2, Steven Roman GTM [8]., [3].,.

Size: px
Start display at page:

Download "2, Steven Roman GTM [8]., [3].,."

Transcription

1 ( ) :

2 2, Steven Roman GTM [8]., [3].,.

3 (UFD) (PID) Möbius UFD , (Algebraic Extnsions) distinguished (Galois Correspondence) ? Lifting

4 distinguished class

5 1 1.1 N = {1, 2,... }, Z = { 2, 1, 0, 1, 2,... }, Q, R, C (P, ) (partially ordered set, poset), x, y P x y (i) x x ( reflexivity) (ii) x y y x x = y ( anti-symmetry) (iii) x y y z x z ( transtivity) S P a S (upper bound) resp. (lower bound) : x S : x a (resp. x a) a S (maximum element) resp. (minimum element) : a S a S (resp. ) a S (maximal element) resp. (minimul element) : a S x a (resp. x a) x P S = P (resp. ), 1 P (resp. 0 P ),, 1 (resp. 0) N, Z, Q, R S N S ( ) P P, P (Zorn ) P, {x λ } λ Λ P, {x λ } λ Λ (resp. ) x 1 (resp. x 0 ), x 1 {x λ } λ Λ (join)) (resp. x 0 {x λ } λ Λ (meet)) ), x 1 = x λ (resp. x 0 = x λ )., x 0, x 1 λ Λ λ Λ (1) x λ x 1 ( λ Λ) (resp. x 0 x λ ( λ Λ)) (2) x λ y ( λ Λ) = x 1 y (resp. x 0 x λ ( λ Λ) = y x 0 ) ( ) L 2 x, y {x, y}, L (lattice)., {x, y}, {x, y} x y, x y (, join), (, meet). (i) (x y) z = x (y z), (x y) z = x (y z) (associative raws) (ii) x y = y x, x y = y x (commutative laws) (iii) x x = x x = x (idempotent) (iv) x (x t) = x = x (x y) (absorption laws) 1, (iv) x y x y. 5

6 6, L, (i) (iv), s t = s s t = t s t.,,,., 2,,, L (complete lattice) ( (monoid)) (monoid). S (x, y) xy, (i) ( ) (xy)z = x(yz) (ii) ( 1 ) 1 S s.t. x : x1 = 1x = x 1. (iv) ( ) xy = yx, n x 1, x 2,..., x n C n. C 1 = 1, C 2 = 1, C 3 = 2, C 4 = 5,.... C n C n =. C n+1 = 1 n+1( 2n n ). n C i C n i i= ( ) G (iii) ( ) x G, y G s.t. xy = yx = 1, G (group). y x, x 1., xy x + y, x x ( ) R, 2 (, ),, (unitary commutative ring). (i) (ii) (iii). x(y + z) = xy + xz, (x + y)z = xz + yz x R x 1, x (unit). R R R, x 0 R, y 0 R xy = 0, x. R, R (integral domain).

7 *** ( ) *** R = Z[ 1] = Z + Z K, K = K \ {0}, K, (field) ( ) R, S R, (1) x, y S x y S (2) x, y S xy S (3) 1 R S, S R (subring) (R ). R (4) x 0 S x 1 S, S R ( ) R, a R, (1) a R (2) x R, y a xy a a R (ideal) = {0} R R ( ) R, a R R/a = {x + a x R} (x + a) + (y + a) = x + y + a, (x + a)(y + a) = xy + a, well-defined, R/a. R a. x + R = {x + y y R} R = Z, m (m) = mz = {mx x Z}. Z/(m) = Z/mZ, Z/(m) = m Z Z/12Z Z/mZ Z/mZ m R, R, f : R R, (1) f(x + y) = f(x) + f(y) (2) f(xy) = f(x)f(y) (3) f(1 R ) = 1 R ( ) 2, (homomorphism). f (resp. ), (resp. ),,, R R., R = R, (automorphism) R, R, f : R R, (1) f S R f(s) R. 2 (3),,.

8 8 (2) f a R f(a) R. (3) S R f 1 (S) R. (4) a R a = f 1 (a ) R., n = f 1 (0) R K R f : K R, f(x) = 0 ( x R) ( ) f R R, n = f 1 (0) f, f : R/n R, a + n f(a), R/n R a ι (ι I) (family), ι I a ι ( ) S R (S) = a a S S., S = {a 1,..., a s }, ({a 1,..., a s }) (a 1,..., a s ),., s = 1, (a) (pricipal ideal). { k } (S) = r i a i r i R, a i S, k N. i= ( ) a i (i = 1,..., s) ( s ) a i = {a a s a i a i } a a s (a 1,..., a s )., ( s ) s a i = s a i ( a 1 a s ). i= Z + 8Z = 2Z (a b)(a, b) ab a b. i=1 i=1 j i=1 a (i) j a(i) j a i R 1, p R,. (1) R/p (2) a, b p, ab p a p b p (3) R a, b, ab p a p b p (4) R a, b, a p b p ab p

9 *** ( ) *** 9 p (prime ideal). 3. (1) (2) ab p, R/p (a + p)(b + p) = p, R/p a + p = p b + p = p. a p b p. (2) (4) R a, b, a p b p a a \ p, b b \ p. (2) ab p ab p. (4) (3) (3) (1) R/p R 1, m R,. (1) a, m a R a = m a = R. ( m ) (2) R/m m (maximal ideal). (1) (2) a + m m a m m (a) + m, m (a) + m = R. r R, m m ra + m = 1. r + m a + m. (2) (1) m a R x a \ m. R/m x + m m y R (x + m)(y + m) = 1 + m. 1 a a = R R 1, S (0 S) R (i.e. a, b S ab S), a R s.t. a S =., R I = {b b a b S = }. p 1 p, p.. I. b ι (ι I) I, c = ι I b ι, c, c I. 4,., Zorn, p I. p. b p, c p, bc p p (b) + p, p (c) + p ((b) + p) S, ((c) + p) S, s 1 = r 1 b + p 1, s 2 = r 2 c + p 2 s 1, s 2 S, r 1, r 2 R, p 1, p 2 p., S s 1 s 2 = r 1 r 2 bc + r 1 bp 2 + r 2 cp 1 + p 1 p 2 p p S = R 1, a R, a R m.. S = {1} R 1 R m.. a = R 0,. 3 R. 4 a c. c S =.

10 10 (1) R (2) R 0, R R.. a 0 R. 0 a a 1. f a : R a, x xa R a,. a = R. R 0 R ( ) R, F f : R F. (1) f (2) F x = f(a)f(b) 1., (F, f), (F, f ) (1) (2), φ : F F f = φ f.. F = {(a, b) a, b R, b 0}, F (a, b) = (c, d) ad = bc. F = F /, F (a, b) + (c, d) = (ad + bc, bd), (a, b)(c, d) = (ac, bd), well-defined, 0 F = (0 R, 1 R ), 1 F = (1 R, 1 R ). f : R F f(a) = (a, 1 R ) R, F R (field of quotients)., R ( ) R, a, b R b = ac ( c R), a b, b a, a b. a R x R, x = ϵa ϵ, a x, x a. 5 a 1, a 2,..., a n R (n 2) d a i ( i) x a i ( i) x d d R a 1, a 2,..., a n.,., d, d a 1, a 2,..., a n d d. a 1, a 2,..., a n a 1, a 2,..., a n. a 1, a 2,..., a n R a i m ( i) a i x ( i) m x m a 1, a 2,..., a n.,. 5 x a a x x a.

11 *** ( ) *** a, x R, (i) x a x = ϵ x = ϵa ( ϵ ) (ii) x a x, x a (iii) (a) (x) R (x) = (a) (x) = R R, a R, x R, x a x = ϵ x = ϵa ( ϵ ), a (irreducible element). p R p ab p a p b, p R R,.. p R, p = ab ab (p), a (p) b (p). a (p), p a, p = ab a p a p, p. b (p). 1.5 (UFD) R, R a (a 0) a = p 1 p 2 p r, (Unique Factorization Domain) ,., a R a = p 1 p r = q 1 q s 2, r = s, p 1 q 1,..., p r q r.. r. r = 1, p 1 = q 1 q s, q 1 q s (p 1 ) q 1 (p 1 )., p 1 q 1, q 2 q s s = 1. r > 1, p 1 p r = q 1 q s q 1 q s (p 1 ),, p 1 q 1. q 1 = ϵ 1 p 1 (ϵ 1 ) p 1 p r = ϵ 1 p 1 q s p 2 p r = ϵ 1 q 2 q s, r 1 = s 1, p 2 q 2,..., p r q r ,. (, ) R = Z[ 5] = {x + y 5 x, y Z}. w = x + y 5 R, w = x y 5, N(w) = ww = x y 2 Z N(w 1 w 2 ) = N(w 1 )N(w 2 ). (i) 2, 3, 1 ± 5 R. (ii) (2) R. (iii) (2, 1 + 5). (iv) R UFD. (6 = 2 3 = (1 + 5)(1 5) ). 1.6 (PID) R,, (Principal Integral Domain) ,. (, ) (p)

12 12., p (p) (p) p,, R, p R,. (i) (p) (ii) (p) R.. ( ) a 0 R,., a a = a 1 a 1 (a 1, a 1 ), a 1, a 1, 1., a 1, a 1 = a 2 a 2 (a 2, a 2 ), a 2, a 2, 1, a 2., (a) (a 1 ) (a 2 ) (a 3 ) R. i (a i ). 7 R i (a i ) = (b) b R., i 0 b (a i0 ), (a i0 ) = (a i0 +1) = (a i0 +2) =, R a, b. (i) a b. (ii) x, y R s.t. ax + by = 1.. (i) (ii) (a, b) = (c) c R c a c b c. (ii) (i) c a, b, c a, c b c 1 = ax + by c X, Y, R = Z[X, Y ] UFD. ( ) I = (X, Y ) R., R PID R 0 a v(a) 0,, Euclid (Euclidian Domain). (1) a, b R s.t. a 0, q, r such that b = aq + r, r = 0 v(r) < v(a) (2) a 0, b 0 v(a) v(ab) Euclid R.. a 0 R. S = {v(x) x a x 0} N v(a). a = (a)., x a x = aq + r r = 0 r 0 v(r) < v(a), r = x qa a, v(a).

