B ( ) :

Size: px
Start display at page:

Download "B ( ) :"

Transcription

1 B ( ) :

2 2 B.

3 (domain) (commutative ring) (field) R R Möbius Euclid

4 4 B (UFD) (PID) UFD (Abelian sandpile model) ( ) R R

5 . P = {, 2,... }, N = {,, 2,... }, Z = { 2,,,, 2,... }, Q, R, C ( ) S (binary operation) S S S, (x, y) x y (i) (x y) z = x (y z) ( associative law) S (semigroup). x y xy...2. P ( ) S S S, (S-i) x, y S x, y S ) S S (subsemigroup)...4. S = (P, +) S = (N, +)...5. ( ) S, S f : S S, (H-i) f(x y) = f(x) f(y) ( x, y S) f (semigroup homomorphism)...6. S = S = (P, +) f : P P, x 2x...7. S, S f : S S, Im f S ( ) M M S, (ii) M x = x M = x ( x M) M M (identity unit).,, M (monoid).... N + monoid.. P monoid..... S, S S (ii ) S x = x ( x S) 5

6 6 B, S (left identity)., S S (ii ) x S = x ( x M), S (right identity). S, S S S = S.,...2. ( ) M M M, (S-i) M M (S-ii) M M M M (submonoid)...3. Z + Q...4. Q = Q \ {} R = R \ {}...5. ( ) M, M f : M M, (H-i) f (H-ii) f( M ) = M f (homomorphism)...6. M, M f : M M, Im f M ( ) G, (iii) x G y G x y = y x = G, G (group)., y x (inverse), x...9. Q = Q \ {}, R = R \ {}, C = C \ {}...2. M, x M (ii ) y x = M, y x (left inverse)., M M (ii ) x z = M, z x (right inverse). x y z y = z., x G x...2. ( ) G G G (S-i) G G. (S-iii) x G x G., G G (subgroup) (S-i) (S-iii) (S-ii).

7 *** B ( ) *** ( ) G, G f : G G, f(x ) = f(x) ( x S).,, f (group homomorphism) G, G f : G G, Im f G ( ) A, (iv) x y = y x ( commutative law), A (Abelian group).,, + x + y (additive group)., x x Z ( ) R, 2 R R R, (x, y) x + y, (x, y) x y, () + R. (2) R \ {}. (3). (3l) x (y + z) = x y + z z (3r) (x + y) z = x z + y z (left distributive law) (right distributive law), R (ring). (2) (2 ) R \ {} monoid., R (unitary ring) (ring with unity) ( ) R,. ) x x = x =. 2) =. 3) a = ( )a 4) ( a)( b) = ab., ( ) R, R, f : R R (H) + f. (H2) f., 88,.,, 92,.

8 8 B, f (homomorphism as ring)., R, R, f (H2) (H2 ) f., f (homomorphism as unitary ring)., f, (injective homomorphism), f, (surjective homomorphism), f, (R-isomorphism)., f : M M (automorphism) ( ) R, R R (S) + R R. (S2) R R., R R (subring)., R, R (S2) (S2 ) R R., f (unitary subring) R, R (resp. ) f : R R (resp. ), Im f R (resp. ) (domain).2.8. ( ) R, x R, y R xy =, x. y R yx =, x. R, (4) x, y R x y x = y =., R (domain) D, (integral doman)..2.. Z R = Z[ ] = Z + Z = {x + y x, y Z}..2.3 (commutative ring).2.2. ( ) R, (2 ) R., R (skew field) ( ) R, (iv) x y = y x ( commutative law), (commutative ring with unit),, (commutative ring)

9 *** B ( ) *** (field).2.4. F, (field) Q, R, C Z H = {x + yi + jz + kw x, y, z, w R}. i 2 = j 2 = k 2 =, ij = k, jk = i, ki = j, ji = k, kj = i, ik = j..2.7., i), ii), iii), iv),. i) ii), iii). iv).,.

10

11 2 2. R- 2.. R ( R- ) R, M, R M R M M, (a, x) ax () a, b R, x M a(x + y) = ax + ay (2) a, b R, x M (a + b)x = ax + bx (3) a, b R, x M (ab)x = a(bx), M R- (left R-module)., R, (4) x M x = x M R-, x M R x = M., R x M ( R )x = x M (additive group), R = Z M R M M x M nx = x + x + + x }{{} n times,, () (2) (3)., Z () (2) (3) (4) ( R- ) R, M, R M M R M, (x, a) ax ( ) a, b R, x M (x + y)a = xa + ya (2 ) a, b R, x M x(a + b) = xa + xb (3 ) a, b R, x M x(ab) = (xa)b, M R- (right R-module)., R, (4 ) x M x = x ( ) R, S (, ), M R- S-, (5) a R, b S, x M (ax)b = a(xb), M (R, S)- ((R, S)-bimodule) ,, R, M R-. R-,, R- R-. R-,, R-.,.

12 2 B M R-,, R R M a R x M xa := ax M R-., M (R, R)-., R,, (R, R)-., R R- R (vector space).,, , 2..5 ( ) (2 ) (3 ) (4 )., (R, R)-, 2..6 (5) (R- ) R ( ), M R-, N M (i) N M (addtive group ) (ii) a R x N ax N, N M R- (R-submodule). = {} M, M R-, (trivial) R-. R- (non-trivial) R-., R R- (subspace) R ( ), M R-, N M R- (i ) x, y N x + y N (ii) a R x N ax N R, S ( ), M (R, S)-, N M R- S- N M (R, S)- ((R, S)-sub-bimodule) ( ) R ( ), M, M R-, f : M M (I) f (addtive group) (II) a R x M f(ax) = af(x), f R- (homomorphism as left R-module) R- (R-homomorphism)., f, R- (injective R-homomorphism), f, R- (surjective R- homomorphism), f, R- (R-isomorphism)., R- f : M M R- (R-automorphism)., R, R- R- (R-linear map) R ( ), M, M R-, f : M M R- (I ) x, y M f(x + y) = f(x) + f(y) 2 N M (i ) x, y N x y N.. 2 f (I ) x, y M f(x y) = f(x) f(y)..

13 *** B ( ) *** 3 (II) a R x M f(ax) = af(x) R ( ), M, M R-, f : M M R-. N M R- N M R-,. ) f(n) M R-. 2) f (N ) M R-., Im f = f(m) M R-, Ker f = f () M R ( ) R ( ), M = {M i } i I R-, f i : M i M i+ R- fi 2 M i f i Mi f i Mi+ f i+ (III) Im f i = Ker f i+ i I, {f i } (exact sequence) R ( ), M, M R-, f, g, h R-. ) f M exact f. 2) M f exact f. 3) f M g M h exact g ( ). R ( ), M R-, N M R-. M x y y x N,, x M [x] := x + N := {y M y x} = {x + y y N}. M/N = {x + N x M}., a R M/N a(x + N) := ax + N, M/N R-., π : M M/N x M π(x) = x + N π R-.. ), 2) x M [x] = x + N, 3) a R M/N a(x + N) = ax + N well-defined ( ), 4) M/N R-, 5) π : x x + N, ( ) R ( ), M R-, N M R-, M/N R- (quotient R-module), π : M M/N.

