kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :

Similar documents
kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib

講義のーと : データ解析のための統計モデリング. 第3回

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or

kubostat2017b p.1 agenda I 2017 (b) probability distribution and maximum likelihood estimation :

k2 ( :35 ) ( k2) (GLM) web web 1 :

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM

kubostat7f p GLM! logistic regression as usual? N? GLM GLM doesn t work! GLM!! probabilit distribution binomial distribution : : β + β x i link functi

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i

kubo2017sep16a p.1 ( 1 ) : : :55 kubo ( ( 1 ) / 10

講義のーと : データ解析のための統計モデリング. 第5回

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k

(2/24) : 1. R R R

講義のーと : データ解析のための統計モデリング. 第2回

12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71

1 15 R Part : website:

60 (W30)? 1. ( ) 2. ( ) web site URL ( :41 ) 1/ 77

kubostat2018a p.1 統計モデリング入門 2018 (a) The main language of this class is 生物多様性学特論 Japanese Sorry An overview: Statistical Modeling 観測されたパターンを説明する統計モデル

統計モデリング入門 2018 (a) 生物多様性学特論 An overview: Statistical Modeling 観測されたパターンを説明する統計モデル 久保拓弥 (北海道大 環境科学) 統計モデリング入門 2018a 1

kubostat2017j p.2 CSV CSV (!) d2.csv d2.csv,, 286,0,A 85,0,B 378,1,A 148,1,B ( :27 ) 10/ 51 kubostat2017j (

/ 60 : 1. GLM? 2. A: (pwer functin) x y?

今回 次回の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ Danger!! (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか これは次回)

/ 55 2 : : (GLM) 1. 1/23 ( )? GLM? (GLM ) 2.! 1/25 ( ) ffset (GLM )

(lm) lm AIC 2 / 1

kubo2015ngt6 p.2 ( ( (MLE 8 y i L(q q log L(q q 0 ˆq log L(q / q = 0 q ˆq = = = * ˆq = 0.46 ( 8 y 0.46 y y y i kubo (ht

Use R

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.

DAA09

第11回:線形回帰モデルのOLS推定

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F(

kubostat1g p. MCMC binomial distribution q MCMC : i N i y i p(y i q = ( Ni y i q y i (1 q N i y i, q {y i } q likelihood q L(q {y i } = i=1 p(y i q 1

,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i

1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.

Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理

最小2乗法

第13回:交差項を含む回帰・弾力性の推定

/22 R MCMC R R MCMC? 3. Gibbs sampler : kubo/

ECCS. ECCS,. ( 2. Mac Do-file Editor. Mac Do-file Editor Windows Do-file Editor Top Do-file e

y i OLS [0, 1] OLS x i = (1, x 1,i,, x k,i ) β = (β 0, β 1,, β k ) G ( x i β) 1 G i 1 π i π i P {y i = 1 x i } = G (

yamadaiR(cEFA).pdf

1 環境統計学ぷらす 第 5 回 一般 ( 化 ) 線形混合モデル 高木俊 2013/11/21

²¾ÁÛ¾õ¶·É¾²ÁË¡¤Î¤¿¤á¤Î¥Ñ¥Ã¥±¡¼¥¸DCchoice ¡Ê»ÃÄêÈÇ¡Ë

201711grade2.pdf

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

untitled

こんにちは由美子です

% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr

こんにちは由美子です

H22 BioS (i) I treat1 II treat2 data d1; input group patno treat1 treat2; cards; ; run; I

H22 BioS t (i) treat1 treat2 data d1; input patno treat1 treat2; cards; ; run; 1 (i) treat = 1 treat =

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

dvi

GLM PROC GLM y = Xβ + ε y X β ε ε σ 2 E[ε] = 0 var[ε] = σ 2 I σ 2 0 σ 2 =... 0 σ 2 σ 2 I ε σ 2 y E[y] =Xβ var[y] =σ 2 I PROC GLM

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó

2 と入力すると以下のようになる > x1<-c(1.52,2,3.01,9,2,6.3,5,11.2) > y1<-c(4,0.21,-1.5,8,2,6,9.915,5.2) > cor(x1,y1) [1] > cor.test(x1,y1) Pearson's produ

Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 s

: (GLMM) (pseudo replication) ( ) ( ) & Markov Chain Monte Carlo (MCMC)? /30

回帰分析 単回帰

BMIdata.txt DT DT <- read.table("bmidata.txt") DT head(dt) names(dt) str(dt)


p.1/22

DAA12

Microsoft Word - 計量研修テキスト_第5版).doc

: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99

> usdata01 と打ち込んでエンター キーを押すと V1 V2 V : : : : のように表示され 読み込まれていることがわかる ここで V1, V2, V3 は R が列のデータに自 動的につけた変数名である ( variable