13 *** ( ) *** : φ(n) n φ(n) Möbius n N, 1, 2,..., n n φ(n), Euler n N. φ(d) = n d n n = 12 φ(1) + φ(2) + φ(3) + φ(4) + φ(6) + φ(12) = = n = r i=1 pe i i n., φ(18) = φ(2 3 2 ) = 6. φ(n) = r i=1 p e i 1 i (p i 1) (Möbius ) n N µ(n). µ(1) = 1, n > 1, n = r i=1 pei i ( 1) r e 1 = = e r = 1, µ(n) = 0 otherwise. µ(n) n Möbius. n 1.8.2: µ(n) n µ(n) n Z, n > 1. µ(d) = 0 d n. n n = p e1 1 per r (r 1) µ (d) = d n µ (p x1 1 pxr 0 x 1 e 1,...,0 x r e r, x x r = x. r ) = 0 x 1 1,...,0 x r 1 ( 1) x1+ +xr = r ( ) r ( 1) r = (1 1) r = 0 x x=0 7.

14 n = 12 µ(1) + µ(2) + µ(3) + µ(4) + µ(6) + µ(12) = = ( ) f N, n N f(d) = g(n) d n.. d n ( n ) µ g(d) = f(n) d ( n ) µ g(d) = ( n ) µ f(d ) = d d d n d n d d d d n ( n ) µ f(d ) = f(d ) µ(t) d d n t n d,, n N. 1 a = 1, µ(t) = 0 a > 1. t a d n ( n ) µ d = f(n) d n = 12. µ(12) 1 + µ(6) 2 + µ(4) 3 + µ(3) 4 + µ(2) 6 + µ(1) 12 = = 4

15 R, R n X 1,..., X n f(x) = f(x 1,..., X n ) = a i1,...,i n X i1 X in i 1,...,i n 0 R[X 1,..., X n ], R n. ax i1 X in, i i n,. f, f(x), deg f. deg 0 = f(x, Y ) = 2 X 3 + X 2 Y + X Y Z[X, Y ] 3, g(x) = X X Q[X] 2., R. deg f 1 f R[X 1,..., X n ], f = gh, 1 deg g, deg h < f g, h R[X 1,..., X n ], f (degreewise reducible). f R[X 1,..., X n ] deg f 1,, (degreewise irreducible) h(x) = 2 X X X + 2 Z[X], g(x) = X X Q[X] f R[X 1,..., X n ] f R. f R[X 1,..., X n ] deg f = Z[X 1,..., X n ] ± F, f F [X] f F [X],, R, f R[X] R[X]. f(x) = 6(X 2 + X + 1) Z[X],, f(x) Z[X] 2, 3, X 2 + X + 1 Z[X]. Q[X] R[X] R 1. f R[X] f = a 0 + a 1 X + + a m X m = m a i X i (a i R, a m 0), m (degree), a m (leading coefficient). a m = 1 (monic) m., f, ia i X i 1 f, f (derivative). i= h(x) = 2 X X X + 2 Z[X] 3, 2 monic, h (X) = 6 X X + 2 Z[X] R R[X], f, g R[X], deg(fg) = deg f + deg g. f = m i=0 a ix i, g = n j=0 b jx j fg = m i=0 n j=0 a ib j X i+j a m b n i=0

16 R R[X 1,..., x n ], f, g R[X], deg(fg) = deg f + deg g. R[X 1,..., x n ] = R[X 1 ][X 2 ] [X n ] R, R[X 1,..., x n ] { } f(x1,..., X n ) R(X 1,..., X n ) = g(x 1,..., X n ) f(x 1,..., X n ), g(x 1,..., X n ) R[X 1,..., X n ], g(x 1,..., X n ) R, f, g R[X] g R f = gq + r, r = 0 deg f < deg g q, r R[X]..,. f = m i=0 a ix i, g = n j=0 b jx j, deg f < deg g. deg f = deg g,, q, r.. f = gq 1 + r 1 = gq 2 + r 2, deg r 1, deg r 2 < deg g g(q 1 q 2 ) = r 2 r 1. q 1 q 2 0 deg g(q 1 q 2 ) deg g > deg r 2 r 1. q 1 = q 2, r 1 = r R, f R[X], a R, q(x) R[X]., f(x) = (X a)q(x) + f(a), X a f(x) f(a) = 0. g(x) = X a f(x) = (X a)q(x) + r. X = a r = f(a) R m, f(x) R[X] m.. m. (i) m = 1,. (ii) m > 2, m 1. m, f(x) R[X] a f(x) = (X a)f 1 (X)., f 1 (X) m 1, m 1., f(x) m R, f(x) R[X] R a, f(a) = 0 f(x) = f R[X], a R, (X a) k f(x) (X a) k+1 f(x), a f(x) k, k f(x) a. 2,, R, a R f(x) R[X] k (k 2), a f (X) k 1. a R f(x) f(a) = f (a) = 0.., f(x) = (X a) k g(x), g(a) 0., f (X) = k(x a) k 1 g(x) + (x a)kg (X) = (X a) k 1 {kg(x) + (X a)g (X)} (X a) k 1 f(x).

17 *** ( ) *** F 1 F [X] Euclid F 1 F [X] PID F 1 f(x), g(x) F [X],. (i) f(x), g(x). (ii) f(x)u(x) + g(x)v(x) = 1 u(x), v(x) F [X] F 1 p(x) F [X],. (i) p(x) F [X] (ii) p(x) F [X] (iii) (p(x)) F [X] (iv) (p(x)) F [X] 2.3 UFD 1, R UFD., F R f(x) R[X], f(x) (primitive polynomial) h(x) = 2 X 3 +2 X 2 +2 X+2 Z[X] 2 primitive, k(x) = 6 X 2 +3 X+4 Z[X] primitive p R R p R[X], i.e., f(x), g(x) R[X] p f(x) p g(x) p f(x)g(x).. f(x) = a 0 + a 1 X + + a m X m, g(x) = b 0 + b 1 X + + b n X n (a m, b n 0). f(x), g(x) p, a j, b k, f(x)g(x) X j+k c j+k = a j+k b a j+1 b k 1 + a j b k + a j 1 b k a 0 b j+k. p a k b k, p, p c j+k p f(x)g(x) (Gauss s Lemma) f(x), g(x) R[X], f(x)g(x).., f(x)g(x), p f(x)g(x) p R p f(x) p g(x), f(x), g(x) f(x) = 2 X X + 3, g(x) = 2 X X + 2 Z[X], f(x)g(x) = 4 x x x x + 6 Z[X] a, b F, b = aϵ R ϵ R, a b 1, a b. 1 approx

18 R = Z, F = Q, Z = {±1}, 2 3 ± 2 3., R = Z[i] (i = 1), F = Q[i], Z = {±1, ±i}, 2 3 ± 2 3, ± 2 3 i f(x) F [X] f(x) = cg(x) c F g(x) R[X]. c, c = c(f) f(x) (content).. f(x) = a 0 + a 1 X + + a m X m, b 0, b 1,..., b m B b 0 b 1 b m f(x) = 1 ( a 0 B + a 1 B X + + a m B ) X m B b 0 b 1 b m, a i B b i R R A R, f(x) = A B (c 0 + c 1 X + + c m X m )., c = A B, f 0(X) = c 0 + c 1 X + + c m X m, f 0 (X) R[X]., f(x) = cf 0 (X) = c f 0(X) (f 0 (X), f 0(X) R[X] ), c = a b, c = a b ab f 0 (X) = a bf 0(X) R[X]., f 0 (X), f 0(X) ab a b. ab = a bϵ ϵ R., c = cϵ f 0 (X) = ϵf 0(X) R = Z, F = Q, g(x) = X X Q[X]. c(g) = 1 6, primitive k(x) = 6 X X + 4 Z[X], g(x) = c(g) k(x) f F [X], f R[X] c(f) R f R[X], f c(f) 1 f, g F [X], c(fg) = c(f)c(g) f(x), g(x) R[X], g(x), f(x) = g(x)h(x) h(x) F [X] h(x) R[X].. f(x) = g(x)h(x) R c(f) = c(g)c(h) = c(h), h(x) R[X] f(x) R[X], f(x) = g(x)h(x) g(x), h(x) F [X] g 1 (X), h 1 (X) R[X]. f(x) = g 1 (X)h 1 (X), deg g = deg g 1, deg h = deg h 1. g(x) = c(g)g 0 (X), h(x) = c(h)h 0 (X) (g 0, h 0 R[X] ) f(x) = c(g)c(h)g 0 (X)h 0 (X), 2.3.4, g 0 (X)h 0 (X), c(g)c(h) R.,, g 1 (X) = g 0 (X) R[X], h 1 (X) = c(g)c(h)h 0 (X) R[X] f(x) R[X], R[X] F [X] R R[X] f(x), (1) f(x) R[X] (2) f R (deg f = 0),, f (deg f 1).. (1) (2) f(x) R[X], f(x) = c(f)f 0 (X) (f 0 (X) R[X] ), f(x) c(f)f 0 (X) f(x) c(f) f(x) f 0 (X). f(x) c(f) R, f(x) f 0 (A) c(f) 1. (2) (1)