14 4 B ( ) R ( ), M, N R-, f : M N R-. M/ Ker f N , Ker f = f () M R-., f : M/ Ker f N f(x + Ker f) = f(x),., ) f well-defined, 2) f, 3) f. ) x y Ker f f(x) = f(y). 2) f(x) = f(y) x y Ker f x + Ker f = y + Ker f. 3) R ( ), M λ (λ Λ) R- (family), M λ R ( ) R ( ), M R-, S M, S M R- (intersection) S R-., R- r i s i i (r i R, s i S), RS. RS S R- (R-submodule generated by S) ( ) R ( ), M R-, S M = RS, M (finitely generated). λ Λ

15 3 3., R., R R a, x R ax R, R R-. R-., R (R, R) ( ) R ( ) R I, R-, I R (left ideal)., I, ) 2). ) x, y I x + y I 2) a R, x I ax I. (right ideal). I, I R (two-sided ideal). (ideal)., ( ) = {} R R m Z, R = Z I = mz = {mx x Z}.., ) 2). x, y Z mx + my = m(x + y) mz, a, x Z a(mx) = m(ax) mz., R = M 2 (R) = {( x z ) } y x, y, z, w R w R. 2 (resp. 2 ) I (resp. J), I (resp. J) R (resp. ).. 2 {( ) } x I = x, z R z 5

16 6 B. ). 2) ( a c ) ( ) ( ) b x ax + bz = d z cx + dz I λ (λ Λ) (resp., ) (family), I λ (resp., ) ), x, y I λ, λ Λ, x, y I λ λ Λ λ Λ x + y λ Λ I λ. 2) ( ) ( ) R S, S (resp., ) Λ L (S) (resp. Λ R (S), Λ(S)), Λ L (S) (resp. Λ R (S), Λ(S)) (S) L = I (resp. (S) R = I, (S) = I ) I Λ L(S) I Λ R(S) I Λ(S) S (resp., )., S = {a,..., a s }, ({a,..., a s }) L (a,..., a s ) L., s =, (a) L (resp. (a) R (a)) (pricipal left ideal) (resp. (pricipal right ideal), (pricipal ideal)) ( ) R,, (Pricipal Ideal Domain) Z.. I Z I. I x > a. x I, x < x x >. x = aq + r q r < a. r r = x aq I, a., x = aq I = (a). { k } 3... (S) L = r i a i r i R, a i S, k N. i= { k }. I = (S) L, J = r i a i r i R, a i S, k N, a i S I i= k r i a i I J I. J. i= 3... ( ). ( ) R (resp., ) I λ (λ Λ) ( ) ( ) ( ) I λ (resp. I λ I λ ) λ Λ L λ Λ R λ Λ λ Λ I λ

17 *** B ( ) *** Z + 6Z = 2Z. a, b Z d, az + bz = dz.. Z az + bz = cz c Z. c az + bz c = ax + by x, y Z. d ax + by = c. a, b cz, c a, b., c a, b c d R, R ( ), f : R R, () f S R f(s) R. (2) f I R (resp., ) f(i) R (resp., ). (3) S R f (S) R. (4) I R (resp., ) I = f ( ) R (resp., )., Ker f = f () R I R. x, y R y x I, x y (mod I), x y I., R = Z, I = mz x y (mod m), x y m I, I,. ) x y (mod I) x 2 y 2 (mod I) x + x 2 y + y 2 (mod I) 2) x y (mod I) x 2 y 2 (mod I) x x 2 y y 2 (mod I) m, n 2, a, b, x a (mod m), x b (mod n) x mn. 3. ( ) m, n, u, v mu + nv =., mu (mod n), nv (mod m) x anv + bmu (mod mn), x. y x x y. 2 m n 3 x y x y (mod mn). 4.

18 8 B ( ) y, x y x y (mod m), x y (mod n)., x y m n. m n, x y m n mn. x y (mod mn), x y mn ( 5 ) a, a 2,..., a k k m, m 2,..., m k, x a (mod m ), x a 2 (mod m 2 ),. x a k (mod m k ) x m m 2 m k.. 8, m, m 2,..., m k. ( ) m, m 2,..., m k, M = m m 2...m k, M = m M = m 2 M 2 = = m k M k, m i M i, 3..8, i =, 2,, k, M i t i (mod m i ), t i., x a M t + a 2 M 2 t a k M k t k (mod M)., x m a, 2 k M 2 M k m, x m a. i = 2, 3,..., k,. y, x y x a i (mod m i ) x y (mod m ), x y (mod m 2 ),. x y (mod m k )., x y m, m 2,..., m k. m, m 2,..., m k, x y M., x y M. x y (mod M) 5 3 5

19 *** B ( ) *** , (= 3 5) n , ( ) R, T R, R f : R R. ) f. 2) f(t ) R. 3) R x x = f(a)(f(b)) (a R, b T )., ( R, f ), ( R 2, f 2 ) ) 2) 3), φ : R R 2 f 2 = φ f.. 3.2, R ( ) R, a R, ba = b a (left inverse), ac = c a (right inverse). a b c, b = c, a (inverse), a (unit). R R,,, R (group of units) ( ) R λ (λ Λ) ( ), R = λ Λ R λ (x λ ) λ Λ + (y λ ) λ Λ = (x λ + y λ ) λ Λ (x λ ) λ Λ (y λ ) λ Λ = (x λ y λ ) λ Λ, R ( ). R λ (λ Λ) (direct product),., λ Λ, λ π λ : R R λ, (x λ ) λ Λ x λ R = R λ π λ λ Λ S f λ : S R λ λ Λ, f : S R λ Λ π λ f = f λ. R

20 2 B Λ, ( ) R λ (λ Λ) ( ), λ Λ R λ R = λ Λ R λ = {(x λ ) λ Λ x λ }, R R λ ( ). R λ (λ Λ) (direct product),., λ Λ λ Λ, λ ι λ : R λ R, x λ (...,,, x λ,,,... ) R = R λ π λ λ Λ S f λ : R λ S λ Λ, f : R S λ Λ f ι λ = f λ. R ( ) R ( ), I R. R x y (mod I) y x I. R, R/I, x R [x] = {y T y x (mod I)}., R/I [x] + [y] = [x + y], [x][y] = [xy],, well-defined, R/I ( ). R I., [x] x + I.. ) 2) well-defined x x 2 (mod I) y y 2 (mod I) x + y x 2 + y 2 (mod I) x y x 2 y 2 (mod I). 3) R/I () + R. (2) R \ {} ( ). (3). (3l) x(y + z) = xy + zz (left distributive law) (3r) (x + y)z = xz + yz (right distributive law)

21 *** B ( ) *** 2. (). (2) ([x][y])[z] = [(xy)z] = [x(yz)] = [x]([y][z]) []. (3) R = Z, m (m) = mz = {mx x Z}. Z/(m) = Z/mZ, Z/(m) = m Z Z/2Z (mod 2) (mod 4) (mod 7). ( ( ) 848 = 47 7 ) 24 (mod 8) (mod 9). 2 ( = 45 9 ) (mod ). 3 (75428 ( ) ( ) = ) (mod 3). 4 ( ( ) 32 = ) ( ) n, n n φ(n), (Euler s totient function). φ(n) (phi function).,. (Z/nZ). φ(n) = (Z/nZ). 3.3.: φ(n) n φ(n) n, n = n n 2 n r, i j n i n j, Z/(n) Z/(n ) Z/(n 2 ) Z/(n r )., (Z/(n)) (Z/(n )) (Z/(n 2 )) (Z/(n r )). 8 2,, 2, 4, 6, 8, , , ( ) , 9. 3, , 3.

22 22 B φ(p e ) = p e (p ).,..., p e p e px (x =, 2,..., p e ) φ(p e ) = p e p e n, n = p e pe2 2 per r ( p i ) n, r ) φ(n) = ( pi n, (Euler )., m = p i= p e i i a φ(m) (mod m) a p (mod p) (Fermat ).. Lagrange ( ) n a ( a < n) a n (mod n) Fermat (Fermat test). 5 a =, 2,..., n, a a n (mod n). n (pseudoprime) n a, (a, n) = a n (mod n), n Carmichael (a, n) a n (mod n) (Korselt s criterion) n.. 7 () n Carmichael (2) n (square-free), p n p (p ) (n ). 5 Fermat O(log n),. 6 quantum computer,.,. (Shor s factorization), test#article chapter

23 *** B ( ) *** n N. φ(d) = n d n. d d n. n n n/d, n/d x (x =, 2,..., d) x d, φ(d). d n, φ(d) = n d n n = 2 φ() + φ(2) + φ(3) + φ(4) + φ(6) + φ(2) = = G, d x d = x G d G.. D = n. d d n, d ψ(d)., d a,, a, a 2,..., a d, x d =, d a k, (k, d) =,., φ(d),, d ψ(d) = φ(d), ψ(d) =. ψ(d) φ(d). Langrange, n n = ψ(d) φ(d) = n d n d n, ψ(d) = φ(d)., ψ(n) = φ(n) > n ( ) ζ(s), s = x + iy (Re s = x > ), ζ(s) = n= n s = s + 2 s + 3 s + s = x+iy (x > ), n s = n x+iy = n x n iy = n x e iy log n = n x (cos(y log n)+ i sin(y log n)) /n s = /n x. n s = n x, x >,. x. 8 n= n= ζ(s) = p : p s = ( ) ( ) ( ) 2 s 3 s 5 s. 9 ( ) ( ) ( ). 8 (Riemann hypothesis),,. ζ(s) s /2.,. 9 x = + x + x2 +.

