) =J(; n)+ N B (p) z p + B(z), (2.15) p=1. B (p) =...., (2.16) b (p) n1 b (p) nn B(z) M(n; z N+1 C[z]) ). (2.3) z p, T, B : J(; n)t (p) T (p) J(; n) =B (p) A (p) + R (p). (2.17) 73

76 , R (p) A (q), T (q), B (q) (1 q p 1)., T (p) =(t (p) ij ) t (p) 21 t (p) 22 t (p) t (p) 2n 11 t (p) 1(n 1) J(; n)t (p) T (p). J(; n) =..... t (p) n1 t (p) n2 t (p) t (p) 21 t (p) 2(n 1). nn..... t (p) n1 t (p) n(n 1)., T (p),, (2.16) B (p),(2.17). t (p) 1j =(1 j n) T (z)., B(z) (2.15). tr B(z) =B(z) B(z), b j (z) = N p=1 b (p) nj zp (1 j n)., P (z,ζ) =det ( ζ tr B(z) ) n 1 = ζ n + ( 1) n j b j+1 (z)ζ j j= det ( ζ B(z) ) = P (z,ζ) modz N+1 C[z,ζ]., P (z,ζ) Newton polygon, F r Q, ζ = z r ζ, P (z, ζ) n 1 =z nr P (z,z r ζ) = ζn + ( z r ) n j b j+1 (z) ζ j j=., F ζ n, ( 1) n j b j +1(z)ζ j b j +1(z) z = v,, r = v n j (2.18). r = p /q (p,q ). r P (z, ζ) Newton polygon F, 74

77 ., S r (z), Shearing ψ = S r (z) ψ : 1 z r S r (z) =.... z r(n 1), Shearing (2.2) : z k r+1 d dz ψ = C(z) ψ, (2.19). C(z) =J(; n)+.... r zk r... + C(z). b1 (z) bn (z) r(n 1), b j (z) =z r(n j+1) b j (z)(1 j n), C(z) z N rn+1 M(n; C[z 1/q ]) ). k r (2.19), k r>., r C(z) M(n; C[z 1/q ]) ), b j +1(), bj+1 () = (1 j j 1), N rn+1 > N, C(). C(), 2.1, 2.2 n., C() P (, ζ) = n, b j () (1 j n), P (z,ζ) Newton polygon F, (j 1,r(n j +1)) Z 2., r Z k Shearing n., q,(2.18) q n. l = 2. A(z) A() (2.4)., N A 21 (z) z N M(n 2,n 1 ; C[z]) )., (2.1) A = A 11 l =1 T (z), S r (z) T 1 (z), S r1 (z), A = A 22 T 2 (z), S r2 (z), ( ) T1 (z)s T (z) = r1 (z) z r 1(n 1 1) T 2 (z)s r2 (z) 75

78 , N r 1 n 1 r 2 n 2 >, l =1, n k., N. n 1 n 2, A (N) 21 (N 1)., ( ) (T21 T (z) =I n + z N M(n T 21 2,n 1 ; C) ) ϕ = T (z)ψ (2.1) (2.2) ( ) B11 (z) B B(z) = 12 (z), B 21 (z) B 22 (z) B () jj = J(; n j ) (j =1, 2), c 1 B 21 (z) = z N mod z N+1 M(n 2,n 1 ; C[z]) (2.2) c n2., (2.3) z N, T (N) 21, B (N) 21 M(n 2,n 1 ; C), (2.2) : J(; n 2 )T N 21 T (N) 21 J(; n 1 )=B (N) 21 A (N) 21. (2.21) (2.17), T (N) 21, B (N) 21. B (N) 21 = N N +1. B (N) 21, S(z) Shearing ψ = S(z) ψ : ( In1 S(z) = z N I n2, (2.2) ). z k+1 d dz ψ = C(z) ψ, ( ) J(; C () n1 ) = B (N) 21 J(; n 2 )., C (), ( C ()) j (j 1), c m,c j =(m +1 j n 2 ), C () Jordan (J(; ) n1 + m) J(; n 2 m) 76

79 ., n 1 n 2, m 1, l =1, N,, k n. l 3 k n.,,, M M(n; C), T (z) GL(n; C{z}[z 1 ]) (2.1) k = ϕ = T (z)ψ z d dz ψ = M ψ. M Jordan, [, 1). 2.4,., Λ := {λ i (ζ)} l i=1 C{ζ}[ζ 1 ]/ C{ζ}, G : L k = C{ζ}[ζ 1 ]/ζ k+1 C{ζ},., ρ k : L k L k+1 { λi (ζ) modζ k C{ζ} } l k=1 i=1 ( ) L k node, ρ k edge, {λ i (ζ)} l i=1 leaf G., L k node level k node., G edge, 2 node G., λ i (ζ) = λ (k) i ζ k mod C{ζ} k, G λ i (ζ) level k node (k, λ (k) i ) G Λ Λ := {λ i (ζ)} 2 i=1 k=1 λ 1 (ζ) =α (3) ζ 3 + α (2) ζ 2 + α (1) ζ 1 λ 2 (ζ) =β (3) ζ 3 + β (2) ζ 2 + β (1) ζ 1 77