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim

R John Fox R R R Console library(rcmdr) Rcmdr R GUI Windows R R SDI *1 R Console R 1 2 Windows XP Windows * 2 R R Console R ˆ R

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I

今日の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか

卒業論文

untitled

みっちりGLM

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc

28

2 / 39

Presentation Title Goes Here

インターネットを活用した経済分析 - フリーソフト Rを使おう

自由集会時系列part2web.key

浜松医科大学紀要

J1順位と得点者数の関係分析

9 8 7 (x-1.0)*(x-1.0) *(x-1.0) (a) f(a) (b) f(a) Figure 1: f(a) a =1.0 (1) a 1.0 f(1.0)

BR001

RとExcelを用いた分布推定の実践例

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó

こんにちは由美子です

Microsoft PowerPoint - GLMMexample_ver pptx

スライド 1

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble

(pdf) (cdf) Matlab χ ( ) F t

untitled

σ t σ t σt nikkei HP nikkei4csv H R nikkei4<-readcsv("h:=y=ynikkei4csv",header=t) (1) nikkei header=t nikkei4csv 4 4 nikkei nikkei4<-dataframe(n

1 R Windows R 1.1 R The R project web R web Download [CRAN] CRAN Mirrors Japan Download and Install R [Windows 9

と入力する すると最初の 25 行が表示される 1 行目は変数の名前であり 2 列目は企業番号 (1,,10),3 列目は西暦 (1935,,1954) を表している ( 他のパネルデータを分析する際もデ ータをこのように並べておかなくてはならない つまりまず i=1 を固定し i=1 の t に関

.3 ˆβ1 = S, S ˆβ0 = ȳ ˆβ1 S = (β0 + β1i i) β0 β1 S = (i β0 β1i) = 0 β0 S = (i β0 β1i)i = 0 β1 β0, β1 ȳ β0 β1 = 0, (i ȳ β1(i ))i = 0 {(i ȳ)(i ) β1(i ))

Microsoft PowerPoint - Rを利用した回帰分析.pptx

4 OLS 4 OLS 4.1 nurseries dual c dual i = c + βnurseries i + ε i (1) 1. OLS Workfile Quick - Estimate Equation OK Equation specification dual c nurser

Dirichlet process mixture Dirichlet process mixture 2 /40 MIRU2008 :

/ *1 *1 c Mike Gonzalez, October 14, Wikimedia Commons.

1 Tokyo Daily Rainfall (mm) Days (mm)

Transcription:

kubostat2017c p.1 2017 (c), a generalized linear model (GLM) : kubo@ees.hokudai.ac.jp http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 1 / 47 agenda I 1 response variable y 2 :? 3 GLM 4 R GLM 5 GLM kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 2 / 47 agenda II Normal distribution and identity link function Poisson distribution and log link function log 3 (GLM) http://goo.gl/ufq2 y y : : 2012 05 18 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 3 / 47 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 4 / 47 response variable y? Generalized Linear Model (GLM) () (logistic regression) (linear regression) 1. response variable y kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 5 / 47 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 6 / 47

kubostat2017c p.2 statistaical models appeared in the class response variable y suppose that you have a count data set... 0, 1, 2 response variable y The development of linear models Hierarchical Bayesian Model Be more fleible Generalized Linear Mied Model (GLMM) Incoporating random effects such as individuality parameter estimation MCMC MLE Generalized Linear Model (GLM) Always normal distribution? That's non-sense! MSE Linear model Kubo Doctrine: Learn the evolution of linear-model family, firstly! kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 7 / 47 (y {0, 1, 2, 3, } ) response variable y e.g. egg number () e.g. body size () y? kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 8 / 47 the normal distribution... is NOT this one!? response variable y the Poisson disribution approimates data?! response variable y response variable y? y 0? NO! kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 9 / 47 response variable y fair distribution non-negative mean YES! bye-bye, the normal distribution kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 10 / 47 :? :? body size and fertilization f change seed number y? 2. :? Modeling number of seeds of plants using GLM response variable seed number : {y i } : body size { i } fertilization {f i } f i C: T: i sample size control (f i = C): 50 sample (i {1, 2, 50}) treated (f i = T): 50 sample (i {51, 52, 100}) y i i kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 11 / 47 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 12 / 47