24 24 B ( n ) n N n n (nth primitiveroot of unity). ζ n = cos 2π n + i sin 2π n, ζ k n ( k n, k n ) n, φ(n). ζ n ζ n = n = 3 ω = + i 3, ω 2 = i 3 2 2, n = 4 ±i ( ) n N Φ n (X) = ( ) X ζ k n k:(k,n)=, (cyclotomic polynomial). Φ n (X) = X n. deg Φ n (X) = φ(n) n Φ (X) = X Φ 2 (X) = X + Φ 3 (X) = X 2 + X + Φ 4 (X) = X 2 + Φ 5 (X) = X 4 + X 3 + X 2 + X + Φ 6 (X) = X 2 X +. d n Möbius (Möbius ) n n N µ(n). µ() =, n >, n = r i= pei i ( ) r e = = e r =, µ(n) = otherwise. µ(n) n Möbius : µ(n) n µ(n) 2.

25 *** B ( ) *** n Z, n >. µ(d) = d n. n n = p e per r (r ) µ (d) = d n µ (p x px r x e,..., x r e r, x + + x r = x n = 2. r ) = x,..., x r ( ) x + +x r = µ() + µ(2) + µ(3) + µ(4) + µ(6) + µ(2) = = r ( ) r ( ) r = ( ) r = x x= ( ). f N, n N f(d) = g(n) d n d n ( n ) µ g(d) = f(n) d. ( n ) µ g(d) = ( n ) µ f(d ) = d d d n d n d d d d n ( n ) µ f(d ) = f(d ) µ(t) d d n t n d,, n N. a =, µ(t) = a >. t a d n ( n ) µ d = φ(n) d n = 2. µ(2) + µ(6) 2 + µ(4) 3 + µ(3) 4 + µ(2) 6 + µ() 2 = = ( 2). f N, n N f(d) = g(n) d n g(d) µ( n d ) = f(n) d n

26 26 B Φ n (X) = d n(x d ) µ( n d ) n = 2, 2 {, 2, 3, 4, 6, 2}, µ() = µ(6) =, µ(2) = µ(3) =, mu(4) = µ(2) = Φ 2 (X) = (X ) µ(2) (X 2 ) µ(6) (X 3 ) µ(4) (X 4 ) µ(3) (X 6 ) µ(2) (X 2 ) µ() = (X2 )(X 2 ) (X 4 )(X 6 ) = X4 X Euclid (Euclid ) a, b Z, ax + by = d x, y Z (d = (a, b)). < a < b. b = r, a = r, b a q, r 2 b = aq + r 2. r 2,, r i = r i q i + r i+ (i =, 2,..., n) r n, r n+ = d = r n r n = r n 2 q n r n = r n 2 q n (r n 3 q n 2 r n 2 ) = ( + q n q n 2 )r n 2 q n r n 3 = ( + q n q n 2 )(r n 4 q n 3 r n 3 ) q n r n 3 = ( + q n q n 2 )r n 4 (q n + q n q n 2 q n 3 )r n 3 = r n = ax + by x, y x + 6y = x, y Z.. Euclid, 6 9 = = = 3 2 = 2 (9, 6) = 6 = = = = 7 (9 7 ) 3 = 7 ( + 3) 9 3 = (6 9 )( + 3) 9 3 = 6 ( + 3) 9 ( ) =

27 *** B ( ) *** x (mod 9), x (mod 6) x, y Z.. Euclid, 6 9 = = = 3 2 = 2 (9, 6) = 6 = = = = 7 (9 7 ) 3 = 7 ( + 3) 9 3 = (6 9 )( + 3) 9 3 = 6 ( + 3) 9 ( ) = Z/nZ (Z/nZ) ( ), (Z/p e Z) i) p, (Z/p e Z), p e (p ). 2 ii) p = 2, e =, 2, e 3, (Z/2 e Z) Z/2Z Z/2 e 2 Z (mod 44) x (mod 44) x. 44 = Z/44Z Z/2 4 Z Z/3 2 Z. 7 2 = 49 (mod 2 4 ) 55 7 (mod 2 4 ), 55 (mod 3 2 ) 55 (7, ) ( Z/2 4 Z ) ( Z/3 2 Z ) (Z/44Z) ( , ) (7, ) 55, (Z/5Z) 5 = 4, ( Z/5 2 Z ) ( 5 (5 ) = 2, Z/5 3 Z ) 5 2 (5 ) =. 22 ( Z/2 2 Z ) ( 2, Z/2 3 Z ) ( Z/2Z Z/2Z, Z/2 4 Z ) Z/2Z Z/4Z. 23 ( ) ( ) 6.html

28 28 B (mod ) (mod ), 3 4 ( ) 2 (mod ) ( 3 4 ) ( ) 3 3 Z/Z. (,.) 3 (Z/Z), (Z/Z) = {, 3, 7, 9} = (mod ) (mod 2) (mod 2), (mod 2), n 8 2n 4 (mod 2), 8 2n+ 8 (mod 2)., 8 2 (8, 2) = 4, 8 Z/2Z,, 8 n = 2 2 3, f : Z/3Z Z/2Z, x 4x. f(2) = 8, (Z/3Z) 2, 8 2 f ( 2 2) f() 4 (mod 2) a m n. 26 a Z/nZ. () a n a Z/nZ, (2). () a Z/nZ, a a n b a b (mod n). b k (mod n) k., m k q, r. a m b kq+r ( b k) q b r b r (mod n) (2) a Z/nZ, (),. a n (a, n) l., n = p e pe r r, l = p f pf r r f i e i ( i r). S = {i; f i = },, m a m Z/nZ = Z/p e Z Z/pee r Z i S Z/p e i i Z., a m Z/nZ m i S φ (p ei i ) = p ei i (p i ) i S. 24 ( 27, - 3) 25 ( 26, - 3) 26,,, mod (mod 49). 49 = 7 2 (Z/49Z) (Z/49Z) , 6 4, , 3, (mod 49). 28 (25, ) = 5, (mod ) = φ(2 2 ) = (mod ), (mod ), (mod ),

29 4 4. R R, R n X,..., X n f(x) = f(x,..., X n ) = a i,...,i n X i X i n i,...,i n R[X,..., X n ], R n. ax i X i n, i + + i n,. f, f(x), deg f. deg = f(x, Y ) = 2 X 3 + X 2 Y + X Y Z[X, Y ] 3, g(x) = X X Q[X] 2., R R f(x), g(x) R[X] deg fg = deg f + deg g R. S R, S R R. S R, [S] R. R R S R, [R S] R [S] R = Z R = C. S = {i}, Z[i] R. R R S R, R [S] = {f(s,..., s n ) n f R [X,..., X n ], s,..., s n S}... R = {f(s,..., s n ) n f R [X,..., X n ], s,..., s n S}. ) R R S R R R. 2) R R R = Z R = C. S = {i}, i 2 = Z[i] = {a + ib a, b Z} Z[i].. 29

30 3 B x = a + bi Z[i] x = a bi. N(x) = xx = a 2 + b 2. x, y Z[i], x q, r Z[i] y = xq + r N(r) 2 N(x).. x = a + ib, y = c + id. u, v Z y x = c + id (a ib)(c + id) = a + ib a 2 + b 2 = ac + bd a 2 + b 2 u 2,. q = u + iv Z[i], r = y xq ( r ( y ) N = N x) x q = ac + bd bc a 2 + iad + b2 a 2 + b 2 ad bc a 2 + b 2 v 2 ( ) 2 ( ) 2 ac + bd ad bc a 2 + b 2 u + a 2 + b 2 v = 2. N(r) 2 N(x). ( r N x) = r x r x = N(r) N(x) R = Z R = C. S = {ω}, ω 2 + ω + =. Z[ω] = {a + ωb a, b Z}