19 *** ( ) *** R R[X].. f(x) R[X], f(x) = c(f)f 0 (X) (c(f) R, f 0 (X) R[X] ). c(f) R c(f) = p 1 p r., R F F [X], F [X] f 0 (X) = g 1 (X) g s (X) (g i (X) F [X]) , h 1,..., h s R[X], f 0 (X) = h 1 (X) h s (X), deg g i = deg g i., f 0 1 c(h 1 ) c(h s ), h i F [X] R[X]., , f(x) = p 1 p r h 1 (X) h s (X) f R R[X 1,..., X n ].. R[X 1,..., X n ] = R[X 1,..., X n 1 ][X n ] (Eisenstein) R, p R, f(x) = a 0 + a 1 X + + a m X m p a m, p a i (i = 0,..., m 1), p 2 a 0 f(x) R[X].., f(x) = g(x)h(x), g(x) = b 0 + b 1 X + + b r X r, h(x) = c 0 + c 1 X + + c s X s, a 0 = b 0 c 0 p a 0, p 2 a 0, b 0, c 0 p. p b 0, p c 0 p a 1 = b 1 c 0 + b 0 c 1, p b 0, p c 0 p b 1. p a 2 = b 2 c 0 + b 1 c 1 + b 0 c 2, p b 0, p b 1, p c 0 p b 2. p b i (i = 1,..., m 1)., r < m p a m = b r c s p a m, r = m, s = f R[X], c, f(x) f(x + c) X 2 6 Q. ( 6.). p = 2 Eisenstein s Irreducibility Criterion p, f(x) = X p 1 + X p X + 1 Q.. f(x) = Xp 1 X 1 f(x + 1) = (X + 1)p 1 Eisenstein s Irreducibility Criterion F (X) = X Q. X = p i=1 ( ) p X i 1 i. f(x + 1) = X X X X + 2 p = 2 Eisenstein s Irreducibility Criterion.

20 f(x) = X 6 + X Q.. f(x + 1) = x x x x x x + 3 p = 3 Eisenstein s Irreducibility Criterion X 3 X 1 Q.. Z[X] f(x) = (X + b 1 X + b 0 )(X + c 0 ) 2 1 b 0 c 0 = 1 c 0 = ±1. f (±1) 0. m R, S, σ : R F. a R σ(a) a σ. f(x) = a i X i R[X] m a σ i X i S[X] f σ (X)., F R. i= R, F, σ : R F., f(x) R[X] 2, R. (1) deg f σ = deg f. (2) deg f σ F.. f(x) i=1 f(x) = g(x)h(x), 0 < deg g, deg h < deg f g, h R[X]., f σ (X) = g σ (X)h σ (X), deg g σ, deg h σ < deg f = deg f σ. f σ (X) R (PID), f(x) = a 0 + a 1 X + + a m X m R[X], p R p a m π p : R R/(p). f π p (X) R/(p), f(x) R f(x) = X X X + 1 Z[X] Z, p = 3 g(x) = f π 3 (X) = X X + 1 F 3 [X]. g(x) 3, 1, X = 0, 1, 2 0.

21 3 3.1, E, F E (1) F E. (2) x F x 1 F F E (subfield), E F (extension field)., E/F., F M E, F M, M E, M E/F (intermediate field), E/M/F., E i+1 /E i (tower). E 1 E 2 E 3 E n E M F 3.1.1: E/M/F F L, S L F (S) = {M L/M/F s.t. M S} S F, F S,, F S.,S S = {a 1,..., a n }, F (S) F (a 1,..., a n ), F (S) F., 1, F (a) F ( (simple extension)) F = Q, E = C, Q ( 2 ) F = Q. ( ) L/F. E λ (λ Λ) L, E λ F E λ,, E λ (λ Λ) (composite)., E, F L, E F EF. L/F, E λ E λ,. λ Λ λ Λ λ Λ λ Λ λ Λ E λ F = Q, L = C, E 1 = Q ( 2 ), E 2 = Q ( 3 ) L/F, E 1 E 2 = Q ( 2, 3 ), E 1 E 2 = E 1 E 2 = Q. E 1 E 2 E 1 E 2. 6 E 1 E E/F. (1) S 1, S 2 E F (S 1 S 2 ) = F (S 1 )(S 2 ) 21

22 22 Q ( 2, 3 ) Q ( 2 ) Q ( 3 ) Q ( 6 ) Q 3.1.2: E/M/F (2) {S λ } λ Λ S F (S) = λ Λ F (S λ ).. (1) F (S 1 S 2 ) F (S 1 ) F (S 1 S 2 ) S 2 F (S 1 S 2 ) F (S 1 )(S 2 )., F F (S 1 )(S 2 ) S 1 S 2 F (S 1 )(S 2 ) F (S 1 S 2 ) F (S 1 )(S 2 ). (2) S λ S F (S λ ) F (S)., F (S λ )., α, β F (S λ ) λ Λ s.t. λ Λ λ Λ λ Λ α, β F (S λ ), α ± β, αβ, α 1 F (S λ ). F (S λ ) F (S). λ Λ Q ( 2, 3 ) = Q ( 2 ) ( 3 ) E/F, S E { } f(a1,..., a n ) F (S) = g(a 1,..., a n ) n N, f, g F [X 1,..., X n ], a 1,..., a n S, g(a 1,..., a n ) 0., F S = { f(a1,..., a n ) g(a 1,..., a n ) } n N, f, g F [X 1,..., X n ], a 1,..., a n S, g(a 1,..., a n ) 0., F S E, F S S, F (S), F S F (S). F (S) = F S F S E Q ( 2 ),, x, y, z, w Z x + y 2 z + w 2 = (x + y 2)(z w 2) z 2 2w 2 = xz 2yw xw + yz z 2 + 2w2 z 2 2w 2 w 2 ( ) { Q 2 = a + b } 2 a, b Q (Lang) Cl 3 distinguished class. (1) (Tower Property) F K E K/F Cl E/K Cl E/F Cl (2) (Lifting Property) F E, F K K/F Cl EK/K Cl

23 *** ( ) *** 23 (1) E (2) EK (3) EK K E K E K F F F 3.1.3: Tower Property, Lifting Property, Closure under finite composites (3) (Closure under finite composites) F E, F K K/F Cl K/F Cl EK/F Cl F K E, E/F K/F... (.) distinguished class.. (1) (Tower Property) K = F (α 1,..., α m ), E = K(β 1,..., β n ), K = F (α 1,..., α m )(β 1,..., β n ) = F (α 1,..., α m, β 1,..., β n )., E/F, E = F (α 1,..., α m ), E = K(α 1,..., α m ), E/K. K/F, (2) (Lifting Property) K = F (α 1,..., α m ) S = {α 1,..., α m } EK = K(E) = F (S)(E) = F (E)(S) = E(S) = E(α 1,..., α m ). (3) (Closure under finite composites) K = F (α 1,..., α m ), E = F (β 1,..., β n ), EK = F (α 1,..., α m, β 1,..., β n ) F E, E F,,, E F,, [E; F ], E/F , 2 Q ( 2 ) Q, [Q ( 2 ) ; Q] = F K E {ω α } α A K/F, {η β } β B E/K, {ω α η β } α A, β B E/F. [E; F ] = [E; K] [K; F ].. {ω α η β } α A, β B F E.,, ξ E, K- ξ = µ β η β β B. µ β K µ β = λ α.β ω α (λ α.β F ), α A λ α.β ω α η β ξ = α A β B Q Q ( 2 ) Q ( 2, 3 ), 1, 2 Q ( 2 ) /Q, 1, 3 Q ( 2, 3 ) /Q ( 2 ) 1, 2, 3, 6 Q ( 2, 3 ) /Q. [Q ( 2, 3 ) ; Q] = 4.

24 F, n N (n 2) n 1 = n {}}{ = 0, n p, F (characteristic), ch(f ) = p. n, F 0, ch(f ) = F ch(f ) = p. (1) p > 0, p. (2) p > 0 F F p := Z/(p). (3) p = 0 F Q., F p Q (prime field).,.. (1) p > 0, p = ab a, b > 1, (a 1)(b 1) = a(b 1) = ab 1 = n 1 = 0, a 1 b 1 = 0, p p. (2) p > 0, φ : Z F n n 1, Ker φ = (p), φ(z) Z/(p) = F p. (3) p = 0, φ : Z F n n 1, φ : Q F F 2 = {0, 1} 2, : F F 3 = {0, 1, 2} 3, : F ch(f ) = p > 0, x, y F, n Z (n 0) (1) (x + y) pn = x pn + y pn, (xy) pn = x pn y pn. (2) φ : F F, x x pn.. (1) 1 p m, 0 < r < m, p ( ) m r. (2) (1) φ, φ(x) = x pn = 0 x = , p = 2, n = 2, p n = 4 ( ) ( ) 4 4 = 1, = 4, 0 1 ( ) 4 = 6, 2 ( ) 4 = 4, 3 ( ) 4 = 1 4

25 *** ( ) *** 25, F 2. (x + y) 4 = x 4 + 4x 3 y + 6x 2 y 2 + 4xy 3 + y 4 = x 4 + y F E, α E, f(α) = 0 0 f(x) F [X], F (algebraic). α, (transcendental) Q., Q. 2, 3 2, e, π. e π, π e. e + π, eπ E/F, α E (i) α F, F (α) F (X), F (α) F [X] F (X). (ii) α F, f 0 (α) = 0 0 monic F f 0 (X) F [X]. F (α) F [X]/(f(X))., F (α) = {f(α) f F [X]}, deg f 0 = n, F (α) F n.. (1) α F, ϕ : F (X) F (α) X α, F (X) F (α). (2) α F, φ : F [X] F (α) X α., m = Ker φ = φ 1 (0) 1 F [X]., f, g F [X] fg m f(α)g(α) = 0 f(α) = 0 g(α) = 0, f m g m. F [X], m. m = (f 0 (X)) monic f 0 (X) F [X] F [X]/(f 0 (X)) F (α). deg f 0 = n, F [X]/(f 0 (X)) a 0 + a 1 X + + a n 1 X n 1 + m, 1+m, X+m,..., X n 1 +m 1+m, X+m,..., X n 1 + m F., 1, α,..., α n 1 F (α) F, F (α); F ] = n, F (α) = {f(α) f F [X]} E/F, α E, (1) α F (2) F (α)/f. (1) (2) (ii) (2) (1), α F, (i) [F (α); F ] = E/F, α E α monic f 0 (X) α F (minimal polynomial) E/F, α E, f(x) F [X]