kubostat2017c p.3 : Reading data file? :? data frame d : data: http://hosho.ees.hokudai.ac.jp/~kubo/ce/eeslecture2017.html#toc4 data3a.csv CSV (comma separated value) format file R : > d <- read.csv("data3a.csv") d data frame ( ) data frame d > d y f 1 6 8.31 C 2 6 9.44 C 3 6 9.50 C...... 99 7 10.86 T 100 9 9.97 T > d$ [1] 8.31 9.44 9.50 9.07 10.16 8.32 10.61 10.06 [9] 9.93 10.43 10.36 10.15 10.92 8.85 9.42 11.11...... [97] 8.52 10.24 10.86 9.97 > d$y [1] 6 6 6 12 10 4 9 9 9 11 6 10 6 10 11 8 [17] 3 8 5 5 4 11 5 10 6 6 7 9 3 10 2 9...... [97] 6 8 7 9 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 13 / 47 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 14 / 47 :? data frame d : :? data type and class R f > d$f [1] C C C C C C C C C C C C C C C C C C C C C C C C C [26] C C C C C C C C C C C C C C C C C C C C C C C C C [51] T T T T T T T T T T T T T T T T T T T T T T T T T [76] T T T T T T T T T T T T T T T T T T T T T T T T T Levels: C T data type: factor levels : levels C T 2 > class(d) # d data.frame [1] "data.frame" > class(d$y) # y integer [1] "integer" > class(d$) # numeric [1] "numeric" > class(d$f) # f factor [1] "factor" kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 15 / 47 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 16 / 47 :? :? data frame summary()! Generate Data Plots! Always! > summary(d) y f Min. : 2.00 Min. : 7.190 C:50 1st Qu.: 6.00 1st Qu.: 9.428 T:50 Median : 8.00 Median :10.155 Mean : 7.83 Mean :10.089 3rd Qu.:10.00 3rd Qu.:10.685 Ma. :15.00 Ma. :12.400 > plot(d$, d$y, pch = c(21, 19)[d$f]) > legend("topleft", legend = c("c", "T"), pch = c(21, 19)) kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 17 / 47 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 18 / 47

kubostat2017c p.4 :? GLM f (bo-whisker plot) > plot(d$f, d$y) # note that d$f is! 3. GLM log link kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 19 / 47 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 20 / 47 GLM GLM how to specify linear regression model, a GLM GLM Generalized Linear Model (GLM) probability distribution?? link function? probability distribution : Gaussian distribution : e.g., β 1 + β 2 i link function : : ( ) + ( ) i identity link function kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 21 / 47 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 22 / 47 GLM (?) GLM how to specify model, a GLM GLM : (response variable) : () (): ( ) = (, intercept) + ( 1) ( 1) + ( 2) ( 2) + ( 3) ( 3) probability distribution Poisson distribution : : e.g., β 1 + β 2 i link function log link function : + kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 23 / 47 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 24 / 47

kubostat2017c p.5 GLM how to specify logistic regression model, a GLM GLM logistic GLM R (GLM) probability distribution binomial distribution : : e.g., β 1 + β 2 i link function : logit yi i probability distribution random number generation GLM fitting GLM ( ) rbinom() glm(family = binomial) rbinom() glm(family = binomial) rpois() glm(family = poisson) rnbinom() glm.nb() in library(mass) ( ) rgamma() glm(family = gamma) rnorm() glm(family = gaussian) glm() GLM kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 25 / 47 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 26 / 47 GLM GLM eponential function? seed number y i follows the Poisson distribution y i λ i p(y i λ i ) = λyi i ep( λ i ) y i! mean i λ i? λ i = ep(β 1 + β 2 i ) parameter coefficient β 1 β 2 ( ) body size no f i, for simplicity i i f i i λi λ i = ep(β 1 + β 2 i ) {β 1, β 2} = { 2, 0.8} {β 1, β 2} = { 1, 0.4} i i kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 27 / 47 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 28 / 47 GLM GLM ( ) GLM a statistical model for this eample mean i λ i λ i = ep(β 1 + β 2 i ) log link function log(λ i ) log link function log( ) = = β 1 + β 2 i probability distribution Poisson distribution : : β 1 + β 2 i link function log link function : log kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 29 / 47 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 30 / 47