31 (P, ) (partially ordered set, poset), x, y P x y (i) x x ( reflexivity) (ii) x y y x x = y ( anti-symmetry) (iii) x y y z x z ( transtivity) S P a S (upper bound) resp. (lower bound) : x S : x a (resp. x a) a S (maximum element) resp. (minimum element) : a S a S (resp. ) a S (maximal element) resp. (minimul element) : a S x a (resp. x a) x P S = P (resp. ), P (resp. P ),, (resp. ) ( ) P P, P (Zorn ). 5.2 R R, p R,. () R/p (2) a, b p, ab p a p b p (3) R a, b, ab p a p b p (4) R a, b, a p b p ab p p (prime ideal).. () (2) ab p, R/p (a + p)(b + p) = p, R/p a + p = p b + p = p. a p b p. (2) (4) R a, b, a p b p a a \ p, b b \ p. (2) ab p ab p. R. 3

32 32 B (4) (3) (3) () R/p R, m R,. () a, m a R a = m a = R. ( m ) (2) R/m m (maximal ideal). () (2) a + m m a m m (a) + m, m (a) + m = R. r R, m m ra + m =. r + m a + m. (2) () m a R x a \ m. R/m x + m m y R (x + m)(y + m) = + m. a a = R R, S ( S) R (i.e. a, b S ab S), a R s.t. a S =., R I = {b b a b S = }. p p, p.. I. b ι (ι I) I, c = b ι, c ι I, c I. 2,., Zorn, p I. p. b p, c p, bc p p (b) + p, p (c) + p ((b) + p) S, ((c) + p) S, s = r b + p, s 2 = r 2 c + p 2 s, s 2 S, r, r 2 R, p, p 2 p., S s s 2 = r r 2 bc + r bp 2 + r 2 cp + p p 2 p p S = R, a R, a R m.. S = {} R R m.. a = R,. () R (2) R, R R.. a R. a a. f a : R a, x xa R a,. a = R. R R. 2 a c. c S =.

33 *** B ( ) *** R, a, b R b = ac ( c R), a b, b a, a b. a R x R, x = ϵa ϵ, a x, x a. 3 a, a 2,..., a n R (n 2) d a i ( i) x a i ( i) x d d R a, a 2,..., a n.,., d, d a, a 2,..., a n d d. a, a 2,..., a n a, a 2,..., a n. a, a 2,..., a n R a i m ( i) a i x ( i) m x m a, a 2,..., a n., a, x R, (i) x a x = ϵ x = ϵa ( ϵ ) (ii) x a x, x a (iii) (a) (x) R (x) = (a) (x) = R R, a R, x R, x a x = ϵ x = ϵa ( ϵ ), a (irreducible element). p R p ab p a p b, p R R,.. p R, p = ab p ab, p a p b. p a, p = ab a p a p, p. b (p) (UFD) R, R a (a ) a = p p 2 p r, (Unique Factorization Domain) ,., a R a = p p r = q q s 2, r = s, p q,..., p r q r.. r. r =, p = q q s, q q s (p ) q (p )., p q, q 2 q s s =. r >, p p r = q q s q q s (p ),, p q. q = ϵ p (ϵ ) p p r = ϵ p q s p 2 p r = ϵ q 2 q s, r = s, p 2 q 2,..., p r q r. 3 x a a x x a (p)

34 34 B ,. (, ) R = Z[ 5] = {x + y 5 x, y Z}. w = x + y 5 R, w = x y 5, N(w) = ww = x y 2 Z N(w w 2 ) = N(w )N(w 2 ). (i) 2, 3, ± 5 R. (ii) (2) R. (iii) (2, + 5). (iv) R UFD. (6 = 2 3 = ( + 5)( 5) ) (PID) R,, (Principal Integral Domain) ,. (, )., 5.2. p (p) (p) p,, R, p R,. (i) (p) (ii) (p) R.. ( ) a R,., a a = a a (a, a ), a, a,., a, a = a 2 a 2 (a 2, a 2 ), a 2, a 2,, a 2., (a) (a ) (a 2 ) (a 3 ) R. i (a i ). 5 R i (a i ) = (b) b R., i b (a i ), (a i ) = (a i+) = (a i+2) =, R a, b. (i) a b d. (ii) (a, b) = (d).. (i) (ii) (a, b) = (c) c R. c a c b c d., c = ax + by x, y R, d a d b d c. c d. (ii) (i) d = ax + by x, y R. c a, b, c a, c b c d. a, b (d), d a b d X, Y, R = Z[X, Y ] UFD. ( ) I = (X, Y ) R., R PID. 5.

35 *** B ( ) *** R a v(a),, Euclid (Euclidian Domain). () a, b R s.t. a, q, r such that b = aq + r, r = v(r) < v(a) (2) a, b v(a) v(ab) Euclid R.. a R. S = {v(x) x a x } N v(a). a = (a)., x a x = aq + r r = r v(r) < v(a), r = x qa a, v(a) ( ) R, F f : R F. () f (2) F x = f(a)f(b)., (F, f), (F, f ) () (2), φ : F F f = φ f.. F = {(a, b) a, b R, b }, F (a, b) = (c, d) ad = bc. F = F /, F (a, b) + (c, d) = (ad + bc, bd), (a, b)(c, d) = (ac, bd), well-defined, F = ( R, R ), F = ( R, R ). f : R F f(a) = (a, R ) R, F R (field of quotients)., R ( ).

36

37 6, R. deg f f R[X,..., X n ], f = gh, deg g, deg h < f g, h R[X,..., X n ], f (degreewise reducible). f R[X,..., X n ] deg f,, (degreewise irreducible) h(x) = 2 X X X + 2 Z[X], g(x) = X X Q[X] f R[X,..., X n ] f R. f R[X,..., X n ] deg f = Z[X,..., X n ] ± F, f F [X] f F [X],, R, f R[X] R[X]. f(x) = 6(X 2 + X + ) Z[X],, f(x) Z[X] 2, 3, X 2 + X + Z[X]. Q[X] R[X] R. f R[X] f = a + a X + + a m X m = m a i X i (a i R, a m ), m (degree), a m (leading coefficient). a m = (monic) m., f, ia i X i f, f (derivative). i= 6... h(x) = 2 X X X + 2 Z[X] 3, 2 monic, h (X) = 6 X X + 2 Z[X] R R[X], f, g R[X], deg(fg) = deg f + deg g. f = m i= a ix i, g = n j= b jx j fg = m i= n j= a ib j X i+j a m b n R R[X,..., x n ], f, g R[X], deg(fg) = deg f + deg g. R[X,..., x n ] = R[X ][X 2 ] [X n ] R, R[X,..., x n ] { } f(x,..., X n ) R(X,..., X n ) = g(x,..., X n ) f(x,..., X n ), g(x,..., X n ) R[X,..., X n ], g(x,..., X n ). 37 i=

38 38 B R, f, g R[X] g R f = gq + r, r = deg f < deg g q, r R[X]..,. f = m i= a ix i, g = n j= b jx j, deg f < deg g. deg f = deg g,, q, r.. f = gq + r = gq 2 + r 2, deg r, deg r 2 < deg g g(q q 2 ) = r 2 r. q q 2 deg g(q q 2 ) deg g > deg r 2 r. q = q 2, r = r R, f R[X], a R, q(x) R[X]., f(x) = (X a)q(x) + f(a), X a f(x) f(a) =. g(x) = X a f(x) = (X a)q(x) + r. X = a r = f(a) R m, f(x) R[X] m.. m. (i) m =,. (ii) m > 2, m. m, f(x) R[X] a f(x) = (X a)f (X)., f (X) m, m., f(x) m R, f(x) R[X] R a, f(a) = f(x) = f R[X], a R, (X a) k f(x) (X a) k+ f(x), a f(x) k, k f(x) a. 2,, R, a R f(x) R[X] k (k 2), a f (X) k. a R f(x) f(a) = f (a) =.., f(x) = (X a) k g(x), g(a)., f (X) = k(x a) k g(x) + (x a)kg (X) = (X a) k {kg(x) + (X a)g (X)} (X a) k f(x).