26 26 (1) f(x) F [X] α F (2) f(x) F [X] f(α) = 0 monic,. g(x) F [X], g(α) = 0 f(x) g(x) (3) f(x) F [X], g(α) = 0 monic g(x) F [X].. (1) (2) (ii) g(x) F [X], g(α) = 0 g(x) (f(x)) f(x) g(x) (2) (1) f 0 (X) F [X] (ii) f 0 (X) f(x), f(x) f 0 (X) f(x) f 0 (X). monic f(x) = f 0 (X). (2) (3) F = Q, E = C. α = 2 E F = Q f(x) = X 2 2 Q[X]. ( ) Q 2 Q[X]/(X 2 2) 2. Eisenstein, X 2 2 Q[X], m = (X 2 2), Q[X], f(x) = 0. ( 2 ) 2 = 2 Q ±X + m ( ) { Q 2 = a + b } 2 a, b Q, 1, 2 Q, Q ( 2 ) f(x) = : Q ( 2 ) X 2 2 = ( X 2 ) ( X + 2 ) ( ) { 3 Q 2 = a + b c 3 } 4 a, b, c Q Q[X]/(X 3 2) Q 3. 1, 3 2, 3 4 Q, Q ( 3 2 ) f(x) = X 3 2 = ( X 3 2 ) ( X X ) : n > 1, p, f(x) = x n p Z[X] , [Q ( n p ) ; Q] = n. Q ( n p) Q[X]/(X n p)

27 *** ( ) *** F = Q, E = C., f(x) = X 4 X 1 Q[X], Q 1, C 1 α K = Q(α) F 4. Q (α) = { a + bα + cα 2 + dα 3 a, b, c, d Q } Q[X]/(X 4 X 1) 1, α, α 2, α 4 Q. α 4 = α + 1, Q (α) f(x) f(x) = X 4 X 1 = (X α) ( X 3 + αx 2 + α 2 X + α 3 1 ). 1 α α 2 α α α 2 α 3 α α α 2 α 3 α + 1 α 2 α 2 α 3 α + 1 α 2 + α α 3 α 3 α + 1 α 2 + α α 3 + α : Q (α) (α X 4 X 1 ) F = F 2., f(x) = X 2 + X + 1 F 2 [X], F 2, 1 β K = F 2 (β) F 2. F 2 (β) = {a + bβ a, b F 2 } F 2 [X]/(X 2 + X + 1) 1, β F 2. a, b = 0, 1, K 2 2 = 4. β 2 = 1 + β, K = F 2 (β) f(x) β 1 + β β 1 + β β β β β 1 + β β 1 + β β β 1 + β β 1 + β β 0 β 1 + β β β 1 β 3.3.4: F 2 (β) (β X 2 + X + 1 ) f(x) = (X β)(x β 1) = (X β)(x β 2 ) F = F 2. f(x) = X 3 + X F 2 [X] 1 γ K = F 2 (γ) F 3. F 2 (γ) = { a + bγ + cγ 2 } a, b, c F 2 F2 [X]/(X 3 X 2 1) 1, γ, γ 2 F 2., a, b, c = 0, 1, K 2 3 = 8. γ 3 = 1 + γ 2, K = F 2 (γ) f(x) f(x) = (X γ)(x γ 2 )(X γ 2 γ 1) = (X γ)(x γ 2 )(X γ 4 ). 1 σ : Z Z/(2) f σ (X) = X 4 + X + 1 Z/(2)[2] F 2 [X] f(x) Z[X].

28 γ γ γ 1 + γ 2 γ + γ γ + γ γ γ γ 1 + γ 2 γ + γ γ + γ 2 γ 0 γ γ γ 2 γ + γ γ + γ γ γ 2 0 γ γ γ + γ γ γ γ + γ γ γ γ + γ γ 2 γ 1 + γ + γ 2 γ γ γ γ + γ 2 1 γ γ 2 γ γ γ + γ 2 0 γ + γ 2 1 γ 1 + γ + γ 2 γ γ 1 + γ γ + γ γ + γ γ γ + γ 2 γ γ 2 γ 3.3.5: F 2 (γ) (γ X 3 + X ) α = E = Q( 2, 3) Q(α) E. (1, 2, 3, 6) E Q, F α : E E, x αx (1, 2, 3, 6) A = A γ A (x) = x 4 10x 2 + 1, α 4 10α = 0. f(x) = X 4 10 X 2 +1 Z[X] Z, Q α Q. [Q(α); Q] = 4 Q( 2, 3) = Q(α) , t F, (i) F (t) t { } f(t) F (t) = f(x), g(x) F [X], g 0 g(t). F F (t)., s F (t) \ F t s = f(t) g(t) F (t)., f(t) g(t). p(x) = g(x)s f(x) F (s)[x], t p(x), t F (s),., 3.3.4, F (t) F (s),, F F (s)., F (s)/f., F (t)/f t F., F F (s). p(x) F (S). s F, (i) F (s) F (Y ). Y. F (s)[x] F (Y )[Y ] h(y, X) = g(x)y F (X) F (Y )[X]

29 *** ( ) *** 29 F (Y )., p(y, X) = g(x)y f(x) F (Y )., P (Y, X) = a(x){b(x)y + c(x)}, f(x) g(x). a(x) ) t F, F F (t). s = f(t) g(t) F (t), F (t) \ F., f(t) g(t)., F F (s) F (t),,,,. [F (t) : F (s)] = max(deg f, deg g) 2) t F, F (t) F F (t) F.. 1). (2) F K F (t) K F s ink \ F., F F (S) K F (t), 1) F (t)/f (S) 3.3.4, F (t)/k,. 3.4 (Algebraic Extnsions) F E, E F, E F ( ) (algebraic extnsion). E F, (transcedental extension) E/F [E : F ] = n α E 1, α, α 2,..., α n F a 0 + a 1 α + + a n α n = 0 0 a 0, a 1,..., a n F E/F,. (1) E/F (2) E/F (3) E/F,, E F S = {α 1,..., α n } E = {f(α 1,..., α n ) f(x 1,..., X n ) F [X 1,..., X n ] }.. (1) (2) 3.4.2,. (2) (3) (3) (1) E = F (α 1,..., α n ) = F (α 1 )... (α n ), F (α 1 )/F, α 2 F F (α 1 ), F (α 1, α 2 )/F (α 1 )., E/F.

30 30, (ii) n F = Q, E = Q ( 2, 3 ), 2, 3 Q E/F. α = 2, β = 3, α 2 = 2 Q, β 2 = 3 Q ( ) E = Q 2, 3 = { f(α, β) f(x, Y ) Q[X, Y ] } = { a+bα+cβ+dαβ a, b, c, d Q } = { a+b 2+c 3+d 6 a, b, c, d Q }., γ = 2 + 3, γ 4 10 γ = 0 E = Q(γ) E = Q (γ) = { f(γ) f(x) Q[X] } = { a + bγ + cγ 2 + dγ 3 a, b, c, d Q } L/F, S L ( ), S F., K = F (S) F, K = F (S) S F -. K = { f(α 1,..., α r ) α 1,..., α r S, f(x 1,..., X r ) F [X 1,..., X r ], r 1 }. α F (S) (2), T = {α 1,..., α r } S α F (T ). α 1,..., α r F, F (T )/F α F., E/F, K/F., EK/K [EK : K] [E : F ].. α 1,..., α n E/F, E = F (α 1,..., α n ), EK = K(E) = K(α 1,..., α n ) α 1,..., α n F, K, EK/K.. EK = K (α 1,..., α n ) E = F (α 1,..., α n ) K F 3.4.1: Lifting Property, [EK : K] [E : F ]. EK = K(α 1,..., α n ), EK α 1,..., α n K. α i 1 1 α i n n K-. α 1,..., α n E/F, α i 1 1 α i n n E α 1,..., α n F - EK α 1,..., α n K-., [EK : K] n ω ω 2 + ω + 1, F = Q, E = Q( 3 2, ω)., [E : F ] = F = Q, E = Q( 3 2, ω), K = C., ω ω 2 + ω + 1, EK = K = C, [EK : K] = 1 < 6 = [E : F ] F = Q, E = Q( 3 2, ω), K = Q(ω)., ω ω 2 + ω + 1, EK = E = Q( 3 2, ω), [EK : K] = 3 < 6 = [E : F ] distinguished class.

31 *** ( ) *** 31. (1) (Tower Property) (2) (Lifting Property) (3) (Closure under finite composites) [E : F ], [K : F ] <, , [EK : F ] = [EK : K][K : F ] [E : F ][K : F ] < F E, A E F, A. A E F (algebraic closure). F E A F, F E. F E A E.. α, β E F (α, β) α ± β, αβ, α 1 F (α, β) F., α ± β, αβ, α 1 E, A., A E. α E A, α A f(x) = a 0 + a 1 X + + a n X n A[X], F (α 1,..., α n )/F, F (α 1,..., α n, α)/f (α 1,..., α n ), F (α 1,..., α n, α)/f,, α F, α A F E, α, β E F, α ± β, αβ, α 1 F distinguished class., F {E λ } λ Λ E λ F λ Λ. (1) (Tower Property) F K E. K/F, E/K, α E f(x) = a 0 + a 1 X + + a n X n K[X] α K a 0, a 1,..., a n F, 3.4.3, M = F (a 0, a 1,..., a n ) F, M(α)/M, M(α)/F α F., E/F, K/F, E/K. (2) (Lifting Property) E/F, K/F, (2) EK = K(E) = {K(S) S E } α EK, E S = {α 1,..., α n } α K(α 1,..., α n ). α 1,..., α n E F, K, K(α 1,..., α n ) K α K. (3) (Closure under finite composites) F, E λ L, F L A. F {E λ } λ Λ, E λ A A E λ A., E λ F. λ Λ λ Λ F f(x) F [X] F., F (algebraically closed),.