80 , G Λ (, ) (3, α (3) ) (3, β (3) ) 2.2. Λ := {λ i (ζ)} 4 i=1, G Λ λ 1 (ζ) =α (4) ζ 4 + α (3) ζ 3 + α (2) ζ 2 + α (1) ζ 1 λ 2 (ζ) =β (4) ζ 4 + β (2) ζ 2 + β (1) 1 ζ 1 λ 3 (ζ) =β (4) ζ 4 + β (1) 2 ζ 1 λ 4 (ζ) = γ (3) ζ 3 + γ (2) ζ 2 + γ (1) ζ 1 (, ) (4, α (4) ) (4, β (4) ) (4, ) (2, β (2) ) (2, ), : q, ζ = z 1/q, Λ = {λ j (ζ)} l j=1 ζ 1 C[ζ 1 ],T(ζ) GL(n;(C[[ζ]] 1/kq )[ζ 1 ]), M j M(n j ; C) (j =1,, l), (2.1) ζ = z 1/q ϕ = T (ζ)ψ : B 1 (ζ) ζ d dζ ψ = B 2 (ζ)... ψ, B l (ζ) B j (ζ) =λ j (ζ)i nj + M j., M j Jordan, [, 1). -Levelt Turrittin., T (ζ) : T (ζ) =T (m) (ζ)t (m 1) (ζ) T (1) (ζ)t () (ζ), 78

81 T (i) (ζ) = T (i) 1 (ζ) T (i) 2 (ζ)..., T (i) (ζ) l (i+1) T (i) j (ζ) GL(n (i+1) j ; C{ζ} ki ) (1 i m, 1 j l (i+1) ), T () j (ζ) GL(n (1) j ; C{ζ}[ζ 1 ]) (1 j l (1) )., {k i } m+1 i=1 (k i+1 >k i, k m+1 = ) G Λ node level, {n (i) j }l(i) j=1 G Λ level k i n,,, n (i) j., G Λ Λ mod ζ ki+1 C{ζ} = { λ (i) j (ζ)}l(i) j=1 λ j1 (ζ) modζ k i+1 C{ζ} = λ (i+1) j (i) λ j (ζ) j 1 n j1 (ζ), edge edge level k i node T (i) j., node {λ (k i) Sing ki := j 1 j 2 j, j 1 } l(i) j j 1 =1 { 1 arg(λ (k i) j, j k 1 λ (k i) j, j 2 )+ 2π Z } i k i (ζ) =I n (i+1) (i), T j (ζ) k i -summable., A() Jordan,, {n (i) j, j 1 } l(i) j j 1 =1 G Λ level k i n (i+1) j, T (i) j (ζ) T (i) j, j 1 j 2 (ζ) M(n (i) j, j 1,n (i) j, j 2 ; C{ζ} ki ) T (i) (i) j, 11 (ζ) T (ζ) j, 1l (i) T (i) j j (ζ) =....., T (i) (i) T (ζ) j, l (i) 1(ζ) j, l (i) l(i), T (i) j, j 1 j 2 (ζ) p j 2 k i -summable. j { 1 arg(λ (k i) j, p k λ(k i) j, j 2 )+ 2π Z } i k i 79 j j j

82 q n! Levelt-Turrittin λ j (ζ), M j Jordan., T (ζ), T (ζ)., B(ζ), B(ζ), S(ζ) :=T 1 (ζ) T (ζ) : ζ d dζ S = BS S B. (2.22), S(ζ) GL(n;(C[[ζ]] 1/kq )[ζ 1 ]) (2.22) -Levelt-Turrittin., S., d =(d m,,d 1 ), d i / Sing ki, T (i) (ζ) Borel S ki,d i (T (i) ), ζ d dζ ψ = M jψ ζ M j (2.1) d S km,d m (T (m) ) S k1,d 1 (T (1) )T () ζ M 1... ζ Ml ([Br1]).,. [Br2] Acceleration, [RS] Cohomological [Ma]., [Mo], [Sa1], [Sa2]. References [Ba1] W. Balser: From divergent power series to analytic functions, Lecture Notes in Mathematics, Vol. 1582, Springer-Verlag,