39 *** B ( ) *** F F [X] Euclid F F [X] PID F f(x), g(x) F [X],. (i) f(x), g(x). (ii) f(x)u(x) + g(x)v(x) = u(x), v(x) F [X] F p(x) F [X],. (i) p(x) F [X] (ii) p(x) F [X] (iii) (p(x)) F [X] (iv) (p(x)) F [X] 6.3 UFD, R UFD., F R f(x) R[X], f(x) (primitive polynomial) h(x) = 2 X 3 +2 X 2 +2 X+2 Z[X] 2 primitive, k(x) = 6 X 2 +3 X+4 Z[X] primitive p R R p R[X], i.e., f(x), g(x) R[X] p f(x) p g(x) p f(x)g(x).. f(x) = a + a X + + a m X m, g(x) = b + b X + + b n X n (a m, b n ). f(x), g(x) p, a j, b k, f(x)g(x) X j+k c j+k = a j+k b + + a j+ b k + a j b k + a j b k+ + + a b j+k. p a k b k, p, p c j+k p f(x)g(x) (Gauss s Lemma) f(x), g(x) R[X], f(x)g(x).., f(x)g(x), p f(x)g(x) p R p f(x) p g(x), f(x), g(x) f(x) = 2 X X + 3, g(x) = 2 X X + 2 Z[X], f(x)g(x) = 4 x x x x + 6 Z[X] a, b F, b = aϵ R ϵ R, a b, a b. approx

40 4 B R = Z, F = Q, Z = {±}, 2 3 ± 2 3., R = Z[i] (i = ), F = Q[i], Z = {±, ±i}, 2 3 ± 2 3, ± 2 3 i f(x) F [X] f(x) = cg(x) c F g(x) R[X]. c, c = c(f) f(x) (content).. f(x) = a + a X + + a m X m, b, b,..., b m B b b b m f(x) = ( a B + a B X + + a m B ) X m B b b b m, a i B b i R R A R, f(x) = A B (c + c X + + c m X m )., c = A B, f (X) = c + c X + + c m X m, f (X) R[X]., f(x) = cf (X) = c f (X) (f (X), f (X) R[X] ), c = a b, c = a b ab f (X) = a bf (X) R[X]., f (X), f (X) ab a b. ab = a bϵ ϵ R., c = cϵ f (X) = ϵf (X) R = Z, F = Q, g(x) = X X Q[X]. c(g) = 6, primitive k(x) = 6 X X + 4 Z[X], g(x) = c(g) k(x) f F [X], f R[X] c(f) R f R[X], f c(f) f, g F [X], c(fg) = c(f)c(g) f(x), g(x) R[X], g(x), f(x) = g(x)h(x) h(x) F [X] h(x) R[X].. f(x) = g(x)h(x) R c(f) = c(g)c(h) = c(h), 6.3. h(x) R[X] f(x) R[X], f(x) = g(x)h(x) g(x), h(x) F [X] g (X), h (X) R[X]. f(x) = g (X)h (X), deg g = deg g, deg h = deg h. g(x) = c(g)g (X), h(x) = c(h)h (X) (g, h R[X] ) f(x) = c(g)c(h)g (X)h (X), 6.3.4, g (X)h (X), 6.3. c(g)c(h) R.,, g (X) = g (X) R[X], h (X) = c(g)c(h)h (X) R[X] f(x) R[X], R[X] F [X] R R[X] f(x), () f(x) R[X] (2) f R (deg f = ),, f (deg f ).. () (2) f(x) R[X], f(x) = c(f)f (X) (f (X) R[X] ), f(x) c(f)f (X) f(x) c(f) f(x) f (X). f(x) c(f) R, f(x) f (A) c(f). (2) ()

41 *** B ( ) *** R R[X].. f(x) R[X], f(x) = c(f)f (X) (c(f) R, f (X) R[X] ). c(f) R c(f) = p p r., R F F [X], F [X] f (X) = g (X) g s (X) (g i (X) F [X]) , h,..., h s R[X], f (X) = h (X) h s (X), deg g i = deg g i., f c(h ) c(h s ), h i F [X] R[X]., 6.3.4, f(x) = p p r h (X) h s (X) f R R[X,..., X n ].. R[X,..., X n ] = R[X,..., X n ][X n ].

42

43 7, R. 7. R m n M m,n (R)., m = n, n, M n (R). n A M n (R) AB = BA = I n B M n (R), (non-singular), B A, A I = R n GL n (R), R (General Linear Group) n A M n (R) det A R.. AB = I, det A det B = det A R., det A R A Ã., t A A. A = t A det A n P n (i, j), Q n (i; c), R n (i, j; a) M n (R). P n (i, j) = i j i j

44 44 B, c R., a R. Q n (i; c) = R n (i, j; a) = i..... i c i j i a.... j , αδ βγ R,. S n (i, j; α, β, γ, δ) = i j i α... β j γ... δ a R, c R, αδ βγ R, 4 n P n (i, j), Q n (i; c), R n (i, j; a), S n (i, j; α, β, γ, δ) M n (R).. det P n (i, j) =, det Q n (i; c) = c, det R n (i, j; a) =, det S n (i, j; α, β, γ, δ) = αδ βγ, Theorem 7..., P n (i, j) = P n (i, j), Q n (i; c) = Q n (i; c ), R n (i, j; a) = R n (i, j; a), S n (i, j; α, β, γ, δ) = S n (i, j; α, β, γ, δ )., α = (αδ βγ) δ, β = (αδ βγ) β, γ = (αδ βγ) γ, δ = (αδ βγ) α m n A M m,n (R), 3, B A (elementary row operations) (resp. (elementary column operations)).

45 *** B ( ) *** 45 (L) 2 (resp. ). (L2) (resp. ) R c. (L3) (resp. ) R a, (resp. ). (L4) αδ βγ R, i, i α j β j, i γ j δ. (R), (R2), (R3). (R4) αδ βγ R, i, i α j γ j, i β j δ..,, (elementary operations) (L) 2 ( ) 2 ( , 3 ( ) ( ) Z ±. (L2) ( ) ( ) ( ) 2 3 ( )., 2 ( ) ( ) 2 2 ( ) ( ) (L3) 2 2 R ( ) ) ( ) , 2 3 ( ) ( ) i =, j = 2, a = 3, b = 7, c = 2, d = 5 (L4) ( ) ( ) , i =, j = 3, a = 3, b = 7, c = 2, d = 5 (R4) ( ) ( )

46 46 B m n A M m,n (R), 3 (L), (L2), (L3), (L4), P m (i, j), Q m (i; c) (c R ), R m (i, j; a) (a R), S m (i, j; α, β, γ, δ) (α, β, γ, δ R, αδ βγ R )., 3 (R), (R2), (R3), (R4), P n (i, j), Q n (i; c) (c R ), R n (i, j; a) (a R), S n (i, j; α, β, γ, δ) (α, β, γ, δ R, αδ βγ R ).. () B = P m (i, j)a (resp. B = AP n (i, j)), B A i j (resp. i j ). (2) B = Q m (i; c)a (resp. B = AQ n (i; c)), B A i (resp. i ) c. (3) B = R m (i, j; a)a (resp. B = AR n (i, j; a)), B A i j (resp. j i ) c. (4) R. A, B M m,n (R), P GL m (R) Q GL n (R) B = P AQ, A B (equivalent), A B M m,n (R).. 3 () ( ) A A (2) ( ) A B B A (3) ( ) A B B C A C. 7.3 A M m,n (R) m n. k min(m, n), i < < i k m, j < < j k n, A i,..., i k j,..., j k k A i,...,i k j,...,j k., A = A, ( ) 2,4 = 5 4., k = m {i,..., i m } = {,..., m}, A,...,m j,...,j m, A j,...,j m., k = n {i,..., i n } = {,..., n}, A i,...,i n,...,n,. Ai,...,in (Cauchy-Binet formula) m, n m n. A M m,n (R), B M n,m (R). det AB = det A i,...,i m det B i,...,im i < <i m n.. n k= a n kb k k= a kb km..... = n k= a n mkb k k= a mkb km k < <k m n a k a km b k b k m a mk a mkm b km b km m

47 *** B ( ) *** 47. n k a n = kb k k a m= kb km LHS =..... = n k a n = mkb k k a m= mkb km n k = n k m= k,..., k m a kσ() a kσ(m) = b kσ() b kσ(m) m..... k < <k m n σ S m a mkσ() a mkσ(m). = = k < <k m n k < <k m n a k a km sgn σ b kσ() b kσ(m) m..... σ S m a mk a mkm a k a km b k b k m = RHS a mk a mkm b km b kmm m = 2, n = 3. A, B M m,n (R) ( ) b b 2 a a 2 a 3 A =, B = b 2 b 22 a 2 a 22 a 23 b 3 b 32 a k a km b k b km. m.... a mk a mkm ( ) ( ) ( ) ( ) ( ) ( ) a a 2 b b 2 a a 3 b b 2 a 2 a 3 b 2 b 22 det AB = det det + det det + det det a 2 a 22 b 2 b 22 a 2 a 23 b 3 b 32 a 22 a 23 b 3 b R. A M m,n (R). e e 2... B = e r... (7.4.) e i ( i r) e i e i+ ( i < r).. R v valuation. A = O ( ), A,. A O. O A M m,n (R), v(a) = min{v(a ij ) a ij }., v(a) A valuation.,,.