32 F. (1) F. (2) f(x) F [X] F 1. (3) F [X] 1. (4) F F.. (2) (1) (1) (3) (3) (4) 3.3.3, α F, α 1. (4) (2) , f(x) F [X] f(x) = p 1 (X) p r (X)., 1 p i (X), 3.3.3, F F [X]/(p i (X))., F, F F F Ω (i) Ω (ii) Ω/F, Ω F (algebraically closure), Ω = F , C Q, C/Q. C π e Q , L/F, F L A. L, A F.. A F, A. g(x) A[X], L, g(x) = 0 α L. L α A, A L α A. A[X], A F, F Ω.. (E. Artin) F [X] {f λ (X) λ Λ}. λ λ X λ, {X λ } λ Λ F, i.e. {X λ } λ Λ R = F [..., X λ,... ]. R {X λ } λ Λ., f λ (X λ ) (λ Λ) R a., a = R 1 a N 1 = u k (..., X λ,... )f λk (X λk ) k=1., F L f λk (k = 1,..., N). L 0 = 1,., a R., a m R m. F 1 := R/m F 1 {X λ + m} λ Λ, X λ +m f λ (X λ ) = 0 F 1 /F.,, F = F 0 F 1. (1) F i+1 /F i. (2) F i [X] F i+1. Ω = F i, f(x) Ω[X], i N f(x) F i i=1., f(x) F i+1, Ω Ω.

33 *** ( ) *** 33, Ω/F. α Ω i N α F i. Tower Property F i /F α F F E. (1) E F. (2) E F. i.e., E/F, K/E K = E. (3) E F. i.e., E E F, F K E K K. 3.6 σ : F E,. (1) S F, σ S σ S. (2) a F, σ(a) a σ., S F, σ(s) C σ. (3) f(x) = a i X i F [X], σ a σ i Xi F σ [X] f σ (X). F 0 F F R σ : F R,, (embedding) F, L σ : F L σ(1) = F = L = Q( 2) σ : F L σ 1 : 2 2 σ 2 : F = Q( 2), L = Q( 3) σ : F L F = Q( 2), L = Q( 3) σ : F L σ ( 2 ) = a + b 3 (a, b Q). (.) E/F, L σ : F L F L. σ : E L σ F = σ, σ (extension)., F L, F F E F (embedding over F ),, F - (F -embedding). F L, σ : F L E, F - hom(f, L), hom σ (E, L), hom F (E, L) F = Q, E = Q( 2), L = C, σ : Q C, σ : 2 2 σ, σ hom σ (Q( 2), C) = hom Q (Q( 2), C) F = Q ( 2 ), E = Q( 4 2, i), L = C, E/F 4. σ : Q C σ ( 2 ) = 2. τ, φ : E C τ : , i i, φ : i, i i., τ ( 2 ) = 2, φ ( 2 ) = 2 φ σ, τ σ. φ hom σ (Q( 4 2, i), C), τ hom Q( 2) (Q( 4 2, i), C) (1) ( ) σ : F L f(x) F [X], α F f(x) α σ F σ f σ (X). f(x) = p(x)q(x) f σ (X) = p σ (X)q σ (X) (2) ( ) σ : K L {E λ } λ Λ K, ( λ Λ E λ)σ = λ Λ E σ λ ( λ Λ E λ)σ = λ Λ (3) ( adjoining) σ : K L F K, S K. F (S) σ = F σ (S σ ) E σ λ

34 34 (4) ( algebraic) σ : F L E/F, σ : E L σ E σ /F σ. (5) ( ) σ : F L F F, σ : E L σ E σ F σ E/F, α E F, f(x) F [X]. L, σ : F L.,. (1) β f σ (X), σ σ α σ = β. (2) σ F (α) σ (1). (3) σ F (α), f(x) F F. (, hom σ (F (α), L) cardinality α, σ L.). α f(x) n, (ii) F (α) 1, α,..., α n 1 F - γ = a 0 + a 1 α + + a n α n. σ F = σ γ σ = a σ 0 + a σ 1 β + + a σ nβ n,, σ : F (α) L. γ σ α σ = β. (2), (3) F = Q. σ : Q C. α = 2 σ E = Q( 2) σ 1 : 2 2 σ 2 : f σ (X) = f(x) = X 2 1 C F = Q( 2), E = Q( 4 2). σ : F = Q( 2) C σ : 2 2. α = 4 2 Q( 2) f(x) = X 2 2 Q( 2)[X], f σ (X) = X C[X]. L = C, f σ (X) ± 4 2i., σ E = Q( 4 2) σ 1 : Q( 4 2) C, i σ 2 : Q( 4 2) C, i E/F, L,. (1) σ : F L, σ : E L. (2), α E, f(x) F [X]. β f σ (X), (1) σ α σ = β.. E = { (K, τ) F K E, τ : K L s.t. τ F = σ α τ = β }. (K 1, τ 1 ), (K 2, τ 2 ) E (K 1, τ 1 ) (K 2, τ 2 ) K 1 K 2 τ 2 K1 = τ 1., E. {(K 1, τ 1 )} λ Λ E K = K λ, λ Λ τ : K L α K α K λ λ Λ α τ = α τ λ., τ well-defined, (K, τ) E, (K, τ). Zorn E (K, τ).,, K = E, α E \ K., 3.6.9, τ K(α) L σ : F F F F, Ω, Ω F, F, σ Ω Ω.

35 *** ( ) *** F = {f λ (X)} λ Λ F [X]. F (splitting filed), F E, (1) F f λ (X) E[X]. (2) E F F Q( 2) F = {X 2 2} Q. X 2 2 ± Q( 3 2) F = {X 3 2} Q, Q( 3 2, 3) = Q( 3 2, ω). X , 3 2ω, 3 2ω 2., ω = 1+ 3i F = {f λ (X)} λ Λ F [X].. (1) F F, F A. (2) F A 1 K 1, F A 2 K 2, A 1 K 1 F, A 2 K 2 F, F - σ : K 1 K 2 σ(a 1 ) = A 2. (3) F 2 F -.. (1) F f λ (X) ( λ Λ) 1, R, A = F (R). (2) A 1 (resp. A 2 ) F R 1 (resp. R 2 ), α R 1 α σ R 2 R 2 = R σ 1. A 1 = F (R 1 ), A 2 = F (R 2 ) A σ 1 = A 2. (3) A 1, A 2 F, A 2 L = A 2, σ := F F A 2 ( ) , σ : A 1 L., (2) σ(a 1 ) = A (2) S 1, S 2. F = Q, A 1 = Q( 3 2), A 2 = Q( 3 2ω), K 1 = K 2 = C. σ : C C, σ(a 1 ) A 2. f : A A, S A f(s) S, S f (, f- ) F K F, F F,. (1) K F [X] F = {f λ (X)} λ Λ. (2) K F - σ hom F (K, F ). (3) f(x) F [X] K f(x) K.. (1) (2) (2) (2) (3) f(x) F [X] K, f(x) β F, F - σ : K F, σ(α) = β., β σ(k) = K., f(x) 1. (3) (1) α K f α (X) K F = {f α (X)} α K F E, ( ), (normal extension), F, F E F K F, F F,. (1) K/F. (2) K F.

36 36. (1) (2) K/F, K = F (α 1,..., α n ) (α 1,..., α n ), α 1,..., α n F f 1 (X),..., f n (X) F [X], 3.7.6, f 1 (X),..., f n (X) K {f 1 (X),..., f n (X)}. (2) (1) K F {f 1 (X),..., f n (X)}, 3.7.6, K/F, f 1 (X),..., f n (X), Q ( 2 ) /Q, Q ( 4 2 ) /Q ( 2 )., Q ( 2 ) Q[X]/(X 2 2), X 2 2 Q[X] ± 2 Q ( 2 ), Q ( 4 2 ) Q ( 2 ) [X]/ ( X 2 2 ), X 2 2 Q ( 2 ) ± 4 2 Q ( 4 2 )., Q ( 4 2 ) /Q. X 4 2 Q[X] ± 4 2, ± 4 2i., Tower Property., distinguishe class., (1) F K E, F E K E. (2) (Lifting Property) F E, F E, K EK. (3) {E λ } λ Λ, F E λ, F E λ, F E λ,. λ Λ λ Λ. (1) F, K. (2) E F, F R E = F (R)., 3.1.6, EK = E(K) = F (R)(K) = F (K)(R) = K(R), EK F K. (3) σ : E λ F, σ Eλ : E λ F, σ(e λ ) = E λ. λ Λ ( ) σ E λ = σ (E λ ) = E λ λ Λ λ Λ λ Λ, 3.7.6, E λ /F., σ : E λ F σ(e λ ) = E λ λ Λ λ Λ ( ) σ E λ = σ (E λ ) = E λ λ Λ λ Λ λ Λ, 3.7.6, E λ /F. λ Λ F F, F E F., E K F K, K/F K E F (normal closure), nc(e/f ) F F, F E F. (F /F E/F.),. (1) E F, N = { K E K F F K }.