83 [Ba2] : Formal power series and linear systems of meromorphic ordinary differential equations, Springer, New York, 2. [BJL] W. Balser, W. B. Jurkat and D. A. Lutz: Birkhoff invariants and Stokes multipliers for meromorphic linear differential equations, J. Math. Analysis Applic. 71 (1979), [Br1] B. L. J. Braaksma: Multisummability and Stokes multipliers of linear meromorphic differential equations, J. Diff. Eq. 92 (1991), [Br2] [GR] [H] [Ma] : Multisummability of formal power series solutions of nonlinear meromorphic differential equations, Ann. Inst. Fourier Grenoble 42 (1992), H. Grauert and R. Remmert: Coherent analytic Sheaves, Springer- Verlag, Y. Haraoka: Theorems of Sibuya-Malgrange type for Gevrey functions of several variables, Funkcial. Ekvac. 32 (1989), H. Majima: Asymptotic analysis for integrable connections with irregular singular points, Lecture Notes in Mathematics, Vol. 175, Springer-Verlag, [MR] B. Malgrange and J. -P. Ramis: Fonctions multisommables, Ann. Inst. Fourier Grenoble 42 (1992), [Mo] T. Mochizuki: The Stokes structure of a good meromorphic flat bundle, J. Inst. Math. Jussieu 1(3) (211), [Ra1] J. -P. Ramis: Dévissage Gevrey, Astérisque 59-6 (1978), [Ra2] [RS] : Les séries k-sommable et leurs applications, Analysis, Microlocal Calculus and Relativistic Quantum Theory, Proceedings Les Houches 1979, Lecture Notes in Physics, Vol. 126, Springer (198), J. -P. Ramis and Y. Sibuya: A new proof of multisummability of formal solutions of non linear meromorphic differential equations, Ann. Inst. Fourier Grenoble 44 (1994),

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A ( ) (, ) arxiv: 1510.02269 hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a 1 + + N 0 a n Z A (β; p) = Au=β,u N n 0 A-. u! = n i=1 u i!, p u = n i=1 pu i i. Z = Z A Au

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu rigidity 2014.9.1-2014.9.2 Fuchs 1 Introduction y + p(x)y + q(x)y = 0, y 2 p(x), q(x) p(x) q(x) Fuchs 19 Fuchs 83 Gauss Fuchs rigid rigid rigid 7 1970 1996 Nicholas Katz Rigid local systems [6] Fuchs Katz

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia

B2 ( 19 ) Lebesgue ( ) ( ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercia B2 ( 19) Lebesgue ( ) ( 19 7 12 ) 0 This note is c 2007 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purposes. i Riemann f n : [0, 1] R 1, x = k (1 m

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

takei.dvi

takei.dvi 0 Newton Leibniz ( ) α1 ( ) αn (1) a α1,...,α n (x) u(x) = f(x) x 1 x n α 1 + +α n m 1957 Hans Lewy Lewy 1970 1 1.1 Example 1.1. (2) d 2 u dx 2 Q(x)u = f(x), u(0) = a, 1 du (0) = b. dx Q(x), f(x) x = 0

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

~nabe/lecture/index.html 2

~nabe/lecture/index.html 2 2001 12 13 1 http://www.sml.k.u-tokyo.ac.jp/ ~nabe/lecture/index.html nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/11 3. 10/18 1 4. 10/25 2 5. 11/ 1 6. 11/ 8 7. 11/15 8. 11/22 9. 11/29 10. 12/ 6 1 11. 12/13

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

OHP.dvi

OHP.dvi 7 2010 11 22 1 7 http://www.sml.k.u-tokyo.ac.jp/members/nabe/lecture2010 nabe@sml.k.u-tokyo.ac.jp 2 1. 10/ 4 2. 10/18 3. 10/25 2, 3 4. 11/ 1 5. 11/ 8 6. 11/15 7. 11/22 8. 11/29 9. 12/ 6 skyline 10. 12/13

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

I II

I II I II I I 8 I I 5 I 5 9 I 6 6 I 7 7 I 8 87 I 9 96 I 7 I 8 I 9 I 7 I 95 I 5 I 6 II 7 6 II 8 II 9 59 II 67 II 76 II II 9 II 8 II 5 8 II 6 58 II 7 6 II 8 8 I.., < b, b, c, k, m. k + m + c + c b + k + m log

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

untitled

untitled 1 kaiseki1.lec(tex) 19951228 19960131;0204 14;16 26;0329; 0410;0506;22;0603-05;08;20;0707;09;11-22;24-28;30;0807;12-24;27;28; 19970104(σ,F = µ);0212( ); 0429(σ- A n ); 1221( ); 20000529;30(L p ); 20050323(

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

2 2 L 5 2. L L L L k.....

2 2 L 5 2. L L L L k..... L 528 206 2 9 2 2 L 5 2. L........................... 5 2.2 L................................... 7 2............................... 9. L..................2 L k........................ 2 4 I 5 4. I...................................

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib ( ) Donaldson Seiberg-Witten Witten Göttsche [GNY] L. Göttsche, H. Nakajima and K. Yoshioka, Donaldson = Seiberg-Witten from Mochizuki s formula and instanton counting, Publ. of RIMS, to appear Donaldson

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information