48 48 B (i, j), A B, (, ) b, A (i, j) a ij., v(a) = v(b).... i, j, A i, j B. 2 A (, ) a ( ), A B, (, ) b a, ( )...., (, j) aj = qa (j ), j + ( q) (, j). a j., (, ) ( ) (, ). 3 A valuation a (i.e. v(a ) = v(a)), A a, A B, v(b) < v(a)...., ai a, R a i = qa + r, v(r) < v(a ) (7.4.2) q, r R. A i + ( q) B B (i, ) r, v(b) < v(a). 4 A O valuation a ij (i.e. v(a ij ) = v(a)), A a kl a ij, A B, v(b) < v(a)...., v(a ) = v(a). A a 3. A a. a kl (k, l > ) a., A + l C C (k, ) a k + a kl. a k a, a kl, a k + a kl a., 3, 5 A O, A B, b ij.... v(a) = v(aij ) A a ij. a ij A, B = A. 4 v(b) < v(a) B A. A B, B B, v(c) < v(b) C B.. v(a), A a ij. 6 A O A B (),(2),(3). () b. (2) b i = b j = (i >, j > ). (3) b b ij (i >, j > ). 5 A C, c ij C., C, C ij (,) D. D A, d d ij. 2 D B (), (2). B (3). 7 6 (m, n) a a 2... a n a 2 A =.. A a m valuation v(xy) v(x) v(a ij ) = v(a).

49 *** B ( ) *** 49 b... B =. B. B b. A B, A = 3 3 3,. A,, ( ) ( 3) ( ) ( )

50 5 B,. B = R, A GL n (R) P n (i, j), Q n (i; c) (c R ), R n (i, j, a) (a R).. R, A M n (R), 7.4., P k P AQ Q l = B P,..., P k, Q,..., Q l., P n (i, j), Q n (i; c) (c R ), R n (i, j, a) (a R). det B R, r = n, e,..., e r R. 7.5 R, 2 (greatest common divisor; GCD), GCD (GCD domain). 2, (least common multiple; LCM).. R R R R GCD R GCD R GCD. A M m,n (R) k d k (A). d k (A) = gcd { det A i...i k j...j k i < < i k m, j < < j k n }, k d k (A) = , d (A) = gcd(2, ) =, 2 A = 2 2 det A 2 2 = 3, det A 2 3 = 3, det A 2 23 = 3, det A 3 2 = 3, det A 3 3 = 3 det A 3 23 = 3, det A 23 2 = 3, det A 23 3 = 3, det A = 3 d 2 (A) = 3. det A = d 3 (A) = R GCD. A, B M m,n (R) m n. P M m (R), Q M n (R) B = P AQ, d k (A) d k (B)., k min(m, n). 2 a, b R, d () d a d b (2) c a c b c d, d a, b (greatest common divisor)., l () a l b l (2) a x b x l x l a, b (least common multiple).

51 *** B ( ) *** 5. A = (a ij ), B = (b ij ), P = (p ij ), Q = (q ij ) b ij = m r= s= n p ir a rs q sj. i < < i k m j < < j k n det B i,...,i k j,...,j k Theorem 7.3., det(aq) r,...,r k j,...,j k det B i,...,i k j,...,j k = Theorem 7.3. det B i,...,i k j,...,j k = r < <r k m r < <r k m s < <s k n. d det A r,...,r k s,...,s k d det B i,...,i k j,...,j k. d d. det P i,...,i k r,...,r k det(aq) r,...,r k j,...,j k det P i,...,i k r,...,s k det A r,...,r k s,...,s k det Q s,...,s k j,...,j k. P (AQ), d d., A = P BQ, d d R. A M m,n (R) e e 2... B = e r... (7.5.) ( e i ( i r) e i e i+ ( i < r) )., e,..., e r A,. d k (x) = e e 2 e k. 7.6,, R., e i e i+ ( i < r) (e i ) (e i+ ) ( i < r) R, A M m,n (R). A B M m,n (R),, B A (Smith Normal Form). 3 e e 2... B = e r (7.6.)... e i ( i r) (e i ) (e i+ ) ( i < r). e,..., e r A (elementary divisors), A (rank) R., A M m,n (R),., e,..., e r A,. d k (x) = e e 2 e k. 3 R = Z Smith, Henry J. Stephen (86). On systems of linear indeterminate equations and congruences. Phil. Trans. R. Soc. Lond. 5 ():

52 52 B,,, (L), (L2), (L3), (R), (R2), (R3) (L4), (R4)., 7.4.3, R, A GL n (R) P n (i, j), Q n (i; c) (c R ), R n (i, j, a) (a R), S n (i, j; α, β, γ, δ) (α, β, γ, δ R ) , R. () R A M m,n (R), R (elementary divisor ring). (2) R (, 2) A M,2 (R) ( (2, ) A M 2, (R)), R (Hermite ring). (3) R, 2, (Bézout ring).,. (4) R, (ascending chain condition), n I I k I k I k+ I n = I n+ =, R (Noetherian Ring). (5) R, (descending chain condition), n I I k I k I k+ I n = I n+ =, R (Artinian ring). (6) R,, (a) = (b) u R b = au, R (associate ring) R Bézout R Bézout GCD R GCD domain R R R Bézout R. () R R Bézout. (2) R R Bézout. (3) R (i), (ii) :

53 *** B ( ) *** 53 (i) R Bézout (ii) a, b, c R (a, b, c) = R p, q R (pa, pb + qc) = R. (4) R, A M m,n (R) B.. () [2, p.465] R, 2, a, b R, d R αδ βγ R α, β, γ, δ R ( ) ( ) α β a b = γ δ ( ) d. d = aα + bγ (a) + (b) (d) (a) + (b)., ( ) ( ) ( ) α β a b = d γ δ a = dα, b = dβ, a (d) b (d) (a) + (b) (d)., a, b R, d R (a) + (b) = (d), Bézout. ( ) (2) [4, (3.)] ( ) a, b R, (d) (e) a d, e R b ( ) ( ) a d b e., (a, b) = (d, e) = (d), R Bezout. ( ), R Bezout, m A m n. m =. m >, ( ) a A A. A (m ) (n )., A : c... c 2... A (c i ) (c i+ ). d R (d) = (a, c ), d = ma + nc, a = da and c = dc m, n, a, c R., ( ) ( ) a a ma + nc c c ( d ) a c, A : d... a c... A c ( d a c d c, d.,,. )

54 54 B (3) [2, Theorem 5.2] ( ) R Hermite Bézout. (ii), (4) (a, b, c) = R a, b, c R A = ( a c ) b (7.6.2), P AQ A. P AQ (, ) u. P p, q Q x, y., pax + pby + qcy = u, (pa, pb + qc) = (ii). ( ) ( ),, R. a b 2, (a) + (b) = (d) d R, ap + bq = d, a = sd, b = rd p, q, r, s R. d(ps qr l) =. We dismiss the cased =, and thus have that ps qr is a unit. The observation (6) completes the proof. It was remarked in 2 that diagonal To prove the sufficiency we first observe (Theorem 3.2) that R is an Hermite ring. Given a 2 by 2 matrix, we may thus arrange to get a zero, say in the lower left corner. We thus reach the matrix A of (7.6.2). Write (a, b, c) = d, d = xa + yb + zc, a = axd, b = bxd, c = Cxd. We dismiss the case d = and thus find that xax + ybx + zcx is a unit ; without loss of generality we may change notation and assume (a, b, c) =. We now take the p and q offered us in hypothesis ( ), observe that necessarily (p, q) =, complete the row p, q to a unimodular matrix, and use it to left-multiply A. The result is a matrix with pa, pb + qc for its first row. Right multiplication by a suitable unimodular matrix converts this to,. We sweep out the element in the lower left corner and thus complete the reduction. 7.7 (Abelian sandpile model), Abelian sandpile model (Graph) V ( ) E G = (V, E). (vertex) (edge). V = {, 2, 3, 4}, E = {{, 2}, {, 3}, {2, 3}, {2, 4}, {3, 4}} G, : G = (V, E) G = (V, E). () v V, v deg v = { u {u, v} E } v (degree). (2) (connected). (3) (v, v 2,..., v r ) {v i, v i+ } E (i =, 2,..., r ) (path). (4) (v, v 2,..., v r ) v = v r, (cycle). (5) 2 G = (V, E) G = (V, E ), G G, (i.e., V V E E ) G G (subgraph).