37 *** ( ) *** 37 (2) nc(e/f ) nc(e/f ) = σ hom F (E,F ). (3) α E F f α (X) F [X], nc(e/f ) F E σ F = {f α (X)} α E. (4) F S, E = F (S) α S F f α (X) F [X], nc(e/f ) F F = {f α (X)} α S. (5) E/F, nc(e/f )/F.. (1). (2) N = nc(e/f ), M = E σ. E N F, F /F, σ hom F (E, F ) σ hom F (E,F ), σ σ : F F. N/F, N σ = N, E σ N σ = N. M N., M/F. τ hom F (M, F ), σ hom F (M, F ), τσ hom F (M, F ) τ(m) = τ σ(e) = τ (σ(e)) = M σ hom F (E,F ) σ hom F (E,F ), M/E. F M F, N N M. (3)(4). (5) N = nc(e/f ). E/F, 3.4.3, E F, α 1,..., α n. f 1 (X),..., f n (X) F [X] N, (4), 3.4.3, N/F F, f(x), g(x) F [X]. K f(x), g(x). ( K F ),. (1) f(x), g(x) F [X] monic d(x) F., d(x) K[X]. (2) a(x), b(x) K[X] a(x)f(x) + b(x)g(x) = d(x).. K[X] PID, K[X] (f(x), g(x)) K = (d 0 (X)) K monic d 0 (X) K[X],, a(x), b(x) K[X] a(x)f(x) + b(x)g(x) = d 0 (X)

38 38. K F d 0 (X) (f(x), g(x)) F, f(x), g(x) F [X] monic d 1 (X), d 0 (X) (f(x), g(x)) F = (d 1 (X)) F d 1 (X) F d 0 (X)., f(x), g(x) (d 0 (X)) K d 0 (X) K f(x) d 0 (X) K g(x) d 0 (X) F [X] f(x), g(x), d 0 (X) f(x), g(x) d 0 (X) F d 1 (X). monic d 0 (X) = d 1 (X) F, f(x) F [X]. 2 f(x) F [X] (separable) F f(x)., (inspeparable) F, f(x) F [X].,. (1) f(x) (2) f(x) f (X) F [X] (3) f (X) 0. f(x) F [X] f(x) = (X α 1 ) e1 (X α r ) e r F [X], F [X] (1) (2), F [X] (1) (2). (2) (3), (2) (3). f(x), f(x) f (X) F [X] d(x) 1 f(x). deg f (X) < deg f(x) d(x) f(x) f (X) 0. d(x) = 1, f(x) f (X) ch F = 0 F f(x) F [X]., subsection ch(f ) = p F ch(f ) = p 0, f(x) F [X]., f(x) f(x) = g (X pd) d > 0 g(x) F [X]., d g(x), d f(x) (radical exponent), f(x) p d.. f(x) = a 0 + a 1 X + + a m X m f (X) = 0 p i a i = 0 f(x) = a 0 + a p X p + a 2p X 2p + + a pl X pl = q(x p )., q(x) = a 0 + a p X + a 2p X a pl X l., q(x),., f(x) = g(x pd ) g (X) 0. g(x) g(x) = (X α 1 ) (X α k ), g (X) 0. f(x) f(x) = (X pd α 1 ) (X pd α k ) = (X pd β pd 1 ) (Xpd β pd k ) = (X β 1) pd (X β k ) pd, p d F. 2,

39 *** ( ) *** 39. F, p > 0, F p, n F q = p n. F q 1, F α 0 α q 1 = 1. α α q = α, α F. f(x), f(x) = g(x p ) = a 0 + a 1 X p + + a m X pm. a i = b p i (i = 1,..., m), f(x). f(x) = b p 0 + bp 1 Xp + + b p mx pm = (b 0 + b 1 X + + b m X m ) p 3.11 S F, n, { s n s S } S n ch(f ) = p 0, E/F, S E. (1) F (S) = F (S pk ) 1 k 1, k 1. (2) F = F pk 1 k 1, k 1.. (1) 1 k 0 1 F (S) = F (S pk 0 )., F (S) = F (S pk 0 ) F (S p ) F (S) F (S) = F (S p ). k 1, S pk F (S) F (S pk ) F (S). k. k = 1. k, F (S) F (S pk ). α F (S) = F (S p ), S p S p F -, S p s pi 1 1 s pi k k., s 1,..., s k S F (S pk ), S pk. s j S pk. (2) F = F pk 0 F -, F (S pk+1 ) F - 1 k 0 1, F = F pk 0 F p F F p = F., k 1 F pk = (F p ) pk = F pk+1., (3) E/F, L σ : F L., hom σ (E, L) E/F, L σ., L τ : F L, hom σ (E, L) = hom τ (E, L ).

40 40 L λ = τσ 1 L σ E τ σ(f ) σ F τ τ(f ) : E/M/F. E/F, σ(f ), τ(f ),, L, L σ(f ), τ(f )., τσ 1 : F σ F τ λ = τσ 1 : L L , λ(l) = L λ. σ hom σ (E, L), λσ : E L hom τ (E, L ),, τ hom τ (E, L ), λ 1 τ : E L hom σ (E, L), hom σ (E, L) = hom τ (E, L ) E/F. L, σ : F L hom σ (E, L) E F (separable degree), [E : F ] s α E F, α F f(x) F [X]. f(x), α (separable)., f(x), α (inseparable), f(x) α (radical exponent) E/F, α E F f(x) F [X]. L σ : F L.,. (1) α [F (α) : F ] s = [F (α) : F ] (2) α, α d hom σ (F (α), L) [F (α) : F ].. [F (α) : F ] = deg f F K E, [F (α) : F ] s = 1 [F (α) : F ] pd [E : F ] s = [E : K] s [K : F ] s.. σ : F E. σ K σ hom σ (K, E) [K : F ] s, σ τ : E E σ [E : K] s, [E : F ] s [E : K] s [K : F ] s., τ hom σ (E, E), τ K : K E hom σ (K, E), τ τ K, [E : F ] s [E : K] s [K : F ] s., E/F (separable) α E F., (inseparable) ( ) E/F, ch(f ) = p 0., 4.

41 *** ( ) *** 41 (1) α F. (2) [F (α) : F ] s = [F (α) : F ] (3) F (α)/f. (4) k 1 F (α) = F (α pk ). (, , k 1.), α F α F d (1) (2). [F (α) : F ] s = 1 [F (α) : F ] pd (1) (3). β F (α) F F (β) F (α) , [F (α) : F ] s = [F (α) : F (β)] s [F (β) : F ] s, , [F (α) : F ] = [F (α) : F (β)][f (β) : F ], (2) [F (α) : F ] s = [F (α) : F ], , [F (β) : F ] s [F (β) : F ] [F (β) : F ] s = [F (β) : F ]., β F. (3) (1). (1) (4). F K F (α), α F f(x), K g(x), f(x) K[X], f(α) = 0, g(x) f(x). k 1 F F (α pk ) F (α), α F (α pk )[X] X pk α pk = (X α) pk, α F (α pk ) f(x) (X α) pk, α F (α pk ) F (α pk ) = F (α).. α F (α pk ), f(x) = X α (4) (1) , k 1, F (α pk ) = F (α)., d α, α pd F, (1) (3), F (α pd ) = F (α), α. α F f(x), f(x) = g ( X pd), g(x) (3) [F (α) : F ] s f(x) [F (α) : F ] s = deg g. f(x). [F (α) : F ] = deg f = p d deg g = p d [F (α) : F ] s, ( ) E/F, ch(f ) = p 0., 4. 1) E/F. 2) [E : F ] s = [E : F ] 3) F α 1,..., α n E E = F (α 1,..., α n ). 4) S E E = F (S), k 1 E = F (S pk ). (, , k 1.), E/F [E : F ] s = 1 p e [E : F ] e 1.

42 42. 1) 3) E/F, 3.4.3, S S 0 = {α 1,..., α n } E = F (S 0 ). E/F, α 1,..., α n F. 3) 2) 3.4.3, F α 1,..., α n E E = F (α 1,..., α n ). F F (α 1 ) F (α 1, α 2 ) F (α 1,..., α n ) = E, α i F (α 1,..., α i 1 )., α i F. 3, , [F (α 1,..., α i ) : F (α 1,..., α i 1 )] s = [F (α 1,..., α i ) : F (α 1,..., α i 1 )] i = 1,..., n , [E : F ] s = [E : F ]. 2) 1) β E, F F (β) E, , [E : F ] = [E : F (β)][f (β) : F ], [E : F ] s = [E : F (β)] s [F (β) : F ] s,, [F (β) : F ] s < [F (β) : F ] [E : F ] s = [E : F ]. [F (β) : F ] s = [F (β) : F ], β F. 1) 4) E S, E = F (S). α S F, F (α) = F (α pd ) F (S pk ) k 1. F (S) = F (α 1,..., α n ) F (S pk ). F (S pk ) F (S). 4) 1), F (S pk ) = F (S) k, , k 1., k S d α S α pk. 4 F (S pk ) F ( ) E/F, ch(f ) = p 0.,. (1) E/F S E = F (S). (2) E/F E = F (S), k 1 E = F (S pk ).. (1). E/F E F., F S E = F (S). β E, (2), S S β F (S 0 )., 3.4.3, F (S 0 )/F, ,., β F. E/F. (2). α S k (4) F (α) = F (α pk ) F (S pk ), F (S) F (S pk )., F (S) = F (S pk ). 3 F K E, α E F, α F f(x). α K g(x) f(x) K[X] f(α) = 0, g(x) f(x). g(x). 4 β F, k 1 β pk F., β F, (3) F (β)/f, β pk F (β) F.

43 *** ( ) *** distinguished ( distinguished) (1) distinguished class. (2) (composite). (3) E/F, nc(e/f ) F.. (1) Tower property,, F K E, E/F, K/F. E/K, α E F f(x) F [X], K g(x) K[X] g(x) f(x), f(x) g(x)., K/F, E/K, α E K g(x) K[X] g(x) S g(x), F (S, α)/f (S)., F (S)/F F (S, α)/f (S), F (S)/F, , , [F (S, α) : F ] s = [F (S, α) : F (S)] s [F (S) : F ] s = [F (S, α) : F (S)][F (S) : F ] = [F (S, α) : F ], α F. Lifting property, E/F K/F, α E F, K., EK = K(E) K. (2) E λ /F, E λ E λ, ). λ λ (3) nc(e/f ) E F.,, nc(e/f ) F, ) F, F (perfect) F F.. ( ) F α E F, f(x) F [X]., , E/F. ( ) f(x) F [X], f(x) α F (α)/f., f(x) ,.., F ch(f ) = p 0,. (1) F. (2) k 1 F = F pk. (3) k 1, (Frobenius map) σ p k : x x pk F., 2) 3), k 1.