kubostat2017c p.6 R GLM R GLM glm() function 4. R GLM > d y f 1 6 8.31 C 2 6 9.44 C 3 6 9.50 C...... 99 7 10.86 T 100 9 9.97 T Is that all?! > fit <- glm(y ~, data = d, family = poisson) kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 31 / 47 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 32 / 47 R GLM R GLM glm() output glm() > fit <- glm(y ~, data = d, family = poisson) all: glm(formula = y ~, family = poisson, data = d) Coefficients: (Intercept) 1.2917 0.0757 ( z):? link : z (y)? family:? Degrees of Freedom: 99 Total (i.e. Null); Null Deviance: 89.5 Residual Deviance: 85 AIC: 475 98 Residual kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 33 / 47 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 34 / 47 R GLM R GLM glm() > summary(fit) Call: glm(formula = y ~, family = poisson, data = d) Deviance Residuals: Min 1Q Median 3Q Ma -2.368-0.735-0.177 0.699 2.376 Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) 1.2917 0.3637 3.55 0.00038 0.0757 0.0356 2.13 0.03358 ( ) kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 35 / 47 ( ) β 2 (Estimate 0.0757, SE 0.0356) (Estimate 1.29, SE 0.364) β 1 0.0 0.5 1.0 1.5 p p ˆβ p 0.5 ˆβ ( : ) kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 36 / 47

kubostat2017c p.7 R GLM (?) β 2 (Estimate 0.0757, SE 0.0356) (Estimate 1.29, SE 0.364) β 1 0.0 0.5 1.0 1.5 95%? kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 37 / 47 model prediction R GLM > fit <- glm(y ~, data = d, family = poisson)... Coefficients: (Intercept) 1.2917 0.0757 > plot(d$, d$y, pch = c(21, 19)[d$f]) # data > p <- seq(min(d$), ma(d$), length = 100) > lines(p, ep(1.2917 + 0.0757 * p)) the figure shows the relationship between model prediction and data kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 38 / 47 GLM incorporate the fertilization effects in GLM f i GLM 5. GLM + seed number y i follows the Poisson distribution y i λ i mean i λ i fertilization effects β 3 dummy variable f i p(y i λ i ) = λyi i ep( λ i ) y i! λ i = ep(β 1 + β 2 i + β 3 d i ) d i = coefficient { 0 (f i = C ) 1 (f i = T ) kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 39 / 47 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 40 / 47 output glm(y + f,...) GLM + f model prediction GLM > summary(glm(y ~ + f, data = d, family = poisson))...( )... Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) 1.2631 0.3696 3.42 0.00063 0.0801 0.0370 2.16 0.03062 ft -0.0320 0.0744-0.43 0.66703 ( ) > plot(d$, d$y, pch = c(21, 19)[d$f]) # data > p <- seq(min(d$), ma(d$), length = 100) > lines(p, ep(1.2631 + 0.0801 * p), col = "blue", lwd = 3) # C > lines(p, ep(1.2631 + 0.0801 * p - 0.032), col = "red", lwd = 3) # T kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 41 / 47 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 42 / 47

kubostat2017c p.8 GLM multiple s GLM model interpretation depends on link function λi f i = C: λ i = ep(1.26 + 0.0801 i ) f i = T: λ i = ep(1.26 + 0.0801 i 0.032) control = ep(1.26 + 0.0801 i ) ep( 0.032) fertilization i ep( 0.032)! kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 43 / 47 λi (A) log link function i (B) identity link function λ = ep(β 1 + β 2 + ) λ = β 1 + β 2 + multiplicative additive i kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 44 / 47 probability distribution GLM: GLM link function GLM statistaical models appeared in the class y log y 階層ベイズモデル もっと自由な統計モデリングを! 線形モデルの発展 (HBM) 一般化線形混合モデル 個体差 場所差といった変量効果をあつかいたい 一般化線形モデル 正規分布以外の確率分布をあつかいたい (GLMM) 推定計算方法 MCMC 最尤推定法 (GLM) 最小二乗法 線形モデル kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 45 / 47 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 46 / 47 GLM statistaical models appeared in the class The development of linear models Hierarchical Bayesian Model Be more fleible Generalized Linear Mied Model (GLMM) Incoporating random effects such as individuality parameter estimation MCMC MLE Generalized Linear Model (GLM) Always normal distribution? That's non-sense! MSE Linear model Kubo Doctrine: Learn the evolution of linear-model family, firstly! kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 47 / 47 y 2 4 6 8 10 12 14 Too simple? 7 8 9 10 11 12 GLM The net topic (A) k = 1 (B) k = 7 2 4 6 8 10 12 14 Too comple? 7 8 9 10 11 12 Model selection and statistical test kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 48 / 47