55 *** B ( ) *** () (tree). (2) G = (V, E) G = (V, E ) (spanning tree). (3) (complete graph). n K n (4), (bipertite graph). (5), (complete bipertite graph). m, n K m,n :, K 4,, K 2, ( ) G = (V, E), (chip) σ (configuration)., σ : V N = {,, 2,... },., 7.7. σ() = 2, σ(2) = 4, σ(3) = 3, σ(4) =, G v σ(v) deg(v). v : 7.7. (firing), v,, τ. σ(v) deg(v), if u = v, τ(u) = σ(u) + µ(u, v), if u v.., µ(u, v) u v,. (muliiple edge )., σ 2, τ() = 3, τ(2) =, τ(3) = 4, τ(4) = 2 τ., G w, (sink). w, w

56 56 B : σ 2 τ. (dynamical system) (the abelian sandpile model). v, v deg v. (stable configuration), i.e., σ(v) < deg(v) for v w., w = ,,., w, w. 2,,., τ w = : σ, σ, M. M. σ, σ 2, σ σ 2, σ σ 2,., M ( ). M (ideal) J, J M, σ M σ J J. (sandpile group) (critical group) K(G) M (minimal ideal),,. K(G), w, ( ). [5], 7.7.6, 2,,,, 2 3., σ σ()σ(2)σ(3), M = M M = {,,,, } M = {,,,,, } M = {,,,,, } M = M = M = M = {,,, }

57 *** B ( ) *** w = : G (V, E) τ σ 7.7.7: M σ τ

58 58 B., K(G) = {,,, },, , σ =., K(G) τ σ 7.7.8: K(G) σ τ. [5] K(G) = Z/4Z. G = (V, E) σ σ(v) v V,., G = (V, E), K(G) σ,,.,, : K(G), 2,,. ( [5] )., (sandpile group).

59 *** B ( ) *** ( ). K n K(K n ) = (Z/nZ) n ( ) K m,n K(K m,n ) = (Z/mnZ) (Z/mZ) n 2 (Z/nZ) m G = (V, E). u v µ(u, v) =, µ(u, v) =. deg v v ( v ) G u, v V, L = L(G) = (L uv ) u,v V, G (Laplacian matrix). µ(u, v), u v, L uv = deg(v), u = v., L(G) = deg v L(G), L(G). L = L (G) L (sink). (,, ). (Matrix-Tree Theorem) (e.g., [, Thm ]) det L = κ(g), G (spanning trees). V = n L = L(G) θ,..., θ n. ( θ n = )., (spanning trees) κ(g) = θ θ n /n., det L (G) = det 3 = 8 3., L(G) = 2 2, L (G) = det L (G) = ,,.,., L L Z snf. L (α,..., α n ) L snf (α,..., α n, ).

60 6 B : L (G) e,..., e n, G. K(G) Z/e Z Z/e n Z L (G) = 2 snf 2, K(G) Z/4Z 4

61 8 R- 8. R ( ) R ( ), M R-. M {x λ } λ Λ a i x λi ( ) i M x λ. a i x λi = a i = i {x λ } λ Λ (independent) ( ) R ( ), M R-. K M RK = M, K M (base). M, M R- (free R-module) ,. R,, Zorn R :, M, N : R, R- f : N M, N, M B N = (v,..., v n ), B M = (u,..., u m ), : (i) f(v i ) = e i u i ( i r), f(v i ) = (r < i n), (ii) e i e i+ ( i < r). N, M B N = (v,..., v n), B M = (u,..., u m) A = (a ij ) M m,n (R). (f(v ),..., f(v n)) = (u,..., u m)a P GL n (R), Q GL m (R) e e 2... QAP = e r... = B. e i ( i r) e i e i+ ( i < r). (u,..., u m)q = (u,..., u m ), (v,..., v n)p = (v,..., v n ) (f(v ),..., f(v n )) = (u,..., u m )B.,. 6

62 62 B R, M R m ( ). M R- N,, m.. m. m =. m, m R-. M (x,..., x m ), N M R-. N = {}, N {}. y N y = a x + + a m x m (8..)., f : N R, y a R- f(n) R. R f(n) = (b ) b R., f(y ) = b y N. y = b x + + b m x m. M = Rx Rx m, M m R-,, N = N M, m R-. N (y 2,..., y l ) (l m). (y, y 2,..., y l ) N.... y = a x + + a m x m N, f(y) = a (b ) a = cb c N., y cy = (a 2 cb 2 )x (a m cb m )x m N c 2,..., c l R y cy = c 2 y c l y l. b =, N = N (y 2,..., y l ) N, l m. b., (y, y 2,..., y l )., c y + c 2 y c l y l =. c 2 y c l y l N f(c 2 y c l y l ) =, f c b =. R b c =., c 2 y c l y l =, (y 2,..., y l ) c 2 = = c l =., N, l m R R- M.. M M R R. m R- M R- N r, M B = (x,..., x m ) e,..., e r R,. (i) e i e i+ ( i < r) (ii) (e x,..., e r x r ) N.. N 8..5 R-. N r. f : N M f(x) = x, rank f = dim N = r, 8..4, N (y,..., y r ) M (x,..., x m ) y i = e i x i ( i r), e i e i+ ( i < r).,.

63 *** B ( ) *** Z 3 Z- Zv + Zv 2 + Zv 3. v = 2, v 2 =, v 3 =, Zv + Zv 2 + Zv , ( 2) ( 3) ( ) ( ) ( ) ( 2) 2 2 2, B = = = u = 2, u 2 =, u 3 = 3 2

64 64 B a v + a 2 v 2 + a 3 v 3 = 2 a a 2 = a a 3 a + a 2 + a 3 = 2 a a 3 = (a + a 2 + a 3 )u + (a a 3 )u a a 2 u, u 2 Z-, Z R, M R-, x M A(x) = { a R ax = } R, A(x) x (anihilator). R A(x) = (a) a R. a x (order). a x, R V,. a =, x. R V, V. R- R R, M R-,. () x M R- Rx, R/A(x). (2) R a R/a, R-. (3) R R- N R-.. (), (2). (3) (), (2) ( R- ). R, M R-,. (i) M R- M i. M = M M s (ii) M i R/(a i ) ( i s), a i R a i a i+ ( i < r), (a i ) R. (iii) a i ( i r), R. a j = (r < i s) M M r M, M r+ M s R s r. M (x,..., x m ). m (v,..., v m ) R- V R- f : V M f(a v + + a m v m ) = a x + + a m x m., M V/ Ker f. Ker f R- V R-, 8..7, Ker f µ e,..., e µ R (e v,..., e µ v µ ) Ker f, e i e i+ ( i < µ). Ker f = Re v Re 2 v 2 Re µ v µ

65 *** B ( ) *** 65., λ µ e,..., e λ, e λ+,..., e µ., M V/ Ker f Rv /Re v Rv λ /Re λ v λ Rv λ+ /Re λ+ v λ+ Rv µ /Re µ v µ Rv µ+ Rv m }{{}}{{}}{{} λ t λ m µ. e i, Re i v i = Rv i Rv i /Re i v i = ( i λ)., i > µ e µ+ = = e m = Re i v i = Rv i /Re i v i = Rv i (µ < i m). M V/ Ker f Rv λ+ /Re λ+ v λ+ Rv µ /Re µ v µ Rv µ+ /Re µ+ v µ+ Rv m /Re m v m }{{}}{{} µ λ m µ., r = µ λ, s = m µ (i), (ii). (iii) (i), (ii) (iii) G, x G = y Z 3 x 3 y 2 z = z G Z- M = G. Z- f : Z 3 Z f(x, y, z) = x 3 y 2 z, Ker f Z-. e =, e 2 =, e 3 = f e, e 2, e 3 ( ) ( ) f(e ) f(e 2 ) f(e 3 ) = 3 2 ( ) A = 3 2. A, B =. ( ) A = ( ) v = e, v 2 = 3 e + e 2, v 3 = 2 e + e 3 ( ) ( ) f(v ) f(v 2 ) f(v 3 ) =., Ker f = Zv 2 + Zv 3 Z 2