44 44. 1) 2) F, α F, f(x) = X p α F [X]. {f(x)} E, β E f(x), β p = α f(x) = X p β p = (X β) p. β F g(x) g(x) f(x), g(x) g(x) = X β., β F., α F β F, β p = α. F F p. F p F F = F p. 2) 3) F = F pk σ p k : x x pk.. 3) 1) σ p k : x x pk F = F pk, (2), m F = F pm., f(x) F [X], f(x) = g(x qd ) g(x). g(x) = i a ix i b i F b pd i = a i, f(x) = i b pd i (X qd ) i = ( i ) p d b i X i f(x) ) F E/F E. 2) E E/F F.. 1) ) ch(f ) = p 0. E F. E = F (α), α F. F (α) , F (α) = (F (α)) p = F p (α p ). 5 α f(x) = a i X i F [X] i ( ) p 0 = a i α i = i i a p i αpi [F p (α p ) : F p ] [F (α) : F ]. F p F F (α) = F p (α p ), [F p (α p ) : F p ] = [F (α) : F ][F : F p ] [F : F p ] = 1, F = F p. E/F, 3.4.3, E F, E p = E , E F α (purely inseparable), α F α 1. E/F, E F, E/F (purely inseparable extension)., α F F, α F f(x) = (X α) n ( ). X n 1 nα, n p = ch(f ). ( n 0 nα F α F ) n p k f(x) = (X α) mpk 5 F (α) F - α a i α i, p (F (α)) p i α p F p (α p ). ( ) p a i α i = i i a p i αpi F p (α p ), F p -

45 *** ( ) *** 45 (m p ) , g(x) f(x) = g(x pd ). f(x) mp k, g(x) r rp d = mp k k d r = mp k d. f(x) α f(x) = (X α) mpk = {(X α) pd } mpk d = (X pd α pd ) mpk d g(x) = (X α pd ) mpk d, α, g(x), m = 1, k d = 0. f(x) = (X α) pd = X pd α pd, d α ch(f ) = 2 t F, t F (t 2 ), X 2 t ,,. ch(f ) = p 0, α F 0, t F., tp2 s = t p + α, F (s) F (t), p 2. t monic f(x) = X p2 sx p sα ), p 2,. f(x) = g(x p ), f(x).,, t F (s). f(x) = X p2 sx p sα = (X t) p2 = X p2 t p2, s = 0,. t F (s), E/F, , [E : F ] s [E : F ] [E : F ] = [E : F ] s [E : F ] i. [E : F ] i E F (inseparable degree)., F E ch(f ) = p 0. 1) F K E [E : F ] i = [E : K] i [K : F ] i. 2) E/F [E : F ] i = 1. 3) α E d [F (α) : F ] i = p d. 4) α E [F (α) : F ] s = 1, [F (α) : F ] i = [F (α) : F ]. 5) [F (α) : F ] i p.. 1) , ) ) (2) 4) α E α F f(x) 1. hom F (F (α), F ) = 1. 5) ch(f ) = p 0, α F, α d, f(x)., 3. 1) α E.

46 46 2) F (α)/f. 3) k 0 α pk F.,, d α pk F.. 1), β F (α), F F (β) F (α), ) [F (α) : F ] i = [F (α) : F ]., , ) [F (β) : F ] i = [F (β) : F ]., ) β. 2) 1) trivial. 1), f(x) = X pd α pd, α pd F., 3), g(x) = X pd α pd, g(α) = 0 f(x) g(x), f(x) α, f(x) ) F (α pd ) = F., α, k F (α pk ) = F (α). ( , (4) ) E/F, 3. 1) E. (, E F (purely inseparably generated).) 2) [E : F ] s = 1 (, E F (degreewise purely inseparable).) 3) E/F.. 1) 2) E = F (I), I F. L, σ : K L I., α I, f(x), α σ f(x). f(x) α α σ = α σ. [E : F ] s = 1. 2) 3) α E, α α, β F f(x), ι : F F α σ = β σ : E F. [E : F ] s = 1 σ E, β = α f(x) 1, α F. 3) 1) distinguished class.,.. F K E ,, [E : F ] s = 1 [E : K] s = 1 [K : F ] s = 1, tower property. Lifting property. E/F K/F., E F, K. EK = K(E) K E, ) EK/K.. E λ /F E λ F, E λ F E λ, ) F F q n monic. 1 n d n ( n ) µ q d d., F 2 2 X 2 + X X 3 + X + 1, X 3 + X 2 + 1

47 *** ( ) *** : F q n q = q = q = q = X 4 + X + 1, X 4 + X 3 + 1, X 4 + X 3 + X 2 + X X 5 + X 2 + 1, X 5 + X 3 + X 2 + X + 1, X 5 + X 4 + X 3 + X X 5 + X 3 + 1, X 5 + X 4 + X 2 + X + 1, X 5 + X 4 + X 3 + X X 6 + X + 1, X 6 + X 3 + 1, X 6 + X X 6 + X 4 + X 2 + X + 1, X 6 + X 5 + X 2 + X + 1, X 6 + X 4 + X 3 + X + 1 X 6 + X 5 + X 4 + X + 1, X 6 + X 5 + X 3 + X 2 + 1, X 6 + X 5 + X 4 + X , F 3 2 X 2 + 1, X 2 + X 1, X 2 X 1 3 X 3 X + 1, X 3 X 1, X 3 + X 2 1, X 3 + X 2 + X 1, X 3 + X 2 X + 1, X 3 X 2 + 1, X 3 X 2 + X + 1, X 3 X 2 X 1 4 X 4 + X 1, X 4 X 1, X 4 + X 2 1, X 4 X 2 1, X 4 + X 3 1, X 4 X 3 1, X 4 + X 2 + X + 1, X 4 + X 2 X + 1, X 4 + X 3 X + 1, X 4 X 3 + X + 1, X 4 + X 3 + X 2 + 1, X 4 X 3 + X 2 + 1, X 4 + X 3 + X 2 + X + 1, X 4 + X 3 + X 2 X 1, X 4 + X 3 X 2 X 1, X 4 X 3 + X 2 + X 1, X 4 X 3 X 2 + X 1, X 4 X 3 + X 2 X + 1.

48

49 4 4.1,,,,,,., ,,,,. 1828, 17,,, Louis-le-Grand,., ,.,., ,.,,.,.,, (the Grand Prize in Mathematics of the Academy of Sciences).,, ,, ,,. 5 14, , 1831,,,., ,,.,,,,,,,,.,. 1 1 Evariste Galois life was, to say the least, very short and very controversial. Of course, it would not be the subject of such legend today were it not for his remarkable discoveries, which spanned only a few short years. Galois was born on October 25, 1811, near Paris. Apparently, Galois was recognized at an early age as a brilliant student with some bizarre and rebellious tendencies. In 1828, at the age of 17, Galois attempted to enter the prestigious Ecole Polytechnique, but failed the entrance exams, so he remained at the royal school of Louis-le-Grand, where he studied advanced mathematics. His teacher urged Galois to publish his first paper, which appeared on April I, After this, things started to go very badly for Galois. All article that Galois sent to the Academy of Sciences was given to Cauchy, who lost it. (Apparently, Cauchy had a tendency to lose papers; he had already lost a paper by Abel.) On April 2, 1829, Galois father committed suicide. Galois once again tried to enter the Ecole Polytechnique, but again failed under some rather controversial circumstances. So he entered the Ecole Normale, considered to be on a much lower level than the Ecole Polytechnique. While at the Ecole Normale, Galois wrote up his research and entered it for the Grand Prize in Mathematics of the Academy of Sciences. The work was given to Fourier for consideration, who took it home, but promptly died, and the manuscript appears now to be lost. Galois possessed very strong political opinions. On July 14, 1831, he was arrested during a political demonstration, and condemned to six months in prison. In May 1832, Galois had a brief love affair with a young woman. He broke off the affair on May 14, and this appears to be the cause of a subsequent duel that proved fatal to Galois. Galois died on May 31,1832. On September 4,1843, Liouville announced to the Academy of Sciences that he had discovered, in the papers of Galois, the theorem, from his 1831 Memoir, that we mentioned earlier concerning the solvability by radicals of a prime degree equation, and referred to it with the words as precise as it is deep. However, he waited until 1846 to publish Galois work. In the 1850s, the complete texts of Galois work became available to mathematicians, and it initiated a great deal of subsequent work by the likes of Betti, Kronecker, Dedekind, Cayley, Hemiite, Jordan and others. Now it is time that we left the past, and pursued Galois theory from a modern perspective. 49

50 P Q. π : P Q ω : Q P (π, ω), 2 (Galois connection). 1) ( (order-reversing antitone)) p, q P, r, s Q p q p π q π r s r ω s ω 2) ( extensive) p P, r Q p p πω r r ωπ P. cl : P P, 3 (closure operation)., p, q P. 1) ( extensive) p cl(p) 2) (idempotemt) cl(cl(p)) = cl(p) 3) (Isotone) p q = cl(p) cl(q) p P cl(p) = p p (closed), P Cl(P ) (π, ω) (P, Q). p p πω q q ωπ, P, Q, p πω = cl(p), q ωπ = cl(q). 1) p πωπ = p π, cl(p π ) = cl(p) π = p π 2) q ωπω = q ω, cl(q ω ) = cl(q) ω = q ω.. p p πω π p π (p πω ) π = p πωπ = (p π ) ωπ p π, p π = p πωπ., q ω = q ωπω, π : P Cl(Q) ω : Q Cl(P ), π : Cl(P ) Cl(Q) ω : Cl(Q) Cl(P ) (order-reversing bijection) P, Q, (π, ω) (P, Q). 1) P Cl(P ). Q. 2) P, Q (De Morgan s, Law). p, q P, r, s Q (p q) π = p π q π (p q) π = p π q π (r s) ω = r ω s ω (r s) ω = r ω s ω.. 1). 2) p λ = max{x P x p λ for λ}, p λ = min{x P x p λ for λ} λ λ p q = max{x P x p x q}, p q = min{x P x p x q}..

51 *** ( ) *** 51 cl, P 1 P. (,,.) 1 P cl(1 P ) 1 P cl(1 P ) = 1 P., 0 Q 1 P = 0 ω Q., 1 P = cl(1 P ) = 1 πω P 1 πω P = 1 P 1 P = 0 ω Q. 1π P 0 Q 1 πω P 0ω Q 1 P,,., 1 P Q closed 1 π P.2 Q closed 0 Q = 1 π P X Y, P = P(X) Q = P(Y ) P Q. R X Y X Y. 3 S P(X) S π = {y Y (x, y) R for x S} P(Y ) T P(Y ) T ω = {x X (x, y) R for y T } P(X) (π, ω) (P(X), P(Y )) (P, Q) (π, ω) (indexed) a) p q p, q P, q p (degeee index) (q : p) P Z >0 b) r s r, s Q, s r (degeee index) (s : r) Q Z >0, 3., P, Q (q : p). 1) (Degree is multiplicative) s 1, s 2, s 3 P s 1, s 2, s 3 Q s 1 s 2 s 3 = (s 3 : s 1 ) = (s 3 : s 2 )(s 2 : s 1 ) 2) (π and ω are degree-non-increasing) p, q P p q = (p π : q π ) (q : p) r, s P r s = (r ω : s ω ) (s : r) 3) (Equality by degree) s, t P s, t Q s t (s : t) = 1 s = t (s : t) < s t (finite extension). P, index(p ) = (1 P : 0 P ) P (index). Q., (q : p), p q (π, ω) (P, Q).,. 1) (Degree-preserving on closed elements) p, q Cl(P ) p q (q : p) = (p π : q π ). Q. 2) (Finite extensions of closed elements are closed) p Cl(P ) (q : p) < q Cl(P )., 0 P (1 P : 0 P ) P. Q.. 1) (q : p) (p π : q π ) (q πω : p πω ) = (cl(q) : cl(p)) = (q : p). 2) p Cl(P ) (q : p) < (q : p) (p π : q π ) (q πω : p πω ) = (cl(q) : p) = (cl(q) : q)(q : p) (cl(q) : q) = 1 q. 2 1 πωπ P = 1 π P 1π P. q Q qω 1 P q = q ωπ 1 π P. 3 A B A B R.

52 (π, ω) (P, Q). p, q P, 1) (q : cl(p)) < (q : p) = (p π : q π ) 2) cl(p) q (q : p) = (p π : q π ) < p., q = 1 P, (1 P : p) = (p π : 0 Q ) < p.. 1) (q : cl(p)) <, ) q closed, ) cl(p) π = p π, ) > (q : cl(p)) = (p π : q π )., (q : p) = (p π : q π ) (p π : q π ) = (q : p) = (q : cl(p))(cl(p) : p) = (p π : q π )(cl(p) : p), (cl(p) : p) = 1 p = cl(p). p closed., 2) (q : cl(p)) (q : p) < 1)., (P, Q) (π, ω), P, P. Q. P Q, (P, Q). 1 P, 1 Q, closed. 0 P, 0 Q., ( ) 0 Q closed,, (0 Q is closed) (π, ω) (P, Q). P, Q. 0 Q index(q) index(p ). 1) index(q) < index(p ) < Q. 2) index(p ) < 0 P, (P, Q).. index(p ) = (1 P : 0 P ) (0 π P : 1 π P ) = (1 Q : 1 π P ) = (1 Q : 0 Q ) = index(q) P Q index(q), Q. 2), (Galois Correspondence) E/F, E F Aut F (E) G F (E), E F (Galois group of E over F ). E/F, E/F G F (E) = Aut F (E) = hom F (E, E) G F (E) = hom F (E, E).

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

2014 (2014/04/01)

2014 (2014/04/01) 2014 (2014/04/01) 1 5 1.1...................................... 5 1.2...................................... 7 1.3...................................... 8 1.4............................... 10 1.5 Zorn...........................

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

B ( ) :

B ( ) : B ( ) : 29 2 6 2 B. 5............................................................ 5......................................................... 5..2..................................................... 5..3........................................................

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 1 1.1 1.2 one way two way (talk back) (... ) 1.3 0 C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 ( (coding theory)) 2 2.1 (convolution code) (block code), 3 3.1 Q q Q n Q n 1 Q

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

14 (x a x x a f(x x 3 + 2x 2 + 3x + 4 (x 1 1 y x 1 x y + 1 x 3 + 2x 2 + 3x + 4 (y (y (y y 3 + 3y 2 + 3y y 2 + 4y + 2 +

14 (x a x x a f(x x 3 + 2x 2 + 3x + 4 (x 1 1 y x 1 x y + 1 x 3 + 2x 2 + 3x + 4 (y (y (y y 3 + 3y 2 + 3y y 2 + 4y + 2 + III 2005 1 6 1 1 ( 11 0 0, 0 deg (f(xg(x deg f(x + deg g(x 12 f(x, g(x ( g(x 0 f(x q(xg(x + r(x, r(x 0 deg r(x < deg g(x q(x, r(x q(x, r(x f(x g(x r(x 0 f(x g(x g(x f(x g(x f(x g(x f(x 13 f(x x a q(x,

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 C II,,,,,,,,,,, 0.2. 1 (Connectivity) 3 2 (Compactness)

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen Hamming (Hamming codes) c 1 # of the lines in F q c through the origin n = qc 1 q 1 Choose a direction vector h i for each line. No two vectors are colinear. A linearly dependent system of h i s consists

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1 2013 5 11, 2014 11 29 WWW ( ) ( ) (2014/7/6) 1 (a mapping, a map) (function) ( ) ( ) 1.1 ( ) X = {,, }, Y = {, } f( ) =, f( ) =, f( ) = f : X Y 1.1 ( ) (1) ( ) ( 1 ) (2) 1 function 1 ( [1]) (1) ( ) 1:

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

Jacobson Prime Avoidance

Jacobson Prime Avoidance 2016 2017 2 22 1 1 3 2 4 2.1 Jacobson................. 4 2.2.................... 5 3 6 3.1 Prime Avoidance....................... 7 3.2............................. 8 3.3..............................

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

Armstrong culture Web

Armstrong culture Web 2004 5 10 M.A. Armstrong, Groups and Symmetry, Springer-Verlag, NewYork, 1988 (2000) (1989) (2001) (2002) 1 Armstrong culture Web 1 3 1.1................................. 3 1.2.................................

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1)

17 ( :52) α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) ) ) 2 2 4) (α β) A ) 6) A (5) 1) 3 3 1 α ω 53 (2015 ) 2 α ω 55 (2017 ) 2 1) 2000 2) 5 2 3 4 2 3 5 3) 2 2 4) (α β) 2 3 4 5 20 A 12 20 5 5 5) 6) 5 20 12 5 A (5) 1) Évariste Galois(1811-1832) 2) Joseph-Louis Lagrange(1736-1813) 18 3),Niels

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

018 8 17 4 1 5 1.1.......................................... 5 1.1.1.................................. 5 1.1................................... 7 1............................................ 7 1..1...................................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1)

A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x A (1) 7 2 2.1 A µ : A A A µ(x, y) x y (x y) z = x (y z) A x, y, z x y = y x A x, y A e x e = e x = x A x e A e x A xy = yx = e y x x x y y = x 1 2.1.1 A (1) A = R x y = xy + x + y (2) A = N x y = x y (3) A =

More information

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 Akito Tsuboi June 22, 2006 1 T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1 1. X, Y, Z,... 2. A, B (A), (A) (B), (A) (B), (A) (B) Exercise 2 1. (X) (Y ) 2. ((X) (Y )) (Z) 3. (((X) (Y )) (Z)) Exercise

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) = 2018/10/04 IV/ IV 1/12 2018 IV/ IV 10 04 * 1 : ( A 441 ) yanagida[at]math.nagoya-u.ac.jp https://www.math.nagoya-u.ac.jp/~yanagida 1 I: (ring)., A 0 A, 1 A. (ring homomorphism).. 1.1 A (ideal) I, ( ) I

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

Mathematical Logic I 12 Contents I Zorn

Mathematical Logic I 12 Contents I Zorn Mathematical Logic I 12 Contents I 2 1 3 1.1............................. 3 1.2.......................... 5 1.3 Zorn.................. 5 2 6 2.1.............................. 6 2.2..............................

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

18 5 10 1 1 1.1 1.1.1 P Q P Q, P, Q P Q P Q P Q, P, Q 2 1 1.1.2 P.Q T F Z R 0 1 x, y x + y x y x y = y x x (y z) = (x y) z x + y = y + x x + (y + z) = (x + y) + z P.Q V = {T, F } V P.Q P.Q T F T F 1.1.3

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

論理学入門 講義ノート email: mitsu@abelardfletkeioacjp Copyright c 1995 by the author ll right reserved 1 1 3 2 5 3 7 31 7 32 9 33 13 4 29 41 33 42 38 5 45 51 45 52 47 3 1 19 [ 1] Begin at the beginning [ 2] [

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

inkiso.dvi

inkiso.dvi Ken Urai May 19, 2004 5 27 date-event uncertainty risk 51 ordering preordering X X X (preordering) reflexivity x X x x transitivity x, y, z X x y y z x z asymmetric x y y x x = y X (ordering) completeness

More information

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1, 17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ

More information