66 66 B G, G = Z/2Z Z/3Z G Z- M = G. ( ) ( ) + 2Z x =, x 2 = + 3Z. Z- V = Z Z ( ) ( ) e =, e 2 =. Z- f : V M f(e ) = x, f(e 2 ) = x 2, N = Ker f ( ) ( ) 2 y = 2e =, y 2 = 3e 2 = 3 Z R- N R- M R- f : N M, x x N (y, y 2 ) M (x, x 2, x 3 ) ( ) 2 A = 3. A ( ), B = 6 ( ) ( ) 2. = ( ) ( 3) ( ) ( 2) A ( ) ( ) 3 A ( 3 2 ) = ( 2 3 = B ) B

67 *** B ( ) *** 67. ( ) ( ) y 2 = y + y 2 =, y 6 2 = 3y 2y 2 = 3 6 N, M = V/ Ker f Z/Z Z/6Z Z/6Z. ( ) ( ) x 2Z = 2x + 3x 2 = =, x + 2Z 2 = x x 2 = 3Z + 3Z, M x x 4 y 8 z = 8 32x y 2 z = x 2 y 4 z = x 4 y 8 z = 32x y 2 z = 4x 2 y 4 z = A = 32 2, A 2 = 6 = B = 5 7, 2 3 A 2 = 5 7 B., Ker f Z-. Ker f = Z 2, ( 5) 2x = 84., 2 3 x = 7 4 y + 2 z = 2 5

68 68 B. 4 5, x = 7, y =, z =. 2 3 x 7 y = + Z 2 z.

69 [], Galois I,,, 977. [2] I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc. 66 (949), [3], I,,, 976. [4] M.D. Larsen, W. J. Lewis, and T. S. Shores, Elementary divisor rings and finitely presented modules, Trans. Amer. Math. Soc. 87 (974), [5] L. Levine and J. Propp, WHAT IS a sandpile?, Notices Amer. Math. Soc. 57 (2), [6], Jordan I,,, 977. [7], Jordan II,,, 977. [8] Richard Stanley, Smith Normal Form in Combinatorics arxiv:62.66 [math.co]. [9] Richard Stanley, Enumerative Combinatorics, vol., second edition, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 22. [] Richard Stanley, Enumerative Combinatorics, vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge,

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

2014 (2014/04/01)

2014 (2014/04/01) 2014 (2014/04/01) 1 5 1.1...................................... 5 1.2...................................... 7 1.3...................................... 8 1.4............................... 10 1.5 Zorn...........................

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id

AI n Z f n : Z Z f n (k) = nk ( k Z) f n n 1.9 R R f : R R f 1 1 {a R f(a) = 0 R = {0 R 1.10 R R f : R R f 1 : R R 1.11 Z Z id Z 1.12 Q Q id 1 1.1 1.1 R R (1) R = 1 2 Z = 2 n Z (2) R 1.2 R C Z R 1.3 Z 2 = {(a, b) a Z, b Z Z 2 a, b, c, d Z (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, bd) (1) Z 2 (2) Z 2? (3) Z 2 1.4 C Q[ 1] = {a + bi

More information

Armstrong culture Web

Armstrong culture Web 2004 5 10 M.A. Armstrong, Groups and Symmetry, Springer-Verlag, NewYork, 1988 (2000) (1989) (2001) (2002) 1 Armstrong culture Web 1 3 1.1................................. 3 1.2.................................

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

January 27, 2015

January 27, 2015 e-mail : kigami@i.kyoto-u.ac.jp January 27, 205 Contents 2........................ 2.2....................... 3.3....................... 6.4......................... 2 6 2........................... 6

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

2, Steven Roman GTM [8]., [3].,.

2, Steven Roman GTM [8]., [3].,. ( ) : 28 7 22 2, Steven Roman GTM [8]., [3].,. 1 5 1.1........................................................... 5 1.2......................................................... 6 1.3....................................................

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

ORIGINAL TEXT I II A B 1 4 13 21 27 44 54 64 84 98 113 126 138 146 165 175 181 188 198 213 225 234 244 261 268 273 2 281 I II A B 292 3 I II A B c 1 1 (1) x 2 + 4xy + 4y 2 x 2y 2 (2) 8x 2 + 16xy + 6y 2

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

Jacobson Prime Avoidance

Jacobson Prime Avoidance 2016 2017 2 22 1 1 3 2 4 2.1 Jacobson................. 4 2.2.................... 5 3 6 3.1 Prime Avoidance....................... 7 3.2............................. 8 3.3..............................

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) = 2018/10/04 IV/ IV 1/12 2018 IV/ IV 10 04 * 1 : ( A 441 ) yanagida[at]math.nagoya-u.ac.jp https://www.math.nagoya-u.ac.jp/~yanagida 1 I: (ring)., A 0 A, 1 A. (ring homomorphism).. 1.1 A (ideal) I, ( ) I

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen Hamming (Hamming codes) c 1 # of the lines in F q c through the origin n = qc 1 q 1 Choose a direction vector h i for each line. No two vectors are colinear. A linearly dependent system of h i s consists

More information

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a 1 40 (1959 1999 ) (IMO) 41 (2000 ) WEB 1 1959 1 IMO 1 n, 21n + 4 13n + 3 2 (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a = 4, b =

More information

+ 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm.....

+   1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm..... + http://krishnathphysaitama-uacjp/joe/matrix/matrixpdf 1 ( ) I IA i i i 1 n m a 11 a 1j a 1m A = a i1 a ij a im a n1 a nj a nm (1) n m () (n, m) ( ) n m B = ( ) 3 2 4 1 (2) 2 2 ( ) (2, 2) ( ) C = ( 46

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th

1 n A a 11 a 1n A =.. a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = 0 ( x 0 ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 1.1 Th 1 n A a 11 a 1n A = a m1 a mn Ax = λx (1) x n λ (eigenvalue problem) x = ( x ) λ A ( ) λ Ax = λx x Ax = λx y T A = λy T x Ax = λx cx ( 1) 11 Th9-1 Ax = λx λe n A = λ a 11 a 12 a 1n a 21 λ a 22 a n1 a n2

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i [ ] (2016 3Q N) a 11 a 1n m n A A = a m1 a mn A a 1 A A = a n (1) A (a i a j, i j ) (2) A (a i ca i, c 0, i ) (3) A (a i a i + ca j, j i, i ) A 1 A 11 0 A 12 0 0 A 1k 0 1 A 22 0 0 A 2k 0 1 0 A 3k 1 A rk

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1 1 Ricci V, V i, W f : V W f f(v = Imf W ( f : V 1 V k W 1 {f(v 1,, v k v i V i } W < Imf > < > f W V, V i, W f : U V L(U; V f : V 1 V r W L(V 1,, V r ; W L(V 1,, V r ; W (f + g(v 1,, v r = f(v 1,, v r

More information

18 5 10 1 1 1.1 1.1.1 P Q P Q, P, Q P Q P Q P Q, P, Q 2 1 1.1.2 P.Q T F Z R 0 1 x, y x + y x y x y = y x x (y z) = (x y) z x + y = y + x x + (y + z) = (x + y) + z P.Q V = {T, F } V P.Q P.Q T F T F 1.1.3

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

agora04.dvi

agora04.dvi Workbook E-mail: kawahira@math.nagoya-u.ac.jp 2004 8 9, 10, 11 1 2 1 2 a n+1 = pa n + q x = px + q a n better 2 a n+1 = aan+b ca n+d 1 (a, b, c, d) =(p, q, 0, 1) 1 = 0 3 2 2 2 f(z) =z 2 + c a n+1 = a 2

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information